The Diamond User Guide is now an online document.
It can be found here:

http://help.3l.com/Sundance/

An older version of the user guide follows this page.

http://help.3l.com/Sundance/

Diamond User Guide
Sundance Edition V3.0

Diamond User Guide : Sundance Edition V3.0

Published 1 June 2005

Copyright 3L Limited, 2005.

Table of Contents

O I - U UPPPTR 10
IO 1 011 o o 1 1o o PR 13
T 1= g0 (= o I A U o 1 = S 13
Devel opment ENVIFONMENESuiiiiiiiiiiii et 13
FUINEr REAMINGceeie ettt e e 13
160010177 o1 1[0 0 < TP 13
Words, BYtES a0 OCLELScouiiiiiieii e e e e e e e 13
Links, POrtS, @0 WIFESuiiiiiiiiieiiii e et 13

DIV A e e 14
TYPEFBCES ..o 14
EXBIMPIES e 14
Specialised INFOrMELTONiii e 14
Fats = = o) o] L= USRI 14
ST 00 = Vo= 14
SAMPIE COUE ... et 16
ACKNOWIEAGEIMENESeeii ittt e et e e et e e e b e eeees 17
2. SUNAANCE INSEAITBLIONeeee e et e e e et e eanaeees 18
[= £ 0§11 == PP 18
Rt 1o [I o =SSP 18
DeVICE DIIVEr SOFtWAIEevuiiieiii ettt et e et e e e e e eeanas 18
Code COMPOSES SEUAIO ...t et e e e 18
Code ComMPOSEr DIHVEr SOfWAIEeuuiiiiiii e 18
ENVIronment VariableSouu i 19
O PrOCESSOIS ...ttt ettt ettt et e et e et e et e e e e an e e ean e aeaneas 19
(07 S oo o PP 19

L@ Y2 oo 19

B4 SUPPIONT ettt ettt ettt e e e et e e et 20
AVEIaD] € PrOCESSON TYPES ...veieieiii ettt ettt e et e e et e e een e eeens 21
MUItIPIE-PrOCESSOr THIMS .oveiiiiiii ettt ettt ettt e e e e enenas 22
MUt -ProCESSOr SYSLEIMS ...ttt et e et e et e e e e eeens 23
MiXEO-PrOCESSOr SYSIEIMIS ...ivtiiiii i e et e e e e e e e e e e et e et e e et e e e e eaens 23
Reserved HardWare RESOUICEScvveueiiiiiiie et e ettt et e et e e e e e eeeenns 25
BYLE OFUEN ...ttt aaans 25
CONFIAEBNCE TESHING ... eeeeeie ettt et et e et e et e e e e 26
3L GEIING SEAMEA ...t 28
L@ VT TP 28
ADSIFACE MOOED ... e e e e 29
The DIamond MOEDcooiiiii e 29
Processors, WiIresS, anG LIiNKSovuiieiieiiii e et e e eas 29

The ROOE PrOCESSOF ...evtiieiiieeii ettt e e e e e et e e e e e eeens 30
TREHOSE .o e 30

LIS 2T S 31
POrtsand ChannElsoouuiiiiii e e 33
MUIti-ProcessSor NEIWOTKScoouuiiiiiiiieiiis et aeens 33
Virtual and Physical Channelsooooiuiiiiiiiii e 34
SIMUILANEOUS INPUL ...t et e e et e et eeai s 35
Parallel EXeCUtioN THrEaOSccuniiii e 35
Configuring an APPIICALIONiieei e 36
The Structure of an APPIICALIONcoviiiiiii e 36
The MICTOKEINEL ... 37

S = (1] = 38
Universal Packet ROULEr (UPR)ciiiuiiiiiiie e 39
Global File SErVICES (GFS) ...ccviiiiiiii e 39
Virtual Channel RoUter (WVCR) ... 39

L4 L=S= L=: SPR 39
Stand-AlonNe APPIICALIONScvveiiicee e 39

S 01117 1= 40

Diamond User Guide

Context SWitChing PErfOrMENCEviiiiiieiiii e 40

4. SEqUENLTIEI PrOGIaIMS ... ettt e et e et e e e e et e e e e aeans 41
L@ N YT P 41
100 1 4101 1o 41
Compiler Option SWITCNESccuuiiiiiiii e 41
Calling the Compiler DITECHYcovuueiiiiiii e 41

Y o B T - PP 42

[T 1] o PP 42
Using Linker Command FilEScccuuiiiiiiiiii e 43

[0 = = PP 43
Calling the LiNKer DIFECHYuiiiiiiieece e 44
LOCALING FIIES ..t 44
1600]01 1T 011 oo RSP TSUPPTRP 45
Calling the CoNfIQUIErcuniii e e 45
T oo 46
Command-LiNE ATQUMENEScuuuiieteeiieeei e e e e e e et e e e e e et eeaa e e et e eetneeeanaeees 47

5. Parall&] PrOgramMScceeii et 49
L0 g U T IS T 49
CONFIGUIBLTON ...ttt e e e 49
Building the APPlICELIONoiei e 50

MOre than ONE USEr TaSKoiiiiiiiiii et aeenas 51
Configuring for Morethan ONETaskcc.veiiieiiiiiii e 52
Building a Multi-Task AppliCationocoeuuiiiiiiiie e 55
Shutting DOWN ClEANIYiiiii e 56
SCREAUIING ..ttt 56
Multi-Processor APPIICALIONSveuuiiii ittt e et e e e eeens 57
Configuring Multi-Processor AppliCationScc.oveviiieeiiiieiii e e 57
LinksSand ChannElSoouuiiiiiiii e et 58
Virtual ChannElSceeeii e e 58
PhySICal ChannElS oot 59
Physical Channel RESIICHIONSoivieiiiiiiii e 60
WIRE Usage by Virtual Channelsc.oooiiiiiiii e 60

Error Detection on Virtual Channelscociviiiiiiiiiiiiiic e 60
SIMUITANEOUS INPUL ...t e e e e e e et e e et eeanaeees 61

TN T I g == o L= I 1= S 62
Creating TRrEAOS ... e 62
Waiting for ThreadSto Finishoooiiiiiiiii e 62
ACCESSTO SNArEA DBLAcvu i eeeieeet e 62
Synchronisation UsSiNg SEMaPhOreSccuuiiiiieiiiieeie e e e e e 63
Synchronisation Using Channelsoiviiiiiiiiiciir e 64
Threads and Standard 1/Oiiiiiii e 66
Synchronising Server REFEIENCESiiiiiiiei e 66
THreaOdS VEIrSUS TASKSuiiiieiii ettt e e e e et e e e e eeens 67
USINg ASSEMDBIY LANQUBOE ... ettt e e 67
[1. GENEIal REFEIEINCE ... iiiiiii ettt ettt e e et e e e e et e e e ee e e e eett e e e eetenaeaenes 69
L o 41100 o PP 73
L@00] 00100 T= 010 S = ST 73
[T 0 1 73
TAIQELS ..ttt 74
Adding Your OWN FUNCLIONSccuuiiiieii et e e e e e e eanaeees 74
ComMANd FilE ... 74
FUNCEION INBIME ...t et eaanas 74

@] 01 = 1o PSP 75

Y = o S PP UPEPP PPN 75
EXBIMPIE e 75

7. CoNfigUIration LANGQUEBOEc.uueeen it eeet et e et et e et e et e et e e et e e et e e aa e e et e eanaaees 76
Standard Syntactic MetalanQUAgEeveviiiiiiiii e eaaas 76
Configuration Language SYNEAXccueeieueeeiieie e ee e e e e e e s e e e e e eanas 76
(o Y RS Y |- PP 77
Constants and IAENLIFIEISovieeeiii e 78
NUMEITC CONSIANES ..eeeeeie it e et aeen s 78
SEING CONSLANES ...ttt e e e e e e et a e e ean e ees 78

T 1= 0= SRR SPPP 79

Diamond User Guide

S 2 < 011 0] S PP P TP 80
PROCESSOR SEBEMENEcieeiiiitiieeeeieeiiiii e e et eeetti s e e e e eeetbi e eeeeeennnees 80
WIRE SEALEIMENE ...iieieiiiii ettt e e e e e e e e e e 84
PROCTY PE SEEEEMENTeeiieeeriiiiiee e eee et e e e e e e e ennnees 85
LIS NG = 1= 1 11 | 87
PLACE SEBEMENT ...eeieiiee e et e et et e an e e e anas 91
BIND SEBEEMENE . .eveetieeeeeeeeeiitt e ettt e e e e e et e e e e e e e e eabbb e e e e e eeaesnnees 92
DEFAULT SEBEMENToeiiiiiiiiiie ettt e e et e et eeeeeeennees 93
UPR SEBEEMENLE ..evvtiiiie ettt e e et et s e e e e e e ere b s e e e e eeennnees 93
OPTION SEAIEMENTceeetiieeeeei e e e 93

8. ThE CONFIQUIEN ... e et e et eera s 95

USING the CONFIGUIET ...ttt ettt et e e e e enanns 95
INVOKING ettt ettt e et e et e et e e e e e eee 95
SWITCRES ... 95
10T 1 T = 96
USE OF FIlES .. 96

PrOCESSON TYPES ..ceieeieeee ettt 96

MEMOTY USE ..o 97
MEMOTY DIVISIONS ...ttt ettt ettt e et e e et eeenanns 97
MEMOFY MADPING .. ceneeeie et e et e et e et e e e e ean s 97
The OPT AMIDULEccoieeiiiie e 98
LOGICAl ATEASIZES ..ovuiiiiei e e e 98
[N I N 1] o1 (= 99
Separate Stack and HEaDcoovvuiiiiii e 99
Explicit Placement of LOgical Areascccuuiviiiiiiiiiiiiiiece e 100

BUIlAiNg @NEIWOIK ...t e 100
Restrictions on Network Configurationoeeviuiieiiiieiiine e e 100
Restrictions on Physical Channelsccoooviiiiiiiiii e, 101

Y=o 2o 1 101

LS I S 4= PP 113

L@ oY TP 113
The USEr INEEITACEceeeei e 113
TR SEIVEN .ot 113
TheBoard INTEIfatecvvviii e 113

SHATING thE SEIVEN .o e 113

Selecting Your DSPBOEITiiiiiiiiiiiiii e 114

Selecting @an aPPIICALIONccuuueieii et 116

EXplicitly resetting the DSPSuiiiiiiie e 116

RUNNING the apPliCatioNccouiiiii e e e e e e e e 116

RECONNECHING the SEIVEr ... e 117

Stopping the @PPLICALTIONcieee e 118

PAUSING OULPULeeetee ettt ettt ettt e e e e et e e e e et e e e e et e e e eebaaeeeees 118

PAgEMOOE ... e 118

1070 LB T PP UPRPRPRRPN 119

L@ o1 0] P 119
View/Options/General Tahccoviiviiiiiiiic e 119
View/Optiong/Standard /O Taloevviiiiiii e 121
View/Options/Monitoring Tahovveeiiiiiii e 122
View/Options/AAVANCed Tahuuiiiiiiiie e 122

BOAId PIrOPEITIESeeniieieei ettt ettt e e 124

HEP INfOrMELION ... ceveee e e e e e e e e eeaa e ees 124

S 10T (ox UL 1= 124

S Y1 Y= o 124

EITOr MESSAJESeiieiiiiiiee et 125

INtErNEAl DELAIS ...ceneeeiee e e 126
Loading @pPlICALIONSt e 126
SEIVEL SITUCLUMNE ...iveiiiici e 126
The Presentation INterface (P)ovve e 128
LiNK-INterfaCe ArVErS ... e e 130

EXIENdiNG the SEIVED ... 130
LOCELING CIUSLENS ...ttt et e ettt e et e e e e et eeeebe e eeens 130
SEIVEN OPEIAHTION ...ttt e 131
Building YOUr OWN CIUSLEYiiiiiiii e e e e e 131

Diamond User Guide

Accessing your cluster fromthe DSPcooviiiiiiiii e 133

The Core INtErface (C) .. .oeun i 135
Writing aboard iNterfaceccoouviiiii i 138
Replacing the SErver GUIciue e e e 138
The CommuniCation ODJECEccuuuiiiiiiiie e 140
REPIACING thE SEIVEY ... e 140
10. The Diamond Library ... e 141
T gL oo 11 To o RN PP 141
FOrmMat Of SYNOPSESivniiiiei e e e e 141

[o 141

[1572 [£ 141
ErrOrsS <er rN0O. N> o 141
Limits<fl oat. h> and<limts. h> .., 142
Common Definitions<st ddef . h> ... 142
AltPackage<al t. h> s 142
Diagnostics<assert. h> s 143
Channels<chan. h> e 143
Character Handling <Ct ype. h> i 144
Links <l i NK. N> o 144
Localisation <l 0cal €. h> o 145
Mathematics<mat h. h> ..o 145
Synchronising Accessto the Server <par. h> ..., 146
SemaphoreS <SEIMA. N> oo 147
EVENIS SBVENT . N> 147
Nonlocal Jumps<set j MP. h> 148
Signal Handling <si gnal . h> e 148
Variable Arguments<stdarg. h> ..., 148
INput/Output <St di 0. N> Lo 149
General Utilities<stdl i b. h> ..., 152
String Handling <string. h> oo 154
Threads<t hread. h> e 155
Thread return codes <er r code. h> e 155
Dateand TIMe <t i MB. N> oo 156
Internal Timer <t i MBr. N> oo 156

RS o B W o o)1 156
11, INterrupt HaNAIiNGcooveneiieiie et e e eee 212
Attaching High-level Interrupt Handlers ... 212
Communicating with the Kernel ..., 213
Enabling and Disabling Global INterruptsoocvviiiiiiiiii e 214
INterrupt ProCesSING FIOWuuiiiiiiii e e e e 215
Low-level Interrupt Handlers ... 215
[P2 110 1= g {0 o (1 = 216
Attaching alow-level handler ... 216
TaKING INEEITUPES ..t e e e e et e et e e e eanaees 216
Low-level handler CONEXTuiiiiiiiiiieiiiii e 217
ACCeSSING thE KEIMEL ... e 217
Low-level Interrupt Handler EXamplec..ooviiiiiiiiiiii e 219

12, EXEENEl INEEITUDES ... ettt ettt e e et e e et e e eeba e eeenes 221
T I PSSP 222
SCOXDMA FUNCLIONS ..eettiieiiiiiee et e e et e e et s e e e e e e e et s e e et e e easan e eeennnns 223
SCEXDMACHANNE] FUNCLIONSuiiiiiiiieiiiis et e e e e eaenns 224
LA, ED M A e e e e e e e aar e aaaes 227
EDMA Channel Availabilitycooouiiiiiiiiii e 228
EDMA events used by DIiamondoveiiiiiiieiiiiieeciii e 228
SCOXEDMA FUNCLIONSeetiiiiiiee et e e e et e et e e e eeens 229
SCHEXEDMACHANNE] FUNCHIONS .. .c.uiiiiiiiieei e 232
ST O I 1 PSPPSR 234
[T g1 1070 (8o [o PSP 234
PrinCiples Of OPEIalioNicieiiiiei it e e et e et e e 234
[1572 (= | PPN 234
2 LU TP UPTPT 234
Preparing t0 TranSfEr ... et 235
THANSTEIS .ot 236

Diamond User Guide

QDMA REGISLEI'S ...ttt e ettt e e e e e ettt e e e e e e e e e anba e e e eeas 237

A QDMA EXGMPIE ..ttt e ettt e e et e e e e e aaaaa 237

S 010 01> oo 1T oo 239
My appliCation dOBS NOL FUNevecii e e e e e e e e e ees 239
Compilation, Linking, CoNfigurationcoeuuiiiiiiiiniiiii e 240
compiler cannot DETOUNooiiiiii i 240

compiler cannot find header fileS ..., 240

FEIOCALION BITOIS ...ttt ettt e e e e e e eeees 241

wrong version of software eXeCULedcvevviiiiiiiiiiii e 241

Complete Failure at RUNTIMEiiiniiii e e e e e e aens 241
application hangs or rUNSWIldiiiiiiiiiiii e 241

application Will Not [0ad OF SEaAITviiiiiiii 243
communication With host disruptedvviiiiiiiiii e 244

ProCESSON IOCKS U .ttt et e e eeans 244

server hangs or ruUNSWIldooveiii e 245

ANSI FUNCHIONS ...ttt e e e e e e e ennnees 246
datain file seem to e COrrUPLooviei 246

(STl @ Y IS T = 1 oo TP 246

end of file COrrupt Or @DSENLoiiiiii e 246

ERANGE SELIN @ITN0 ...iiiiiieiiei e 246

fille POSILION ISWIONG ...vuiiiiciii e e e e e e e e e ees 247

1/0O behaves UNEXPECLEAIYcvvuiiii e 247

NULL returned when allocating MemOryocoeuueiieiiiiinieeiiiie e 248

output does NOt APPEAN OF IS COMTUPL ..vunevertieeeerii e et et eeaanns 248

time function returNSWIONG TIMEoiiiii e 248

Variabl@ COMTUPL ...t e e 248

Parallel and Other FUNCLIONSuiiiiciiiiiii e e 248
channel transfer failSoovvriieii e 249

[iNK FUNCEIONS O NOt WOTK .oveiiei e e e e e eens 249

thread cannot see changesto shared dataooevvvviiiiiiiiiiieiii e 249

thread NBNGS ... 249

thread new returNSINULL ..o 250
<timer.h> functionsdo NOtWOrKcoovieiiiiiiiiiii e 250

AV = o] F= oo 4 (o 250

[, SUNAANCE REFEIENCEiieiieii e et e e e e e et e e e et eeaan e e een s 251
I 1 P 253
SUMIMBIY ettt ettt e e et e et e et n e e et e e e e eeeas 253
(001011010 1< TP PTPPT 253
S B S ettt 253

Link CoNNECLioN RESIICHIONS ...vvvuiieee it 254

(101 = o o1 7= o 254
CONNECHING IO DBVICESvuieiiii ettt et et 255

18, DEIDUGUING -+ eeeetteeeeett ettt e ettt ettt e ettt e et e e e et et e e et e e e e et e e e e b e e eera e eean 256
OVEIVIBIV ..ttt ettt e et e et e e e e et e e enaa s 256
StArtiNg tO DEDUG ...ovviii e 256
NS .ttt 258

19. APPliCatioN LOAOINGvuueiiiiiieeiiii ettt e e e e eee 259
HOSE LOAOING vttt et e et e e et e e eeb e eeees 259

LOBA ChECKING .. ciiiiiieieei ettt e e e e 260

ROM LOAIING -.teeeittiee ettt e e et e e e e e e e e nbaa s 262

20. SUNAANCE DiIgItal BUSuiiiiciii et e e e e e e e e e e e et e et e e aa e aanas 263
1= 001170 | 263
(@001 {To U] = 1 o] o [P 263
ACCESSING AN SDB ...t 263
PErfOrMANCE ISSUES ... ettt e e e e et e eean e eees 264

AN SDB EXAMPIE ... 265

21, BOBIA SEIVICESiieeiiieiiti e e ettt e ettt e e e e ettt e e e e et e e e n e e e e e enarae 267
Accessing the Board Services INtErfaceco.vvvvviiiiiiiiii e 267
USING BOBIT SEIVICES ...ttt e et e et eeeeba e eeeees 268

= o0 =S 268
Carrier-board SRAM ..o 269

TheHigh Speed Channels ... 269

ACCESSING PCl REGISLEIS ...uiiiiieiiii et e e e e e e e e e e e ean s 274

Diamond User Guide

PCI A CCESS ...ttt e 275

THE GIODE BUS ...ttt e et e e e et e e e et 275
PaCKaged SEIVICESuuiiiiiii et 276
Faster Standard [/Oooooouiie e 276

L LR I =0 = 277

P OIMANCE ...t 277

S [0o (S PR 277

22, SUNAANCE TIMS oo ettt et e et e e e e ean s 278
23 ROM ittt aaan 279
24, APP2CORF ...ttt aaan 280
L0011 = £ 280
USING APP2COFT .ttt 280
Loading the @ppliCationuuiiiiiiii e 281
APP2COFT EFTOr IMESSAgES ...eeneetieeii ettt e e e e et e et e e e e e e e ean s 281

P2 I 2 T= o o o PP 283
ACCEPLEA NEIWOTKS .ovuiiiiiiei et e e e e e e e e e e e et e e e e e eanas 283
SEAtiNG thE WOIM ..eei e et 283
ST (o S 283
WOIM QUEPUL ..ttt e e e e e e e eea s 284

AV o110 110 o = o o |V 286
26. BibliOgraphy ...ooueiiii i 288
g0 1= U PR 289

Part I. Tutorial

An Introduction to Diamond

Table of Contents

I 111 lo [0oi o] o I PP URP PP PPPPTTT 13
INtENAE AUTIENCE ..oeviiiie e 13
Devel opment ENVIFONMENESuuiiiiiiiiiiiii et eaenns 13
FUIhEr REAOINGoeeeieeee et eaanns 13
10001V o1 [0 =T PR 13

WOrds, BYtES aN0 OCLELSceuiiiiieei et 13
Links, POrtS, 8N WITEScoiiiiiiiiiiiie et 13
DM A et 14
TYPEFBCES .. 14
EXBIMPIES e 14
SpeCialised INFOMMBLIONceeiei e 14
INSEAIALTON FOIARY ..ottt 14
S0 o) = Vo= 14
S 010 £ @00 [T 16
ACKNOWIEAGEMENESeeii it e et e e e et e eeees 17

S N 10T = g ot 1 S = = o o 18
PrErEOUISITES ...ttt ettt 18
INSEAIEA LIDIAITES ...ceeviieieei ettt e e e e 18
DeVIiCE DIVEN SOfIWEIEceiiieeiiiiee et e e e e s 18
Code COMPOSE SEUAIO ... eeveeeiii e e e e e e e e e e e e e e e e e e eanas 18
Code CompOoSar DIHVEr SOfWAIEuueiiiiiii e 18
ENVIronmMent VariableSoouu e 19
OENES PIOCESSOIS ...t eteeti ettt ettt ettt ettt e et e e ettt e e e e et e e et b e e e e ab s 19

O S T o] o o PP UPR PPN 19

(O Gy AT o o o PP 19

L 30 oo 20
AVEI A0 € PrOCESSON TYPES ..ottt e et e et e e eaae e eeees 21
MUILIPIE-PrOCESSON THIMS ettt e e e enanns 22
MUILI-ProCeSSOr SYSIEIMSueiiiiiie ettt ettt ettt e e e eenenas 23
MiXEO-ProCESSOr SYSIEIMIS ...viiii ettt e et e e et e et e e e eeens 23
Reserved HardWare RESOUICESiieeiiiieiiiiiiee et e e e e e e s 25
2T (= @] (o L= 25
CoNfIAEBNCE TESHING ... eeeeei ettt e e e e e 26

3L GEIING SEAMEA ...ttt 28
L@ oV PP 28
ADSIFACE MOED ... e 29
The Diamond MOUE!uueiie e e e e e annees 29

Processors, WiIres, and LiNKSiiioeirieeiiii e 29
The ROOE PrOCESSOF ...vvviiiiiieiie ettt e e e e e e e e e eeens 30
TREHOSE ..o 30
LI T PO 31
POrtsand ChannElSoouuiiiiii e 33
MUIti-Processor NEIWOIKSuuuiiiiieeiiiieiiie et e e 33
Virtual and Physical ChannelSoouuiiiii e 34
SIMUILANEOUS INPUL ...t e et e e e e 35
Parallel EXECUtiON THIEAAScveeiii et e e 35
Configuring @an APPIICELTIONiiiiie it e e 36
The Structure of an APPIICALIONoeui i e 36
The MICIOKEINED ... 37
SCNEAUIEN ...t 38
Universal Packet ROULEr (UPR)oiiiiiiiiiii et 39
Global File SErVICES (GFS) ...ovveiiiiiii e 39
Virtual Channel Router (VCR)coiviiiiiiiii e 39
TR SEIVET e 39
Stand-AlonNe APPIICALIONSiiieiiii e 39
PEITOIMENCE ...t 40
Context SWitching PErfOrManCevviiiuiiiiii e 40

Tutorial

4. SEQUENTIEI PrOGIaITIS ... cieeti ettt e ettt ettt e ettt e ettt e et et e ettt e e e e b e e e enaa s 41
OVEIVIBIV ...ttt e e e e et e et e e e e 41
1001 4101 113 To 41

Compiler Option SWITCNESiive i e e eae e 41
Calling the Compiler DIrECHYccveueniiiiii e 41
FAR DELA ...t 42
[T 1 o PP 42
Using Linker Command FilEScouuiiiiiiii e 43
[o= 1= TP RUPPPPPPPTTIN 43
Calling the Linker DITECHYcvvviiiii e e 44
LOCALING FIIES .. 44
1600]01 {10 1017 oo HN PSPPI 45
Calling the CONFIQUIEr ... 45
RUNNING ettt et e e e et e et e et e e e e eanns 46
Command-Line ATQUMENEScuuuiiiieiii et e e et e e e e e e e e e e e e e e e et e e et e eeanaens 47

o = 1= I 00 = 10 01 49

L@ g U IS T 49
CONFIGUIBLTION ...t e e 49
Building the APPlICALIONccouuiiiiii e 50

Morethan ONEUSEr TaSKcoovuiiiiiiii e 51
Configuring for Morethan OnNeTaskcveiiiieiiiiiiiii e e 52
Building aMulti-Task AppliCationcoovviiiriiiiiii e 55
Shutting DOWN ClEANIYuiiii e 56

SCREOUIING ..t 56

MUlti-Processor APPHICALTIONSiiiieiiieiiii et 57
Configuring Multi-Processor AppliCatioNSco.uiiiiuiiiiiiiiiee e 57
LinkS @nd ChannelSooociieeiiiii e e e e 58
Virtual ChannelSoouvieiiiie e 58
PhySiCal ChannElS oo 59
Physical Channel RESIICHIONSiiiiiiiiiiii e 60
WIRE Usage by Virtual Channelsooooiiiiiiiiiiiiieii e 60
Error Detection on Virtual Channelsovviiiiiiiiiiiii e 60
SIMUItANEOUS INPUL ...t e e e e e e e et e e e e e eanaeees 61

MUIL-TRrEBAEO TASKS ...t e e s 62
Creating TRrEAOS ... e 62
Waiting for ThreadSto Finishooooiiiiiiii e 62
ACCESSTO SNArEA DALAevu i eeee e 62
Synchronisation UsSing SEMaPNOreScccueiiiiiiiiiei e 63
Synchronisation Using Channelsooiiiiiiiiii e 64
Threadsand Standard 1/Ocooviiiiiiii e 66
Synchronising Server REFEIENCESuviiiiiiii e 66
THreadS VErSUS TASKS ..uuiiieiiie ettt e e e e et e e eeens 67

USING ASSEMDIY LANQUBGEcceveiieeeii ettt eneans 67

12

Chapter 1. Introduction

Intended Audience

This User Guide accompanies the TI C6000 edition of 3L's real-time operating system, Diamond. It is intended
for anyone who wants to program a C6000 system, whether writing a conventional sequential program or using
the full support for multi-processor networks and concurrency which Diamond has to offer. It describes how to
build Diamond applications at the MS-DOS prompt line and run them with the Windows Server.

Development Environments

Diamond for the C6000 is available on PCs running:

e Windows 2000
e WindowsNT
¢ Windows XP

This Guide assumes that you are reasonably familiar with the operating system of the host computer being used.
Some DSP hardware may work on only alimited range of operating systems.

Further Reading

Texas Instruments’ publications that may be useful include:

TMS320C62x/C67x Programmer's Guide
e TMS3206x Optimizing C Compiler User's Guide
e TMS320C6x Assembly Language Tools User's Guide

Conventions
Words, Bytes and Octets

Theterm "wor d" will generally be used to mean a 32-bit data item. We refer to 8-hit itemsas"oct et s" .

Users of Diamond on other processors, including notably the Texas Instruments TM S320C4x, should note that
the smallest addressable unit of memory on the C6000 is an octet. This corresponds to C variables of type char
or unsigned char. Strict conformity with the ANSI standard mandates the term byte for items of this size, and we
shall occasionally use it. However, when we do so, we will make explicit what size of data item we mean, in
order to avoid confusion for users of other processors.

Links, Ports, and Wires

Diamond on the C6000 uses the same communication model as the implementations on other processors,
including the C4x. However, at the hardware level, C6000 boards use a wide variety of techniques to carry out
communications between processors. No matter what techniques are used in a particular case, Diamond sees
each processor as possessing a number of communication links. Communication takes place between these
links, and we shall refer to the connections between them as wires. Regardless of the underlying hardware, you
can use Diamond’ s links and wires in the same way.

The word port, unadorned, has a different meaning, which is discussed in Ports and Channels.

13

Introduction

DMA

The term "DVA" will be used in this Guide to refer to both the older DMA and the newer EDMA mechanisms.

Typefaces

Throughout this manual, text printed in this typeface represents direct verbatim communication with the
computer: for example, pieces of C program, or commands to the host operating system.

In examples, text printed in this typeface is not to be used verbatim: it represents a class of items, one of which
should be used. For example, thisis the format of the command for running a program:

3L x bootable-file
This means that the command consists of :

» Thewords 3L x typed exactly like that.
* A bootable-file: not the text bootable-file, but an item of the bootable-file class, for example myprog.app.

.Warning

Information that is intended to draw your attention to potential errors, unexpected behaviour, or
facilities that should only be used in exceptional circumstances will be displayed like this.

Examples

When an example of acommand is reproduced verbatim, we shall represent the prompt with the sign »

For example: » 3L x hello.app

Specialised Information

Installation Folder

The installation directory is where Diamond and its associated software will have been installed. It is possible to
install Diamond in any directory, but this document will assume you have used the default directory
C.\ 3L\ Di anpond\ . It is best to reserve a directory just for this purpose; do not try to install into the same
directory as another product, whether from 3L or any other source. However, you should use the same directory
for al editions of Diamond (for example, c6000 and Power PC). Doing this will simplify building applications
for all classes of processor.

This document will use <Diamond> to refer to the installation directory.

Support Services

After-sales support is available from your dealer, and also directly from 3L. Support agreements can be
purchased for long term or intensive support, and include a free upgrade service.

You can email questionsto 3L [mailto:support@3L.com]

Further information is usually available on our web site: http://www.3l.com

14

mailto:support@3L.com
http://www.3l.com

Introduction

Alternatively, you can call +44 131 620 2641, from 9am to 5pm UK time.

15

Introduction

Sample Code

Source code for the examples mentioned in the text can be found in the the Diamond installation directory
<Di anpond>\t ar get \ c6000\ Sundance\ exanpl es\ gener al . Complete example programs can be
found in subdirectories called <Di anmond>t ar get \ c6000\ Sundance\ exanpl es\ Exanpl e- n.

16

Introduction

Acknowledgements

The network communication tasks which form a part of this product are based upon the UPR/V CR technology
developed by Mark Debbage, Mark Hill and Denis Nicole of the Department of Electronics and Computer
Science at the University of Southampton, England. We are happy to acknowledge the assistance we have
received from the devel opers of this technology.

Neither the University of Southampton nor any of the devel opers of the UPR/V CR technology shall be liable for

any damages arising out of the performance or use of Diamond. 3L Ltd is exclusively responsible for the
technical support of Diamond.

Microsoft®, MS-DOS® and Windows® are registered trademarks, and Windows NT™ s a trademark, of
Microsoft Corporation.

17

Chapter 2. Sundance Installation

This chapter contains instructions for setting up Diamond after it has been installed from the supplied media,
and making it ready for use on Sundance hardware. There is also a brief confidence-test procedure, which you
can use to check that the software has been installed correctly.

If you are unfamiliar with Diamond, you may wish to start by reading the Getting Started chapter.

Prerequisites

Before running the software:

» Check that you have the correct edition of Diamond for your target hardware;

» Make sure that your C6000 board has been correctly installed and set up, as described in the manufacturer's
documentation;

e Ensure that the Texas Instruments code generation tools are installed. These usually come as part of Tl's
Code Composer Studio product [SPRUS509]. This version of Diamond requires version 5 (or later) of the TI
compiler and linker; these are shipped with CCS version 3, or later.

Installed Libraries

The installation processes will have placed a number of libraries in the system folder of your PC, commonly
C:\WINNT\SYSTEM32. These are:

Serve3L.DLL The main server module
3LLnkMan.DLL The server’slink manager
3LOptMan.DLL The server’ s options manager

Device Driver Software

The Diamond host server communicates with the hardware via a driver that is supplied by your hardware
vendor.

Code Composer Studio

You must install the Texas Instruments C6000 code generation tools (C compiler, linker, etc.) before you can
use Diamond. The code generation tools are installed as part of the Code Composer Studio product. Install this
as described in the accompanying Texas Instruments documentation. Diamond applications are built using
commands that call the Tl tools from a Command Prompt.

Code Composer Driver Software

The Code Composer JTAG debugger supports a range of different hardware platforms via plug-in device
drivers. If you plan to use the debugging features of Code Composer, you must install the appropriate drivers,
available from your hardware supplier.

18

Sundance Installation

Environment Variables

The installation procedure will have defined some environmental variables for you. You should check their
values from the Windows control panel using System/Advanced/Environment Variables.

PATH defines the DOS search path. It must include the Diamond executable folder,
normally C:\3L\Diamond\bin. In general, it is best to put this as near the beginning
asyou can, so that it takes precedence over any previously installed software.

C6X_C DIR defines the default location for the C compiler's #include files and the linker's
object libraries. This should have been set up by the installation of the TI compiler.
You should not change this otherwise the compiler may pick up the wrong
#include files and your programs will not link correctly.

Other processors

The examples in this guide assume that you will be building applications for generic C6000 processors.
Diamond includes support for tasks that will run on other types of processor:

C4x Support

Diamond will support applications developed for C4x processors using 3L’s Parallel C for the C4x. The server
will run applications that have a C4x processor as the root if you select the C4x option. Note that this option
must not be selected if you have a Céx processor as the root of your network, even if there are C4x processors
elsewhere.

C67 Support

Diamond includes support for the C67xx floating-point DSPs. They are treated identically to the fixed-point
C6000 processors, except for compiling and linking, which use variants of the 3L command:

C6000 C67xx
Compiling 3L chello.c. 3L ¢c67 hello.c
Linking (full) 3L thello 3L t67 hello
Linking (stand aone) 3L tahello 3L t67ahello

The 3L ¢67 command invokes the C compiler’s mv6700 switch. 3L t and 3L ta use C6700 versions of the
libraries.

Configuration (3L a) and execution (3L x) are the same for both fixed and floating-point board variants. In
particular, the same processor TY PE namesareused in . cf g files.

19

Sundance Installation

C64 Support

Diamond includes support for the C6400 family of DSPs. They are treated identically to the fixed-point C6000
processors, except for compiling and linking, which use variants of the 3L command:

C6000 C64xx
Compiling 3L chello.c. 3L c64 hello.c
Linking (full) 3L thello 3L t64 hello
Linking (stand alone) 3L tahello 3L t64ahello

The3L c¢64 command invokes the C compiler’'s mv6400 switch. 3L t 64 and 3L t 64a use C6400 versions
of thelibraries.

Configuration (3L a) and execution (3L x) are the same for both fixed and floating-point board variants. In
particular, the same processor TY PE namesareusedin . cf g files.

20

Sundance Installation

Available Processor Types

The Sundance edition of Diamond supports a large number of different C6000 modules. The particular modules
that you are using in an application are identified by processor types that you use when defining your processors
in configuration files.

The Diamond utility program ProcType will generate alist of all the processor types you can use.

%4 Available processor types

Thiz lizt shawes the proceszor types that hio default ,N 0K
mat be uzed in Diamond canfiguration STI19 —
files. SHT335
ShT3II5E_T CCancel
“'ou can make one the default tppe by CHT3IIRE 2
zelecting it and clicking Apply. SMTIET
SHT3IET_MNOE= Apply
Clicking OF. will terminate ProcT ype and SMTIE1A —
zet the default type to any bipe that haz SMTIET0
been selected. SMTIETAG
)) SHT3E3
Cancel terminates ProcT ype leaving the ST 3625
default zet a: shown below. SRT IR -
Thef.defaullt t_l,lf;ie ma_l,lfl:n;la refnlarenced it gm%g%g%g
configuration files az follows: SMT365 16 1
. SMT3IER_16_2
PROCESSOR thing DEFAULT SMT3E5 4T
SkT3ER 4 2
SKT3E5 8 1
There are 32 processor lppes. T v
The curent default tppe is et ta SMT374 EF13

To simplify the case where a particular type of module is used frequently, ProcType alows you to set one to be
the default processor type, DEFAULT. The installation procedure will offer to set a default processor type for
you. The examples provided with Diamond all use this default processor type so that you do not have to change
them to match your particular hardware configuration.

Processor types are used in configuration files as follows:

PROCESSOR root SMr361 I explicit processor type SMI361
PROCESSOR node DEFAULT I current default processor type

21

Sundance Installation

Multiple-processor TIMs

It is important to distinguish between processors and TIMs when using Diamond with Sundance hardware.
TIMs, such as the SMT361, that have only a single processor do not cause any problems; Diamond uses the
TIM name in configuration files to refer to the type of processor being declared.

PROCESSOR r oot SMr361

You need to be more careful when dealing with multiple-processor TIMs, such as the SMT361Q or the
SMT374. Once again, Diamond uses the TIM name to identify the type of processor being declared, but it
identifies only one of the available processors on the TIM. You need a separate PROCESSOR statement for
each processor you wish to use. For example, an SMT361Q ™ TIM has four processors, and they can be

identified as follows:

PROCESSOR DSP_A SMT361Q
PROCESSOR DSP_B SMI361Q
PROCESSOR DSP_C SMI'361Q
PROCESSOR DSP_D SMI361Q

W RE

22===
M A A

=

? P Al 1] DSP_B[4]

? P_Al 4] DSP_C[1]

? P_Al 0] DSP_DO 3]

? P_B[3] DSP_C 0]

? P B[4] DSP_Df 1]

? P_ 3] DSP_Dj 0]
Note

Processor names do not identify physical processors; the WIRE statements do this. For example,
the processor being called DSP_B is the one we get to from the processor called DSP_A by
going out of comport 1. Also note that every Diamond application must have one processor
called "root". If an SMT361Q istheonly TIM in your system, it would need to be declared as:

PROCESSCR root SMI361Q
PROCESSCR DSP_B SMI361Q
PROCESSOR DSP_C SMr361Q
PROCESSOR DSP_D SMr361Q

1 For historical reasons, the processors on an SMT361Q can also be identified by the type "SMT361_NOEX".

22

Sundance Installation

Multi-Processor Systems

Diamond’'s physical links 0-5 correspond directly to Sundance comports 0-5. Note that on some TIMs (for
example, the SMT376) not all of these six comports exist; the missing comports behave as though the other end
of the link never responds. Comport numbers are used in the configuration file's WIRE statements. The folder
<Di anond>t ar get \ ¢c6000\ Sundance\ exanpl es\ exanpl e- 3 contains the file DUAL.CFG, which
shows an outline of the configuration statements required to take the two tasks used in UPC.CFG and configure
them to run on two separate processors. Y ou must fill in the correct processor TY PE attributes for the TIMs you
are using and modify the WIRE statement to match the cabling on your carrier board. The example has:

wire ? root[1] node[4]

This tells the configurer to assume that comport number 1 of the root (TIM site 1) processor is connected to
comport 4 of the TIM site containing the node processor. Y ou must ensure that the corresponding comport cable
is fitted between connectors T1C1 and T2C4 (assuming the node processor is in TIM site 2). If the required
comport cable is not physically present, the Diamond host server will not be able to load the configured
application. Some Sundance carrier boards can make this connection using built-in switches. See the server's
option Board/Properties to change these switches.

Mixed-Processor Systems

Some hardware alows systems to be constructed from a mixture of C6000 and C4x TIMs. Diamond supports
this feature in software. To build a mixed C6000/C4x application, you will need:

» Diamond for the C6000; and
e Single (03319) or multi-processor (03308) Diamond for the C4x. Either will do, even if you have multiple
C4x and C6000 processors.

The following example shows how to build a version of the UPC example where the root processor is a C6000
and the node is a C40:

» 3L c driver.c

> 3Lt driver

» c40c upc

» c40cslink upc

» 3L a m xed. cfg ni xed. app -a
» 3L Xx nm xed

The configuration file, MIXED.CFG, will be the same as DUAL.CFG, except for the two PROCESSOR
Statements:

processor root type=myC6000
processor node type=nyC40

Y ou should consider the following points before designing a mixed-processor application:

» Put the C6000 Diamond installation folder before the C4x Diamond folder in the search PATH to make sure
you get the C6000 version of the config command. Y ou can check which version you are getting by giving
the command config with no arguments. The C4x versionisV3.x.

* Currently C6000 nodes do not support the run-time debug protocol used by C4x nodes. The -A configurer
option must therefore be used to suppress the debug information. If you forget the -A switch, the server will
be unable to load the application. However, using -A means that you cannot do source-level debugging of
C4x nodes in amixed network.

* Virtual channelsand host /O traffic cannot pass between C4x and C6000 nodes.

23

Sundance Installation

e Non-root C4x nodes may only access the server (by using pri nt f, for example) if the root processor and
al intervening processors are C4x nodes. An equivalent limitation exists for C6000 nodes.

24

Sundance Installation

Reserved Hardware Resources

Diamond reserves or requires special treatment of the following resources local to each TIM module;

Resour ce
Part of internal memory

EDMA and DMA

DMA global count reload register B

INT4, INTS5, INT6

INT7

INT14 (timer 0)

Byte Order

Usage

The kernel usually occupies part of internal memory. Look at
the listing file generated by config option -I to find out which
parts of memory are available. Enabling the cache will move
the kernel’s code into external memory.

Diamond dynamically assigns EDMA channels
EDMAA4..EDMAY to operations using Sundance peripherals
(comports and SDBs). If a new concurrent comport 1/O
operation is started and no suitable EDMA channdl is free,
one comport interrupt will be generated per word of data
transferred until one of the necessary EDMA channel is
released (whereupon that channel will at once be claimed for
any active comport 1/0 operation that does not have one).
Any number of concurrent comport 1/0Os can be handled in
thisway.

.Warning

This dynamic assignment of EDMA channels
to 1/O operations means that if you want to
control an EDMA channel directly, you must
explicitly claim it from the kernel, using the
EDMA functions.

Processors with the older DMA channels use a similar
technique; see DMA functions.

The C6201 and C6701 kernels comport device drivers
reserve this register. User code must not modify it.

These interrupts are connected to the module' s FPGA and are
used by Diamond to control comport I/O. If you need to use
one of these interrupts directly (e.g., for SDB 1/0), you must
explicitly claim that interrupt line from the kernel by first
calling one of the EXT_INT functions.

INT7 is aso connected to the FPGA but this interrupt is
permanently reserved by Diamond’s comport device driver so
that at least one interrupt line is always available for comport
I/0.

Reserved. The kernel initialises timer O to interrupt once
every millisecond. These interrupts support task time-slicing
andthe<t i mer . h> functions. The kernel handles the timer
0 interrupt specialy; you cannot attach your own handler to
it.

Diamond assumes that the C6000 processors will be used in little-endian mode, that is, increasing memory
addresses indicate increasing significance of the bytes within aword.

.Warning

There is no support for big-endian operation.

25

Sundance Installation

Confidence Testing

This section describes a short procedure that may be followed to check that Diamond has been installed
correctly and is working. The procedure deliberately goes step-by-step to produce a simple application. You can
also try other examples, which can be found in <Di anond>t ar get\ c6000\ Sundance\ exanpl es. The
examples have a descriptive README.TXT file, a batch file for building and running, and an equivalent
MAKEFILE suitable for processing by a utility such as NMAKE.

Set the current disk drive to the one on which Diamond has been installed. For example, if Diamond has been
installed in folder C: \ 3L\ Di anond\ , do this:

D>c:
(O
Set the current directory to a convenient folder for doing this test. For example:

Ccd \'m ne
(0o

NB: Don't use the installation folder for the confidence test, as this would mean that you would not be testing
whether the correct search path has been set up.

Check that the server program is available, by typing the following command:
C3L X

This should start the Windows Server. If the server’s window does not appear, check that your PATH has been
set correctly.

Stop the server by clicking on the x at the top right hand corner of the window.

Copy the example files to the current directory. If the installation folder is C:\3L\Diamond\, for example, you
should type this:

C>copy C:\ 3L\ D anmond\tar get\ c6000\ Sundance\ exanpl es\ exanpl e- 1\ *. *
6 Fil e(s) copied
C

Compile the exampl e using the following command:

C3L ¢ hello.c

Build the hello task by linking the resulting object file with the necessary parts of the run-time library:

C3Lt hello

The examples provided with Diamond all assume that you are using the default processor type. This type will

have been defined by the Diamond installation procedure. If you have declined to set a default processor type

during installation, or if your processor has changed, you should either:

1. Usethe command ProcType to make your new processor the default type; or

2. Edit the configuration file hel | 0. cf g and change the TYPE attribute of the PROCESSOR statement to
specify the type, which is appropriate for your particular C6000 board.

Now generate an executable application, hel | 0. app, by calling the configurer:

26

Sundance Installation

C3L a hello

Finally, the program can be run:

C3L x hello
(2

The server’ s window should come up and look similar to this:

z_‘.T Diamond Server: hello.app ;lglil

File Go Wiew Board Help

Bl Dm2|EE

Hello, world.
-
Kl b

Ready I | _ SMT310G | #

The output "Hel o, worl d" comes from the hel | 0. ¢ example program. If it does not appear, we
recommend that the installation procedure should be carefully checked and repeated. You should consider, in
particular, if one of the following things has gone wrong:

» Hasthe C6000 board been correctly installed and set up?

» Havethe environmental variables described above been correctly set up?

» Isthe processor type set correctly in the configuration file? If you have used the type DEFAULT, check
using the ProcType utility that you have selected the correct type.

If the "Hello world" message does not appear even after checking al this and repeating the installation
procedure, please contact your dealer for further assistance.

27

Chapter 3. Getting Started

This chapter aims to help you become familiar with Diamond and its terminology. If you have used 3L software
on another processor you will already be familiar with the ideas on which the C6000 version is based. If not,
don't worry; the strength of Diamond is that its concepts are quite simple. They are explained in outline here,
and again in more detail in the chapters which follow.

Overview

The way you build and run applications using Diamond differs substantially from the more traditional
techniques used in other environments, particularly Code Composer Studio (CCS). CCS has been designed to
produce applications for single processor systems, multiprocessor systems are seen as several separate
applications that just happen to be executed at the same time. When Diamond was originaly designed almost
twenty years ago, it took the diametrically opposed view and considered multiprocessor systems as an integrated
whole. This, and the philosophy of keeping things as simple as possible, has led to a system that is both easy to
learn and extremely powerful in generating efficient multiprocessor applications.

=) Note

Diamond does not attempt to decompose your code into pieces that will execute on the different
processors in your system; you must do this yourself, based on your unique knowledge of the
requirements of your application. Many attempts have been made to achieve automatic allocation
of code to processors, and none has come anywhere close to the performance most users require.

Diamond uses a three-stage approach to building an application:

1. Compileyour source files with the Texas I nstruments compiler;

2. UsetheTI linker, usually several times, to generate a number of separate task files;

.Warning

Y ou do not usually need linker command files and, even in the cases when you do use them, you
never use the MEMORY or SECTIONS™ directives.

[There is one use of SECTIONS in Diamond to work round a problem introduced by changes in the Texas Instruments linker, but
this should be invisible to most users.

3. Usethe configurer to combine your task files into a single application file that contains everything needed
to get your application running on a network of DSPs. Often you do not need to worry about allocating
memory to your application; this is done automatically for you by the configurer, although you can
exercise more control when necessary.

Once a Diamond application has been constructed, it is loaded into your DSPs and executed by a server program
running on the PC.

.Warning

A Diamond application file is not a COFF file and cannot be loaded using Code Composer;
COFF files do not have the constructs necessary to support the sophisticated multiprocessor
|oading techniques required by Diamond.

To get afeel for how you work with Diamond you should follow the confidence test described in the previous
chapter.

28

Getting Started

Abstract Model

Diamond's model of parallel processing is based on the idea of communicating sequential processes, as
described by C. A. R. Hoare[Hoare]. In this model, a computing system is a collection of concurrently active
sequential processes that can only communicate with each other over channels.

A channel can transfer messages from one process to exactly one other process. A channel can only
carry messages in one direction: if communication in both directions between two processes is required,
two channels must be used. Both the sender and receiver must agree on the size of message being
transmitted. Channels are blocking: a sending or receiving thread will wait until the thread at the other
end of the channel attempts to communicate.

Each process can have any number of input and output channels, but note that the channels in this abstract
model are fixed; new channels cannot be created during the operation of a system.

For example, a disk copy command built into a computer's operating system could be described as three
concurrently executing processes: two floppy disk controller processes and one process doing the copying.

This example shows an important property of channel communications: they are synchronised. A process
wanting to send a message over a channel is aways forced to wait until the receiving process reads the message;
this is known as blocking communication. ™ In our example, this means that even if at some time the output
floppy disk can't keep up with the input, the system will still work properly. This is because the copy process
will automatically be forced to wait if it tries to send a message before the output disk process is ready to
receive it. Sometimes it is useful to allow a sending process to run ahead of a receiving one; in such cases an
explicit buffering process must be added to the system.

Note that because a process in this model is connected to the outside world only by its channels, the actual
implementation of any individual process is not important. A process could be a bit of hardware or a software

module; in particular it may also be another complex system, itself consisting of a number of communicating
processes.

The Diamond Model

The Diamond model for parallel processing closely follows the abstract model described above, but with some
additions and relaxations.

Processors, Wires, and Links

The hardware on which a Diamond application runs is described as a network of processors, each with a number
of links connected in pairs by wires.

" The first reaction of many readers used to queueing models of communication is to think something is missing, however the blocking
nature of channels is actually an important simplification. The effect of non-blocking communication is achieved in Diamond by making the
application multi-threaded.

29

Getting Started

wi
Pracassor Procassar
P . * .' -' Pz
L
Wz
W3

Processor

P @ Frocessor
P3 . .,, . P4
(3

A Re A

A A

Processor

Each wire is a two-way communication path between exactly two processors. In practice, different
manufacturers provide a variety of ways to connect processors:. dedicated point-to-point hardware, shared
memory, bus structures, and many more. @ Diamond hides the details of this from you and behaves as though
real wires exist, giving you access to them through a sequence of links numbered from 0. In the diagram above,
processor P1 has two links: link 0 connects to processor P2 using wire W1, and link 1 connects to processor P3
using wire W2. As long as you can connect the processors using supported devices, Diamond can create
applications for systems of any complexity and any intermixture of hardware types.

The Root Processor

An important feature of all processor networks supported by Diamond is that they are connected. Every
processor in the network can be reached by following wires through other processors; no processor is isolated.
Because of this, it is possible to identify each participating processor uniquely by choosing one to start from and
giving a sequence of links to follow. In example above, starting with P1, we can locate P5 by following link 1
and then link 3.

The starting point in every Diamond application is a processor caled r oot . The root acts as the base of the
network and areference for locating all other processors.

The Host

Diamond applications usually run on DSP boards plugged into a Host PC, but this is not a requirement. When
present, the host is responsible for loading the application and communicating with it. While it is possible to
write your own host code to do this (see here), it is simpler and more usua to leave these details to the host
program that Diamond provides, the server.

12 JTAG connections cannot be used as Diamond links

30

Getting Started

PC

Root
’ Processor <

DSP Network

All other Processors

Tasks

A complete application is a collection of one or more concurrently executing tasks connected by channels. Each
task is a separate C program, with its own main function and its own regions of memory for code and data.
Diamond tasks must obey the register conventions defined for the TI C compiler. The code of atask isasingle
task image file generated by the linker. Diamond tasks are relocatable, that is, they do not contain fixed memory
addresses. When you link atask you do not usually need a linker command file; memory allocation is done at a
later stage. Y ou explicitly place each of your tasks on the appropriate processors.

Processor X

Processor Y

Y ou may have as many tasks on each processor as you wish; you are limited only by the available memory. You
may even have several copies of atask. Each processor will be loaded with only those tasks you have specified;

31

Getting Started

placing atask on one processor does not cause it to be loaded on any other.

Diamond recognises two types of tasks: full tasks and stand-al one tasks.

Full Tasks

A full task is one that has been linked against the standard run-time library (rtl.lib) with the command 3L t.
This gives the task access to the host PC via the server. Full tasks can communicate with the server using the
standard C 1/O functions, suchaspri nt f andscanf .

Stand-Alone Tasks

Stand-alone tasks are linked against the stand-alone library (sartl.lib) with the command 3L t a. This library
omits the host communication functions. In particular, tasks linked against the stand-alone library do not have
st di n, st dout,andst der r, and do not retrieve any command-line parameters on starting.

Ports

Each task has a vector of "i nput ports" and avector of "out put ports" that are used to connect tasks
together. A task is like a software "black box", communicating with the outside only via its ports® , as shown
below.

Su0d 1ndu|
Su0d Indinp

Y ou join tasks by connecting output ports to input ports using channels, and this collection of tasksis combined
into asingle application file by a utility called the configurer.

Arguments to main

The standard declaration for atask’s main function is;

int main(int argc, char *argv[], char *envp[],
CHAN * in_ports[], int ins,
CHAN *out _ports[], int outs)

¥ A task can include code to deal explicitly with external devices. If you do this, you must place the task on the processor with the devices
in question.

32

Getting Started

argc number of command-line arguments. Thisis always zero for stand-alone tasks.
argv command-line arguments

envp always null

in_ports vector of input ports

ins number of entriesin the vector in_ports

out_ports vector of output ports

outs number of entries in the vector out_ports

For example, a simple task might accept a stream of values on an input port representing characters, convert
each character to upper case, and output the resulting stream of characters on an output port. The code for thisis
shown below; if you want to experiment you can find the source text in the file
t ar get \ c6000\ Sundance\ exanpl es\ exanpl e- 2\ upc. c.

#i ncl ude <chan. h>
#i ncl ude <ctype. h>
#i ncl ude <stdi o. h> /1l for ECF

mai n(int argc, char *argv[], char *envp[],
CHAN * in_ports[], int ins,
CHAN *out _ports[], int outs)

{
int c;
for (;;) {
chan_in_word(&c, in_ports[0]);
if (c == ECF) break; /1 term nate task
} chan_out _word(toupper(c), out_ports[0]);
}

Ports and Channels

Tasks can be treated as atomic building blocks for parallel systems. They can be joined together, rather like
electronic components, by connecting their ports with channels. The connection may be implemented in
memory or across an interprocessor link, either directly or through software routing. Channels that connect tasks
on the same processor are known as internal channels; those connecting tasks on different processors are called
external channels.

The vectors of input and output ports are passed to a task as arguments of its main function. Each port is of type
"pointer to channel” (CHAN *). The Diamond run-time library provides a number of functions to send and
receive messages over channels.

The configurer can be told to create a number of connections. Each connection is one input channel connected
to one output channel. The configurer binds these channels to task portsto create a path from a given output port
of one task to a given input port of another. Y ou can access these channels from the task either by indexing into
the port vectors passed as arguments to main, or by using the name of the connection to locate the channel
directly. See | NPUT_PORT and OUTPUT_PCRT.

Multi-Processor Networks

Even though each processor can support any number of tasks, limited only by the available memory,
communicating tasks need not be on the same processor. In fact, the tasks of an application may be spread over
alarge network of processors.

Each channel communication from one processor to another is carried by alink, a physical connection or wire,
between two processors. It may be implemented in a variety of ways, but it is capable of supporting
communications in both directions.

33

Getting Started

If a channel connects tasks that are on different processors, the messages on that channel are routed through a
link between the two processors. Each link can support only two physical channels, one in each direction. You
can choose to use these two physical channels explicitly or allow Diamond to manage them for you to give any
number of slower virtual channels. Your network can only be built if there are enough links between two
processors to support all the required channels.

Any task may communicate with any other task, regardless of where it is in the network. Messages can be
routed via the inter-processor links over virtual channels. In addition, all tasks van be given access to C standard
1/0.

Virtual and Physical Channels

By default, Diamond makes all externa channels virtual, that is, they automatically carry messages between
distant processors via intermediate network nodes. Since multiple virtual channels can share the same physical
link, any number of virtual channels may connect tasks on different processors. Transmission over virtual
channelsis guaranteed to be deadlock free.

However, virtual channels are slower than the underlying physical links. Diamond therefore also provides
physical channels, which map directly to the hardware. Their advantage is speed: their disadvantage is that the
number of physical links, and the paths they take, are both restricted by the available hardware.

Getting Started

Internal Channe| se——
Physical Channe| sl
Virtual Channe| el

(actual routg) === em— >
Physical Link «—-

System Task .

When the throughput of particular channels is critical to application performance, you may try making the
connection direct and substituting physical channels for virtual ones. Experimenting is easy because the same
message-passing functions are used in both cases: no code changes are required.

Simultaneous Input

Sometimes, a task needing to read from two of more channels cannot know which channel will next be ready to
transfer a message. The task cannot simply read from each channel in turn, because that would suspend the task
until the chosen channel became ready; other channels ready to transfer messages would have to wait.

Diamond solves this problem with the al t . h group of library functions. These functions allow a program to
wait until any one of a selected group of virtual channels becomes ready to communicate. The channel that
becomes ready first is identified to the calling program, which can then go on to read its message using one of
the same channel 1/0 functions used to send messages between tasks.

Parallel Execution Threads

35

Getting Started

Diamond supports multi-threaded tasks. Tasks dynamically create new execution threads by passing a pointer to
a function and an amount of workspace (stack) to a library function. The new execution thread then starts
executing the code of the function concurrently with the thread that created it. The new thread runs in the same
context as its creator; they share their static, extern and heap memory areas. The only private storage available
to the new thread is its workspace. The parent thread has no direct control over its offspring, which continues to
execute until it terminates itself by returning from the function that was invoked, or by calling a specia library
function. Thisis similar to the execution threads of Win32 and some flavours of Unix. Each thread has its own
stack but shares the rest of its datawith all the other threads in the same task.

Threads are most commonly created during the initialisation phase of a task; frequent creation and termination
of threads generally indicates a poor application design.

Semaphore functions in the run-time library can be used to prevent threads that share data from interfering with
each other. Alternatively, internal channels declared as program variables can be used to synchronise the
threads' operations and transmit data between them by passing messages. Diamond provides a CHAN data type
that can be used to declare channel variables.

Of course, like any other software construct, threads may be used in contexts other than those in which they are
formally necessary. Indeed, many problems in simulation, real-time control and other areas map well onto a
multi-threaded algorithm, although they do not strictly require to be executed in this way.

Once a task dtarts, its main function behaves just like a thread; in particular, it may be stopped using
t hr ead_st op.

Configuring an Application

Once an application has been designed and written as a collection of communicating tasks, how is it loaded into
aphysical network of processors?

First, each individual task is built by compiling all its source files with the C compiler and using the linker to
combine the resulting object files with the necessary modules from the run-time library. Repeating this for every
task in your application results in anumber of task image files.

Now the task image files must be combined to form a single executable application file. The program that does
thisis called the configurer. A user-supplied textual configuration file drives the configurer and specifies:

* Your hardware structure:
« available processors
 links connecting them
* Your software structure:
e tasksto beincluded
e channel connections between them
* How to map the software onto the hardware.

The configurer allocates memory for the tasks and combines them into a single application file that can be
loaded into the specified hardware network and executed using the Diamond command, 3L x. The configurer
is also responsible for determining which system tasks need to be |oaded.

= Note

To change the way in which tasks are connected together or the processors on which they are to
run, it is not necessary either to change your source code or even to recompile or re-link the tasks
themselves. This means, for example, that it is possible to develop an application while running
al the tasks on one processor, and then reconfigure it, without any other change, to run on a
network. Physical channels may be transparently substituted for virtual onesin a similar way.

The Structure of an Application

So far, we have seen a Diamond application as a network of tasks spread over a number of processors, possibly

36

Getting Started

with more than one task per processor. These tasks communicate only through channels. If a task wishes to
communicate with a task on another processor, messages will be transmitted to that processor across the
inter-processor links.

Typically, the network is controlled by another processor, which we call the host. The host communicates
directly with only one processor in the network, which we call the root.

In fact, the application also includes a number of other components. We shall look at these one by one.

The Microkernel

The configurer automatically places an appropriate microkernel on every processor. Among the jobs the kernel
performs are the following:

scheduling all the threads running on the processor;

managing the interprocessor links and channels;

controlling the timer;

providing the primitives for implementing semaphores and events;
handling interrupts.

The kernel is a passive component in the system; it only consumes processor cycles when asked to do
something, either as the result of an interrupt or an explicit program request (for example, alink or semaphore
operation). TIMERO interrupts are used by the kernel to manage its internal clock (ti nmer_now,
tinmer_delay,andtiner_wait), and for timeslicing. Timer management takes approximately 25 cycles
every millisecond. If you only have a single thread on a processor, there will be no timeslicing. By setting
CLOCK=0 for the processor, kernel clock interrupts and timeslicing will be stopped; all processor cycleswill be
available to your code, although this extreme step is rarely beneficial.

Thekernel isvery efficient; its performance does not depend on the number of threads in the system.

37

Getting Started

Diamond Microkernel

Diamond Microkernel

Every task is passed a handle to the kernel, visible as the variable _ker nel . Usually you do not need to be
aware of this, but certain functions require it as a parameter (the external interrupt handling functions, for

example).

Scheduler

Many tasks can be run on one processor, and tasks themselves are made up of one or more
concurrently-executing threads. The microkernel arranges for the available processor time to be shared amongst
these various threads using a process known as scheduling. Each thread has an associated priority, a number in
the range 0-7'¥ | that determines its importance with respect to other threads executing on the same processor;
the smaller the number, the higher the priority of the thread. Threads at the highest level of priority (priority 0)
are referred to as urgent threads.

|t is extremely rare for an application to need more than three priorities (often, 0, 1, and 2). Profligate use of multiple priorities can reduce
the efficiency of an application.

38

Getting Started

An executing thread can be suspended (descheduled) and another thread resumed when one of a number of
events occurs:

The thread explicitly requests to be descheduled by callingt hr ead_deschedul e;

The thread has to wait for something (a channel communication, a semaphore, an event, or atimer event);
The thread is pre-empted by a more important (i.e., higher priority) thread that has become ready to execute;
The thread is timesliced, descheduled because it has been running for some time (its time slice) without
interruption. The time slice is computed from the thread’ s priority: priority* 100ms.

Urgent threads are of the highest priority, priority O, and so can never be pre-empted, even by another urgent
thread. Similarly, urgent threads are considered to have an infinite time slice and will execute forever without
being descheduled. Lower priority threads, and even other urgent threads, will be "locked out" entirely. Careful
use of urgent threads can dramatically improve the performance of an application; injudicious use can equally
dramatically degrade performance. For this reason, urgent threads should be used with care. A general rule of
thumb is that threads whose primary purpose is communication are good candidates for being urgent. A
processor that has one urgent thread (task), has disabled the clock, and does not use any Diamond kernel
services, will spend all of its cycles executing the thread.

Once athread is descheduled, the highest-priority thread that is ready to execute will run™ . Within any priority
level except the urgent level, the microkernel will divide the time amongst the threads on a round-robin basis
(first come, first served).

Switching from one thread to another because of an interrupt (including atime-siice) is slightly more expensive
than switching for any other reason.

Universal Packet Router (UPR)

The universal packet router is a module that is automatically included in a multiprocessor application when
tasks on different processors wish to communicate but there is no direct physical link between the processors.

Global File Services (GFS)

The global file services module is used to give non-root processors access to host file 1/0 services (such as
printf). GFS uses UPR to manage communication between non-root processors and the host.

Virtual Channel Router (VCR)

The virtual channel router allows tasks on processors that are not directly connected by links to communicate
across channels. It also can multiplex several such virtual channels across a single physical link. VCR makes
use of the services offered by UPR.

The Server

The server isa Windows program that runs on the host and has two important functions:
1. Toload the application into the C6000 network;
2. Toperform I/O and other operations on the host on the network's behalf.

Because of the second function, the server usually runs on the host al the time that a C6000 application is
running. The details of server operations are normally invisible; you simply call C I/O functions such as
pri nt f. Therun-time library converts these calls into appropriate instructions to the server.

Stand-Alone Applications

¥ This means that lower-priority threads will only ever execute when all threads of a higher priority are waiting (for example, for a
semaphore or alink transfer).

39

Getting Started

It is possible to develop Diamond applications that do not use the server. The most common example would be
an application that is held in ROM and is loaded automatically when the processors start up. Another example
would be an application that is loaded from, and talks directly to, user-written code on the host PC. Such
applications have complete control over communications with the host PC, if any.

When building a stand-alone application remember that:

 all tasks must be linked against the stand-alone library;
» you must run the configurer with the - A switch.

Performance

Diamond has been designed to alow you to write high-performance applications with the minimum of fuss. The
microkernel ensures that the available CPU cycles are spent wisely. To that end, the system is driven by
interrupts. When a Diamond thread is waiting for something (communication with the host or another processor,
for example), the kernel puts that thread to sleep and passes control to the next thread that is ready to run. A
sleeping thread uses no CPU cycles. The thread will be woken up and made ready to run when the event that it
has been waiting for occurs.

Context switching performance

Changing from one thread to another is known as context switching, and Diamond is very efficient at doing this.
As an example, when using internal memory, context switches (t hr ead_deschedul e) have been measured
asfollows:

TIM Pr ocessor Clock speed Context switch time
SMT374 6713 225MHz ~470ns
SMT361 6415 400MHz ~250ns
SMT395 6416T 1GHz ~100ns

40

Chapter 4. Sequential Programs

This chapter shows you how to use Diamond to write conventional sequential programs to run on the C6000.
You should be familiar with the contents of this chapter before you progress to the later chapters explaining
parallel programming.

The instructions in this chapter assume that the software has aready been installed.

Overview

The process of converting one or more source files into an application ready for running takes three steps:

1. Compiling source filesinto object files;
2. Linking sets of object filesinto tasks; and

3. Configuring one or more tasks into an executable application.

Compiling

Each source program file is compiled into an object file containing C6000 instructions. You can compile a
source file by a command of the following form:

» 3L c source-file

The3L ¢ command invokes the Texas Instruments C compiler with certain required option switches.

A source-file is the name of a C source file, and the filename extension ". ¢" must be given in the command. So,
to compilethefilehel | 0. ¢, you would give the command:

» 3L c hello.c
If the source file contains no errors, an object file hel | 0. obj is produced. If the compiler detects errorsin the

source program, it writes diagnostic messages to the screen. For a discussion of the format of these error
messages and how to make use of them, please see section 2.8 of the Optimizing C Compiler.

Compiler Option Switches

Apart from the switches that the 3L ¢ command uses automatically, the compiler has a number of others, which
are described in the Optimizing C Compiler[C Compiler]. If you need to use the switches, you can specify them
in the command, after the source file name, like this:

» 3L c hello.c -dDEBUG -k

This will compile the program hel | o. ¢, with the macro DEBUG defined. The output assembler file will be
retained at the end of the compilation, instead of being deleted after the assembler has finished.

There are compiler switches that can invoke the linker once the compilation has been completed, but we
recommend these should not generally be used when Diamond applications are being built. See below: linking.

Calling the Compiler Directly

Sometimes you may wish to invoke the compiler directly rather than viathe 3L ¢ command. In those cases,
you must use the following required switches normally supplied by 3L c:

41

Sequential Programs

Switch Function
-C Do not run the linker
-1"<Diamond>bin\c6000\Sundance\include" Get header files from the Diamond folder. Y ou must

replace <Diamond> with the actual path of the
installation folder. Thisisusualy c:\3L\Diamond\

For a discussion of the compiler switches "-c" and "-1", and a discussion of the various levels of optimisation
available, see the Optimizing C Compiler[C Compiler].

FAR Data

As detailed in the TM S320C6000 Optimising C Compiler Manua, if atask’s static datais larger than 64KB, the
task must be compiled using the large model. In addition, as detailed in section 7 of that manual, the compiler
does not initialise any unassigned static data to zero. Diamond will initialise near static data (in the .bss section),
but does not initialise far static data. Such data can be initialised either as detailed in the C manual[C Compiler]
or by combining the .far and .bss sections at link time. See the TI Assembler tools manual for examples of how
to do this.

Linking

Once a program has been compiled into one or more object files, the program must be linked with any external
functions it requires before it can be run, including functions like pr i nt f from the run-time library. The Texas
Instruments linker does this, and the result is called atask imagefile.

Diamond’s task image files are relocatable, that is, the various code and data areas they contain have not yet
been alocated to particular memory addresses in the target processor. This will be done during a subsequent
configuration step. For this reason you must not supply linker command files with the MEMORY and
SECTIONS that would be necessary when using TI’stools alone.

Here we discuss the most usual linker operations; more about the linker can be found in the Assembly Language
Tools.[Assembler]

Y ou can link together any number of object filesto form atask image with acommand of the following form:

3Lt object-file object-file ..

For exanpl e: » 3Lt hello

3L t isacommand that invokes the linker in the most common way. Each object-file should be the name of an
object file produced by the compiler; you need not supply the ".obj" extension. If the object files are specified
without extensions, the linker assumes the extension ".obj".

.Warning

The name of the first argument will always be used to construct the name of the task image file
by replacing any extension with ".tsk".

So in the example above, hello.obj will be linked with the necessary modules from the library, and a task image
file hello.tsk will be created. Note that any linker switch to specify a different task image name (-0) will be
ignored; to change the name you will need to call the linker directly and not use this command.

If you specify more than one object file, the 3L t command constructs a task file name from the first

parameter. For example, if there are two C source files, main.c and fns.c, the following commands will compile
them and link them together to produce main.tsk.

» 3L c main.c

42

Sequential Programs

» 3L c fns.c
» 3Lt main fns

It is possible to include linker option switches in a 3L t command. Assembly Language Tools discusses the
linker's switches in detail. For example, the following command will place alinker map filein main.lis:

» 3Lt main fns -mmin.lis

Using Linker Command Files

The following three sections deal with more advanced uses of the linker. If you want to build only fairly simple
programs for now, you can skip to the section on running programs.

Sometimes you may have more object files to link than is convenient or possible to include on the connad line.

In this case, you will have to use alinker command file. In its simplest form, alinker command fileis atext file
containing alist of object file names, all of which are to be included in the executable file. For example:

» 3L t nyprog.ind
Thiswill cause the linker to find the file myprog.ind, and link together all the object files specified in it, include
the necessary modules from the run-time library and generate a task image file called myprog.tsk.
The contents of myprog.ind might be as follows:

mai n

fns
-i grafpack.ind

This will link the object files main.obj and fns.obj, together with all the object files specified in the command
file grafpack.ind.

Further details about the linker, and linker command files, may be found in Assembly Language Tools. Note
that Diamond users should never ™ use the linker’ s MEMORY or SECTIONS directives.

Libraries

It is often convenient to be able to treat a group of object files as a single unit. For example, the Diamond
run-time library consists of many separate object files, but is supplied as a single file containing all of them. As
we have seen above, the linker will search libraries for the necessary modules to complete the program being
linked.

Using alibrary has several advantages over using alinker command file:
» The linker selects from the library file only those modules that are actually referenced elsewhere in the
program; the others are not included in the task image file.

e Copying asingle file to another place is ssmpler than copying many component object files and making sure
that the corresponding linker command file is kept up to date with changes in folder and file names.

» Opening just onelibrary file is faster than opening alinker command file and several object files.
Library files are created and maintained by the archiver. Details of this program may be found in Assembly

Language Toolg Assembler]. The example below shows a graphics library, grafpak.lib, being built from a core
graphics module, core.obj, and two device driver modules, tek.obj and hp.obj:

" There is one exception where a SECTIONS directive has been used to work round difficulties caused by changes Texas Instruments made
in the linker, but thisis usually hidden in Diamond commands.

43

Sequential Programs

> ar6x -a grafpak.lib core.obj tek.obj hp.obj

The default extension for the library nameis".lib". The archiver does not assume an extension for the object file
names; you must specify ".obj" for each one.

The following example shows how to replace the module hp.obj with a new version:

» ar6x -r grafpak hp. obj

=) Note

It is probably safer always to use the —r switch with the archiver to ensure that only the more
recent versions of files are kept.

Calling the Linker Directly

Sometimes you may wish to call the linker directly, instead of usingthe 3L t or 3L t a commands. There are
some required options that you must use every time you link Diamond tasks; the easiest way to get them is to
use the standard Command.dat files as templates. The following is a batch file that has the same effect as 3L t :

echo -ar -cr >tnp.cnd O O
echo SECTI ONS >> tnp.cmd O
echo { >> tnp. cnd
echo . bss: { *(.bss) } >> tnp. cnd
echo .cinit: { *(.cinit) } >> tnp. cnd
echo Stext: { *(.text) } >> tnp. cnd
echo } >> tnp. cnd
echo filel >> tnp.cmd O
echo file2 >> tnp. cnd
echo file3 >> tnp. cnd
echo file4d >> tnp. cnd
echo -I "<Di anond>bi n\ c6000\ Sundance\lib\rtl.lib" >> tnmp.cnd O
echo -I rts6200.1ib >> tnp.cnd O
echo -0 %.tsk >> tnp. cnd

| nk6x -qqg tnp.cnd

erase t np. cnd

The -ar switch makes the linker generate a relocatable task image file. We need this, since the configurer
will later decide the absolute locations where the sections of the task will be loaded. See section 7.4.1 of
Assembly Language ToolsAssembler].

The -cr switch instructs the linker to build a task that follows the conventions for a C6000 C program. It
also requests that static variables should be initialised at run time; the Diamond environment requires this.
See section 7.16 of Assembly Language Tools.

SECTIONS is there to cope with a change introduced in recent Tl code generation tools. Without this
SECTIONS incantation, the linker will no longer combine al the necessary subsections of .bss, .cinit, and
text into single areas, and the configurer will subsequently report errors.

The example assumes you are linking four files named fil el. obj, fil e2.0bj,file3.o0bj, and
filed. obj,butyoumay link as many or as few object files as you wish. Y ou should, of course, use the
names of your own files.

The -l "bi n\ ¢6000\ Sundance\lib\rtl.|ib" switch specifiesthe full Diamond library as alibrary
to be searched by the linker. Y ou can replace "rtl" with "sartl" to build a stand-alone task. Y ou will need to
replace with the path to the Diamond installation folder, usually C. \ 3L\ Di anond\ (note thefinal '\").
The -1 rts6200.lib switch specifies the Tl library as a library to be searched by the linker for functions not
defined in the Diamond library. It isimportant that thislibrary is placed after the Diamond library.

Locating files

Whenever the linker attempts to open object libraries or command files, it looks by default in your current

44

Sequential Programs

directory. Y ou can make the linker search other directories by using one or more—I pat hname switches.

Configuring

Task file Task file . Task file

Configurer

4

Application
file

After a task image has been linked, it must be configured. This process decides how the various parts of the
program are to be mapped onto your 6000 board's memory, and creates an application file by attaching the 3L
microkernel, tasks required for communication, and so on. The program that does this is called the configurer.
Its full purposeisto bind together a number of Diamond tasks, ready to be loaded into a network of processors,
but here we are using it in only asimple way. See: configurer and configuration language.

Calling the Configurer

The first thing you must do before configuring an application is write a configuration file. Thisis atext file that
provides information about the tasks and processors your application will use.

To start with, we shall consider an application that includes only one task running on one processor, so the
configuration file we shall need will be smple. For example, the following three-line configuration file
(myprog.cfg) could be used to create such an application from myprog.tsk:

PROCESSCOR r oot TYPE=MyBoard O
TASK nyprog DATA=? [
PLACE myprog root [J

O
The PROCESSOR statement describes the target hardware we shall be using. It specifies the processor's
name, which in this simple case must be root, and its type. The type not only indicates that this is a C6000
processor, but it also identifies which type of C6000 module we are using; MyBoard has been used as a

45

Sequential Programs

place-holder for the particular DSP module you want to use. The various modules differ in the way their
external memory is laid out, and in the way the certain modules communicate with the host, so it is
important to set the type correctly. You can use the special processor type DEFAULT to select the type set
by the ProcType utility.

0 The TASK statement specifies the name of the task. The configurer will use this to find the task image file.
The DATA=? clause tells the configurer to allocate a single contiguous area of memory for the
application's stack and heap data areas. This area will be the largest area left when the memory needed for
everything else (the code and static data, for example) has been allocated. If you omit DATA="? the
configurer will act in the same way, but will output a warning message. Other ways to allocate memory are
discussed in "OPT Attribute".

O The final line of the configuration file is a PLACE statement, telling the configurer to place the task
Mmyprog on processor root.

Now that we have a configuration file we can generate an application file by invoking the configurer with a

command of the following form, where the extensions of the names of the configuration file and application file
are specified explicitly:

3L A configuration-file application-file
The configurer can also be called with asingle file parameter:

» 3L A file
This has the same effect as the command:

» 3L A file.cfg file.app

The program myprog described in the example above could be configured with this command:

» 3L A nyprog.cfg nmyprog. app

The configurer will take the task image file and automatically allocate memory for all the task's components. If
you wish to see where the configurer has placed things, you can make the configurer send a detailed listing to
the standard output stream by means of the - L switch, as follows:

» 3L A nyprog.cfg nyprog.app -L > nyprog.lis

The configurer allows more explicit control of memory allocation; thisis described here, but you are advised to
leave memory allocation to the configurer during development.

Running

Applications are usually loaded into the C6000 modules and run by using the server program, WS3L. The server
is an ordinary Windows program running on the host computer. After loading the application into the C6000
modules, it usually remains active throughout the application's run. The C run-time library sends instructions to
the server whenever it needs to perform host operating system functions such as reading information from the
disks, displaying output on the screen and so on. The server sends the results of these operations back to the
C6000 modules

Y ou can start the server in four ways:

By double-clicking on WS3L.EXE or a shortcut to it;

By double-clicking on afile with a.app file type;

By dragging a .app file from an explorer window and dropping it into the server’ s window; or
By giving either of the following types of command from a command prompt:

ApwWNhPE

46

Sequential Programs

3L X
or 3L X fil enane

The filename must be the name of an application file produced by the configurer. If you do not supply an
extension, the server will add . app" .

All of these commands will bring up the server window. If you have used a. app fileto start the server, that file
will be selected; otherwise you will have to select the application you want from the server’s "File" menu.

Before you can get the server to load your selected application into the DSP network and start it running, you
must tell the server which DSP boards you are using. Selecting a link interface with the "Board/Select” menu
does this. If you haven't selected a board before, the server will automatically select the first one it finds, and if
an application file has been selected, the server will start it running.

Y ou can find more information about the server and its optionsin "The Server”.

Command-Line Arguments

The server alows you to specify a command line to be passed to the application it invokes, for use as program
arguments. These arguments are passed to every task that has been linked against the full Diamond library;
stand-alone tasks are not passed arguments.

By clicking on "View", then "Options’, and then selecting the "General" tab, you will bring up a window that
allows you to give your command line arguments. The arguments are remembered by the server and will be
used each time you run the server until you change them.

The command line is broken into program arguments, and these are made available to the tasks in an application
in the usual C way. When the C mai n function is called, it is passed the following parameters :

int main(int argc, char *argv[])

argv isavector of pointersto the arguments, each of which is a zero-terminated string.

argv[Q] points to the name of the application that is running. It will be NULL if thetask is
stand-alone.

argv[n] pointsto the n" command-line argument;

argc isthe number of arguments, including the program name. It isaways at least 1; it will be
exactly 1 for stand-alone tasks.

argv[argc] isawaysanull pointer.

In fact, the main function has more parameters than these. The others are used for inter-task communications
and are discussed in "Inter-Task Communication”.

For example, assume we have previously set the following:

47

Sequential Programs

Diamond Server, Options

General l Standard /0] Mnnitnring] .ﬂ.dvanced]

Command line [zetz argy[1], argv=]. ...]

|Simplicity
[Debug application [pause after loading]

[Report application temination

[Standalone application [does not communicate with server]

v Bum application when selected from File mend

[v Run .app files when double-clicked [or when started from DOS)

[Cdw application Roat Kemel |

Rezet to Default Options Qk Cancel

The command:

» 3L x myprog

will start the server with the application file "nypr og. app" selected. When you run the application, the
following values will be passed in:

argc will be 2.

argv[Q] will point to the string "myprog.app",
argv[1] will point to the string "simplicity", and
argv[2] will be anull pointer.

48

Chapter 5. Parallel Programs

In this chapter we move on from looking at the general features of Diamond to explaining how some of its
parallel programming tools are used in practice. The configurer is described here in more detail along with the
library functions for sending messages over channels and creating new execution threads.

One User Task

We have already seen how to configure applications consisting of a single user task. It may be useful, however,
to take a closer look at what happens when we do this.

The example program we have chosen just converts a stream of characters read from stdin to upper case. Hereis
the C sourcefile, upper . ¢, for the upper case program:

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>

mai n()

int c;
while ((c = getchar

(I= EOF) {
put char (t oupper(c

~——r

)
) .

As we have seen, we could build and run an application from this source file (and a suitable configuration file)
with the following commands:

» 3L c upper.c
» 3L t upper
» 3L a upper
» 3L Xx upper
case changer
CASE CHANGER

Configuration

When building an application, the configurer must be told the details of both the software and the hardware on
which it isto run. Supplying it with a suitable configuration file does this. The configuration file must be written
by the user, and describes the system to be built: all the physical processorsin the system, the wires connecting
them, the tasks to be loaded into the system and their logical interconnections.

Earlier, we looked at the configuration file that we needed for our single-task example. It is quite instructive to
look more closely at a (strangely) reformatted version of the same file, as shown below.

IO

I UPPER. CFG

|

processor - [J
root -

t ype=MyBoar d
task upper data=?
pl ace upper -

r oot

t he processor connected to the host 0O

change this to your processor type O

the single task O

| ocate the upper-casing task... OO
...on the root

49

Parallel Programs

To start with, we have anumber of comment lines, introduced by a"! " character.
Thefirst significant lineis a PROCESSOR statement: a declaration of the single processor, r oot .

In Diamond terminology, the root processor is the only one that is connected to the host. All
communication with the file system on the host must pass through it. Every configuration must include a
processor named root. In fact, the host processor could be regarded as part of the configuration as well, but
the configurer assumes this; the host processor need not be declared. The root processor, however, must be
declared with the name r oot ; this informs the configurer that it must be connected to the host in the
appropriate way.

You will notice that comments can also occur further along the line, again introduced by a"! " character,
and that spaces, tab characters and blank lines can be used as desired, to improve readability. The
configurer ignores the case of letters: "a" and "A" are not distinguished.

The type of root is declared as MyBoard (you should change this to refer to the type of DSP module in
your system):

processor root type=MyBoard

The processor type makes the configurer aware of the properties of the processor you will be using,
including:

the processor class (C6000, in this case);

the sort of module or board supporting the processor;

how it communicates with other modules and the host (TI-style communication ports);
the layout and size of available memory areas; and

the clock speed.

L] L] L] L] L]

In this edition of Diamond, atype must be specified for every processor.

Thisline declares the single user task, "upper"”. It directs the configurer to load the task upper from the task
image file "upper.tsk". The TASK statement also specifies the memory alocation strategy to be used for
this task. Here, the data=" attribute will result in the stack and heap data areas sharing a single area of
memory, this being the largest area left vacant once all the other parts of the task (code, static data, etc)
have been loaded. If you omit this clause, the configurer will act in the same way, but will print awarning.

Notice that in the full example this line has been broken; this is indicated by placing a hyphen "-" as the
last non-whitespace character before the comment.

Finally, we have a PLACE statement that directs the configurer to place the upper task on the root
processor:

pl ace upper root

In this small configuration file, we have seen two examples of abjects (root, upper) that have been declared with
configuration language names. Objects like these can have arbitrary names made up of letters, digits and the
characters" " and "$', but are usualy given mnemonic names.

Building the Application

Once the configuration file has been written, you can build the application by compiling the program, linking it
and then running the configurer. The commands required to build our uppercasing example would be as follows:

» 3L c upper.c
» 3L t upper
» 3L a upper

Linking

The task image file output by the linker has the same name as the first object file, with the extension ".tsk"; this
is the extension expected by the TASK statement in the configuration files.

50

Parallel Programs

Configuring

The configurer is invoked by the 3L a command. One or two filenames must be specified on the command
line: first the configuration file, then the name of the application file to be output. For our case-conversion
example, the required config command lineis:

» 3L a upper.cfg upper.app

Asthe file names use the standard extensions ".cfg" and ".app", the command could be simplified to:

» 3L a config upper

File names for the task image files which make up the application are not supplied on the command line; the
configurer derives them automatically by appending ".tsk" to the task identifiers given in the configuration file.
In our example, the configurer will search for "upper . t sk".

If atask image file is not found in the current directory, the configurer will automatically search all of the
directories in the search path, that is, all those specified in the PATH environment variable. PATH can be
modified in the usual way, by the path command. This automatic mechanism for specifying task image file
names can be overridden by the FILE attribute of the configuration language's TASK statement.

The output from the configurer can be run directly using the server:

» 3L X upper

More than One User Task

In the previous section we saw how to build a single-task application. In this section, we shall see how we can
generalise this method to applications that include more than one task running in parallel.

We continue with the small case-conversion example by splitting the job performed by upper.c into two tasks,
as shown in the diagram below. a driver task to handle file 1/0, and a processing task which accepts a stream of
words containing ASCII character code values on one of its input ports and sends the corresponding upper-case
character codes to one of its output ports.

Processor X Processor Y

This example is a bit contrived, but splitting a job up into an /O task and a number of concurrent computation

51

Parallel Programs

tasks is commonplace.

The folder t ar get \ C6000\ Sundance\ Exanpl es\ Exanpl e- 2 contains the C source files for the two
tasks, driver.c and upc.c, and a suitable configuration file, upc.cfg. They are repeated here for convenience.

Configuring for More than One Task

The example used here can be found in the folder exanpl es\ exanpl e- 2.

Let's start by looking at this configuration file:

I Hardware configuration
processor root type=nyboard

I Software configuration
task driver ins=1 outs=1
task upc i ns=1 out s=1 dat a=20k

connect ? driver[O0] upc| 0]
connect ? upc[0] driver[0]

! associate hardware and software
pl ace driver root
pl ace upc r oot

We have divided the configuration file into three sections, devoted respectively to a description of the hardware
comprising the network, the software structure, and the correspondence between the hardware and the software.
Here, the hardware is unchanged from the single-task case: it declares the one processor, root.

The software structure is a bit more complex.

Declaring Tasks

This time, we shall need a TASK statement for each of the two tasks in the application. In general, a
configuration file must contain a TASK statement for each concurrently executing task in the system:

task driver ins=1 outs=1 data=?
task upc i ns=1 out s=1 dat a=20k

As well as the task's name, the TASK statement must specify the number of input and output ports it has. We
saw in "The Diamond Model" that atask has a vector of input ports and a vector of output ports that are used to
communicate with other tasks. In our example, as we can see from the diagram above, driver and the upc tasks
each have one input and one output port, which they use for communicating with each other. The INS and
OUTS attributes of the TASK statements define this. Note that the ports are numbered from O upwards.

As we have seen, the TASK statement also includes attributes that specify what strategy the configurer should
use for allocating memory to the task. Here we are using the DATA attribute, which results in the stack and
heap data areas sharing a single area of memory. In the upc task, we specify that this area should be 20k octets
in size. The driver task, which has the data=? attribute we have seen before, will get al the free memory
remaining once upc's requirements have been fulfilled. Only one task on each processor can have its memory
requirements left unspecified in this way. The configurer would otherwise have to decide how to split the
remaining memory between several tasks with unspecified requirements. Because an even split is unlikely to be
desirable in practice, the configurer refuses to make the decision for you. "Memory Use" gives hints on
estimating memory requirements when multiple tasks must be placed on the same processor.

Making Connections between Tasks

The CONNECT statement establishes a channel between two tasks, by connecting an output port to an input
port. A channel corresponds to one of the thin arrows in the diagram above, and data can move along it in only

52

Parallel Programs

one direction. This means that we need two CONNECT statements to create two channels for bi-directional
communication between driver and upc:

connect ? driver[O0] upc| 0] I driver -> upc
connect ? upc[0] driver[0] I upc -> driver

The CONNECT keyword can be followed by an identifier naming the connection, but al the configuration
statements which declare new identifiers allow a question mark to be used in place of the identifier being
declared. This is useful when there is no need to refer to an object after it has been declared. The identifier
declared by a CONNECT statement can be used later in a program to simplify access to the associated channels.

After the identifier (or question mark) we code first the output port, and then the input port. Thus, the first
CONNECT statement in the exampl e above makes a channel from driver's output port 0 to upc's input port O.

Consider the following statement:
connect ? first[2] second[6]

This would alow the following matching statements in the two tasks (assuming the standard declaration of the
parameters to main):

first: chan_out nessage(12, buffer, out _ports[2]);
second: chan_in_nessage(12, nybuffer, in_ports[6]);

Assigning Tasks to Processors

Tasks are assigned to processors by the PLACE statement. In our example, both driver and upc are to run on the
root processor:

pl ace driver root
pl ace upc r oot

Inter-Task Communication

Now let's consider the code for the two user tasks, and ook in particular at the way they communicate.

/1 driver.c file I/O for upper-casing exanple

#i ncl ude <chan. h>
#i ncl ude <stdi o. h>

mai n(int argc, char *argv[], char *envp[],
CHAN * in_ports[], int ins,
CHAN *out _ports[], int outs)

{
int c;
for (;:) {
c = getchar();
chan_out _word(c, out_ports[O0]);
if (c == ECF) break;
chan_in word(&c, in_ports[0]);
put char(c);
}
}

53

Parallel Programs

Coding the driver task in C is easy. Instead of using the t oupper function from ct ype. h as before, it
converts characters to upper case by sending a message containing the ASCII character code to the
"computation” task and waiting for areply message containing the result.

C tasks send messages using the channel /O functions. The chan. h package provides functions to send and
receive messages of any length. In our program, we use chan_i n_wor d and chan_out _wor d to handle
word-sized messages. A word isthe same sizeasan int.

The statement in driver.c, which sends character codes to the processing task, is:

chan_out _word(c, out_ports[O0]);

Theword (int) value to be sent is passed as the first argument in the function call.

The second argument to chan_out _wor d identifies the output port to which the message is to be sent.
out_portg 0] corresponds to output port O of the driver task. The CONNECT statement in the configuration file
above which refersto driver[Q] specifies which task the port is connected to. Here it is the processing task, upc.

out_ports is a vector of pointers to channels, passed into the task via the argument list of its C mai n function.
This vector is declared as:

CHAN *out _ports[];

CHAN is the channel data type defined in the library header file chan. h, which must be included by C files
that use the channel 1/0 functions. Each port (i.e., each element in the vector) has type "pointer to channel”.

The number of output ports in the vector is defined by the OUTS attribute of the TASK statement used to
declare the task in the configuration file. Our driver task has outs=1, so there is only one element in its output
port vector, numbered 0.

The value of OUTS is passed into the task as an argument to mai n along with the port vector. It is declared (int
outs) in driver.c but not used. It can be used to write tasks that handle an arbitrary humber of ports, like the
multiplexor task described later on in this chapter.

The mai n function's argument list also provides access to the input port vector in a similar way. In the driver
example, the input port vector is given the namein_ports and will have ins elements.

The driver task will keep reading characters from the standard input stream (getchar), sending them to the
processing task and writing the reply messages (the translated characters) to the standard output stream until
EOF isread.

The next thing to look at is the processing task. It islogically a "black box" with one input port and one output
port:

Parallel Programs

Processing task

Original stream
Stream of word-sized) . with letters
messages 0 UPC . converted to upper

case

The processing task uses the same channel /O functions as the driver to send and receive messages. It
terminates when it receives an EOF from the driver.

/1 upc.c stand-al one processing task; comunicates with driver.c
#i ncl ude <chan. h>
#i ncl ude <ctype. h>
#i ncl ude <stdio. h> /1 for ECF

mai n(i nt argc, char *argv[], char *envp[],
CHAN * in_ports[], int ins,
CHAN *out _ports[], int outs)

(.
int c;
for (;;) {
chan_in_word(&c, in_ports[0]);
if (c == EOF) break; /] term nate task
chan_out _word(toupper(c), out_ports[0]);
}
}

Beware when using the channel 1/O functions that sending and receiving tasks must always agree on the size of
messages. For example, if atask sends a 5-word message, the receiving task must read it as one 5-word unit; it
is not possible for the receiving task to read five separate 1-word messages. Trying to do so may cause the
processor to lock up or behave unpredictably.

Building a Multi-Task Application

You can build the two-task upper-casing example by compiling, linking using the 3L t command, and then
running the configurer as we have already discussed. This uses the full library (rtl.lib) and will make al the
facilities of the Diamond library available to both tasks.

Our processing task has no need of this full functionality as upc does no standard C 1/O; the header file
st di 0. h isincluded only for the definition of EOF. A specia stand-alone version of the library (sartl.lib) is
provided for cases such as these. You can link a program with the stand-alone run-time library by using the 3L
t a command in placeof 3L t.

Even though all tasks can communicate with the host, linking with the stand-alone library can be worth doing as
linking with the full library has costs:

» Theresulting task image file contains alarge amount of code to handle communicating with the server;

» Thetask hasto initialise its connection with the server and read the command-line string from the host, even
if the program does not explicitly use any standard I/O functions likepri nt f ;

» The configurer will add extra system tasks to any processor on which you place tasks linked against the full
library.

55

Parallel Programs

The stand-alone library is similar to the full library except that it omits all the functions that require server
support (functions for file 1/0O, in particular). The descriptions of the run-time library functions indicate which
functions are members of the stand-alone library.

The complete commands to build and run the two-task upper-casing example are shown below:

» 3L c driver.c

» 3L ¢ upc.c

» 3Lt driver

» 3L ta upc

» 3L a upc.cfg upc.app
» 3L X upc

Stop the application by typing Ctrl-Z, which the driver task will read as an end-of-file.

You can try this out for yourself, using copies of the relevant files, which are supplied in the Diamond kit. You
will find them in the folder t ar get \ ¢6000\ Sundance\ exanpl es\ exanpl e- 3\ . A variant of this code
that accesses the input and output channels by name rather than by port indexes may be found in
t ar get\ c6000\ Sundance\ exanpl es\ exanpl e- 3b\ . There is aso a batch file, upc.bat, for building
the application.

Shutting Down Cleanly

In simple applications that have only one task linked with the full library, the server shuts down when this task
exits. Y ou can then run another application.

When an application contains more than one task linked with the full library, the server will not stop until they
have all exited. However, it does not wait for tasks that are linked with the stand-alone library to exit.

The simple examples discussed up to now have not had to deal with errors. When an individual task detects an
error, the following choices are available:

* The offending task may simply exit. Therest of the application will continue to operate, except that attempts
to communicate with the failed task will hang. This is the simplest approach, and is recommended for new
users. The drawback is that the host server will continue to run even when the application it is serving has
failed, and may have to be shut down manually.

* A failing task may orchestrate a controlled shutdown of all tasks linked with the full library, by sending
messages to them. This approach is harder to design and implement, but results in the host server
terminating cleanly.

* A task may call the library function _server _t er m nat e_now, which forces the host server to stop
immediately. This approach should be avoided if possible, because other tasks will not be notified of the
shutdown and may have important open files, which will not be closed properly.

Scheduling

The Diamond model for scheduling threads and tasks was outlined earlier. Here we shall go into a little more
detail.

Scheduling is done by the microkernel. Each thread has a priority. There are eight levels of priority, numbered
0-7, level 0 being the highest priority and level 7 the lowest. Level O is referred to as urgent. The header
t hr ead. h defines the literals THREAD URGENT and THREAD NOTURG that correspond to priority levels O
and 1 respectively.

Once athread is running, it will only be suspended for one of the following reasons:

56

Parallel Programs

1. ltcallsthet hr ead_deschedul e function, which voluntarily interrupts execution.

2. It hasto wait for some event externa to the thread. This could be, for example:
« waiting for input or output to end, whether via a channel or alink;

waiting for a semaphore to be signalled;

waiting for an event to be signalled or pulsed;

waiting for atimer event;

waiting for anal t _wai t function call to end.

3. ltispre-empted, that is, it is paused by the microkernel so that a higher priority thread, which is now ready
to execute, can be started instead.

4. Ithasused up itstime-dlice, that is, it has been executing without interruption for a certain length of time.

Urgent threads will only be suspended for the first two of these reasons; they will never be pre-empted or
time-sliced.

Once a thread has been suspended, the highest-priority thread that is waiting to run will be started. If a thread
uses up itstime-dlice, another thread of the same priority will be given aturn, if oneis available, so that the time
is shared evenly between threads of the same priority; if none is available, the time-sliced thread will continue to
run.

If there are no threads ready to be run at all, the idle thread will run. This executes the IDLE instruction and
waits for an interrupt.

When you create a new thread using one of the functions in this section, you have to specify the priority at
which the thread is to run. The temptation to create every thread with URGENT priority should be resisted, as
urgent threads cannot be pre-empted or time-sliced. Once started, an urgent thread will run until it voluntarily
deschedules itself or has to wait for an external service. This means that all other threads, including all other
urgent threads, will be prevented from executing at all. These "locked out" threads may include parts of the
communication software, and this could have a bad effect on the performance of the application as awhole.

Multi-Processor Applications

If you have followed the examples this far, the generalisation from a multi-task system running on a single
processor to a full multi-processor system will be fairly obvious. All that is required is a change to the
configuration file to describe the extra hardware and place some tasks onto processors other than the root
processor.

Configuring Multi-Processor Applications

You can find the source code for the example discussed here in the folder
t ar get\ c6000\ Sundance\ exanpl es\ exanpl e- 3\.

The new configuration file is shown here;

I Hardware configuration
processor root DEFAULT
processor addon DEFAULT
wire ? root[0] addon[4]

I Software configuration
task driver ins=1 outs=1
task upc i ns=1 out s=1 dat a=20k

I Channel connections
connect ? driver[0] upc[O]
connect ? upc[O0] driver[O]

I Task pl acenent
pl ace driver root

57

Parallel Programs

pl ace upc addon

We are going to run the case-conversion example on a two-processor system with the driver task on the root
processor and the upc task on the other processor. The extra hardware must be declared in the configuration file:

processor addon DEFAULT
wire ? root[0] addon[4]

The first line here gives a name (addon) to the second processor. We must also specify its type, depending on
what kind of board it is. Here we have assumed that a default processor type has been defined.

The second line contains a new statement, WIRE. This declares that there is a physical connection between link
0 of the root processor and link 4 of the new processor, addon. Obviously, this WIRE statement must reflect the
real hardware configuration. There must be at least one path of WIRES from the root node to every processor in
anetwork. This path may pass through any number of intermediate nodes.

If we reconfigured the application with only these changes to the configuration file, the addon processor would
be unused because the upc and driver tasks are both placed on the root processor. We can fix this by modifying
the PLACE statement for upc

pl ace upc addon

Now the configurer will arrange for the code of the upc task to be loaded into the second processor when the
complete application is started with the server.

Notice that the CONNECT statements do not need to be changed, as the logical connections between the tasks
are the same as before. If CONNECT is used to connect ports of two tasks on the same processor, the channel
the configurer binds to the two ports will be implemented by a memory copy. If the tasks are on different
processors, the channel will involve the interprocessor links and Diamond's communication software. As far as
the programmer is concerned, these two cases are identical, and exactly the same library functions are
used(chan_out word,chan_i n_wor d and so on).

It's important to understand the difference between the WIRE statement and the CONNECT statement. WIRE
specifies the actual hardware connections between processors; CONNECT specifies the logical connections
(channels) between tasks. The index values in WIRE statements refer to link numbers; those in CONNECT
statements refer to elements of the input and output port vectors. If a CONNECT statement requires messages to
be transferred to another processor, the communication software makes use of the available WIREs to do this.
The programmer does not need to know which WIRE, or which hardware link, is used.

Links and Channels

It may be worthwhile at this moment to re-emphasise the difference between a channel and alink.

A l'i nk isaphysical, bi-directional connection between two processors, which alows them to communicate.
This can be a Tl-style comport, some other hardware-supported link, or a section of shared memory.

A channel is a uni-directiona means for tasks to communicate, but these tasks need not be on different
processors. Communication with a task on another processor through a channel will imply the use of links; they
are employed to support the channel connection. Communication with a task on the same processor through an
internal channel will not make use of links.

As we have seen, a WIRE statement describes a link which joins two processors, whereas a CONNECT
statement describes a channel connecting two tasks.

Virtual Channels

By default, if the tasks joined by a CONNECT statement are on different processors, the configurer will attempt

58

Parallel Programs

to use avirtual channel to connect the two tasks. Virtua channels are very flexible:

e Messages sent to tasks on distant processors are automatically forwarded viaintermediate network nodes;
* A single WIRE can support any number of virtual channels;
» Virtual connections between tasks are not limited to the available physical links between processors.

In short, any task can communicate with any other task, on any processor, irrespective of the physical network
layout. This flexibility must clearly come at a price; a certain amount of software overhead is required to
implement virtual channels.

The throughput of a virtual channel may be up to 50% of a physical channel for long messages sent to a
neighbouring network node. Performance drops for shorter messages, down to about 25% of a physical channel
for messages of 1000 words and below 10% for short messages of fewer than 100 words. Performance also
drops when messages must be forwarded through intermediate nodes. Note that these overheads are to a large
extent inherent in any software message-routing system. It is possible to tune virtual channel performance for
your application.

Thereis a current limitation in the use of virtual channels: a virtual channel can only connect two processors of
the same genera type, for example C6000 processors or C4x processors. In addition, there must be a path of
wires between these processors that only passes through other processors of the same type. For example, you
cannot have avirtual channel between ROOT and N3 in the following example:

PROCESSOR ROOT TYPE=C6000
PROCESSOR N1 TYPE=C40

PROCESSOR N2 TYPE=C6000
PROCESSOR N3 TYPE=C6000

W RE ? ROOT[0] Ni[3]

WRE ? NI[0] = N2[3]
WRE ? N2[0] N3[3]

However, if you added another WIRE from ROOT to N2, you would be able to have a virtual channel between
ROOQOT and N3.

Physical Channels

Diamond aso alows CONNECT statements to be mapped directly onto physical channels (WIREs) when
necessary, completely eliminating the extra overhead. Communication performance is unlikely to be a big
problem for our upper-casing example, but if we did want to use physical channels for the connections between
the driver and upc tasks, we could change the two CONNECT statements as follows:

connect ? driver[O0] upc[0] physi cal
connect ? upc[0] driver[0] physical

There is no need to re-compile or re-link either of the tasks.

Y ou may aso specify explicitly that particular channels must be virtual:
connect ? driver[O0] upc[0] virtual

connect ? upc[0] driver[0] virtual

If a CONNECT statement does not specify either VIRTUAL or PHY SICAL, the configurer will make it virtual
by default. Putting one of the following statements anywhere in a configuration file can change this default
setting:

def aul t connect physi cal
default connect virtual

The configurer also provides a command-line switch to make all connections physical by default:

59

Parallel Programs

3L a-p ..

The configurer will report any conflicts among these different ways of specifying default behaviour.

Physical Channel Restrictions

When using physical channels, take care that enough WIREs are available for all the inter-processor connections
required. Each WIRE can support only two physical channels, one in each direction. If two processors need to
communicate over aphysical channel, they must be directly connected by at least one physical WIRE.

"Restrictions on Network Configuration" and "Restrictions on Physical Channels' describe in detail the
restrictions on the use of physical channels. Some restrictions on the use of virtual channels are also described
there. These can usually beignored in networks that use only virtual channels, but become more important when
physical channels compete for the available WIREs.

WIRE Usage by Virtual Channels

A virtual channel isimplemented by a software mechanism that needs communication in both directions along a
wire. It follows that avirtual channel cannot use awire that is supporting any physical connections at all.

Error Detection on Virtual Channels

The size of each message sent using chan_out_word and the other message-passing calls must exactly match the
size expected by the receiver. Failure to follow this rule for physical channels, or for internal channels between
tasks on the same processor will usually result in the application hanging up or crashing. One benefit of virtual
channels not mentioned previoudly is that the Virtual Channel Router (VCR) is able to check for this type of
error. When a mismatch occurs on a virtual channel, the server will report the error as a software exception like
this:.

*** Sof tware exception: 00001202 00000008 00000044
Processor=0 Severity=error
Group=3L Facility=VCR (Virtual Channel Router)

Here, processor 0 wanted to send 8 octets but the receiver wanted to take 44 16"

*** Sof t ware exception: 00001102 00000044 00000008
Processor=1 Severity=error
Group=3L Facility=VCR (Virtual Channel Router)

Here, processor 1 wanted to receive 44 16 OCtets but the receiver wanted to send 8.

Note that two errors may be reported, one from each end of the channel. Error 1102 isfrom the sending end;
1202 15 COMes from the receiver. Attempting to send or receive a zero-length message is also reported as an
error.

To find out which named processor corresponds to the processor number in a software exception message, you
need to use the configurer's "map" option. For example:

» 3L a -mupc.cfg upc. app

The map is written to the standard output stream and looks like this (the processor names are those assigned in
your configuration file):

UPR node 0 is processor "root"
UPR node 1 is processor "addon"

Armed with the configurer's map output, we can now interpret the processor numbers from the software
exception messages we saw above. This particular error arose because a task on the "addon" processor tried to
send a 17-word (68 octet) message to a task on the "root" processor, which was expecting to receive only two
words (8 octets).

60

Parallel Programs

Simultaneous Input

One thing we have not yet seen how to do is to wait for a message from any one of a number of concurrently
executing tasks. For example, a multiplexor task that accepted messages on any of an arbitrary number of input
ports and passed them on through a single output port would be a useful building block.

Jod IndinQ
0

S10d 1nduj

A task connected to the output port of the mux task sees a sequential stream of messages, even though they are
coming from any number of input tasks, in any order.

The problem in implementing mux is that we cannot simply issue channel read requests on the input channelsin
order. Thisis because a channel read will not terminate until the data have actually arrived and been read. If the
channel we pick has no message waiting to be read, nothing will happen. In the meantime, al the other channels
will be held up. What we need is a way to identify which channel has an incoming message waiting to be read.
We can then issue aread on that channel alone.

Theal t . h functions provide this facility.

Here, we give the flavour of these functions by showing a Diamond implementation of the multiplexor task that
usestheal t _wai t _vec function to wait for a message to arrive from any element of an array of (pointers to)
channels. The multiplexor task's input port vector is just such an array of pointers to channels, so it can be
passed directly toal t _wai t _vec aong with a count of the number of elementsin the array.

alt _wait_vec waitsfor amessage to become available on any of the channels pointed to by the array, in this
case any of the multiplexor task's input ports. It then returns the index in the array of the channel that is ready to
read a message. If more than one channel becomes ready at the same time, the system will choose which one to
handle first. If no channel ever becomes ready, the function will never return.

Onceal t _wai t _vec has determined the channel on which a message isincoming, the rest of the mux task is
quite straightforward. First, read the message from that channel into a buffer, then echo the message to the
single output port. In the example, the messages consist of afixed length (one word) header giving the size of a
trailing variable-length part. Only one message buffer is required no matter how many input ports are connected
to the multiplexor task. Messages arriving on any other channels are blocked while the multiplexor deals with
the current message.

/1 Exanpl es\ General \al t mux. c
/1 message nultiplexor using "alt

package

#i ncl ude <alt. h>
#i ncl ude <chan. h>

mai n(i nt argc, char *argv[], char *envp[],

61

Parallel Programs

CHAN *in_ports[], int ins,
CHAN *out _ports[], int outs)

{
i nt msgl en; /1 nunber of words in nessage
char buf[1024]; // nessage buffer
for (;;) { /1 read nessages forever
11
/1 wait till next message received on any input port
/1
int i =alt wait_vec(ins, in_ports);
/1
/1 read the nessage fromthat port
/1
chan_in_word(&nrsglen, in_ports[i]);
chan_i n_message(nsgl en, &buf[0], in_ports[i]);
/1
/1 ...and copy it to the single output port
/1
chan_out _word(nmsgl en, out_ports[O0]);
chan_out nessage(nsgl en, &buf[0], out ports[0]);
}
}

Multi-Threaded Tasks
Creating Threads

The <al t. h> functions alow a limited amount of paralelism to be introduced into a sequential task.
Diamond also allows tasks to be fully multi-threaded. This means that a task can contain any number of
concurrent processes each of which is independently executing the code of the task. All the threads in a task
share the same static, extern and heap data. The threads can still operate independently because each one is
given its own stack for auto variables.

When it starts, each task has just one thread, its main function. New threads are created dynamically by calling
the library function thread_new. All of the library functions discussed in this section are described more fully in
the library description and the list of functions.

A thread terminates when itsinitial function returns.

Waiting for Threads to Finish

The thread creation functions all return a handle value. A different thread can use this handle with the function
t hr ead_wai t to wait for the thread to terminate:
THREAD _HANDLE h = t hread_new MyThread,)

f'h'read_wait(h); /1 wait until the thread stops
/1 (MyThread returns).

Access to Shared Data

If multiple threads in a task are operating on shared data, say a buffer held in static storage or on the heap, they
must synchronise their access to the data. Threads can synchronise their operations using either semaphores or
channels.

62

Parallel Programs

Note that variables shared between threads may need to be declared as vol at i | e to make sure that changes
made by one thread are visible to other threads. Consider what would happen if the compiled code of a thread
function were to keep a shared variable in aregister. Changes made by other threads to the value of that variable
in memory would be invisible. Using volatile prevents the compiler from keeping avariable in aregister.

Synchronisation Using Semaphores

Semaphores may be used to synchronise the operation of user threads. To illustrate the use of semaphores we
have recoded the multiplexor example presented previously to use multiple threads interlocked by a semaphore
in place of the<al t . h> functions.

A new execution thread is created for each input port. Each thread does a simple sequential read and waits for a
message. As soon as one thread receives a message it waits until a semaphore indicates the output port is free.
Using a semaphore prevents disaster if two threads each try to write to a shared object like the output port at the
sametime.

The following code fragment shows the semaphore version of the multiplexor task. This implementation shares
one message buffer area between all its threads as well as sharing the output port. All of a task's threads share
the same static, extern and heap data. Each thread has its own stack for auto variables, so each thread in the
example has its own msglen variable. The stack space for athread is created automatically (from the heap) by
the t hr ead_new function. Any number of input threads may have read the length part of their incoming
messages, but the buf_free semaphore ensures that only one is using buf and out_ports[Q] at any time.

/1 Exanpl es\ Gener al \ Mrux. c
/1 nmessage nul tipl exor task

#i ncl ude <chan. h> /1 required header files
#i ncl ude <thread. h>
#i ncl ude <sema. h>

char buf[1024];
SEMA buf _free; /1 controls access to buf
CHAN **in_p, **out _p; /1 global pointers to

H port vectors

voi d receive(void *p) handl e one input port

i nt msgl en; /1 one for each thread
int i = (int)p; /1 i = port to service
for (;;) /1 forever..
chan_i n_word(&mrsglen, in_p[i]); /1 await message
sema_wai t (&buf _free); /1 wait until buf free
chan_i n_message(nsgl en, /1 read nessage into
&buf [0], /1 the shared buffer
in_pli]); /1 from our port
chan_out word(nsgl en, out p[0]); // send to out_ports[O0]
chan_out nessage(nsgl en, &uf[0], out p[0]);
senma_si gnal (&uf _free); /1 et someone else in
}
}
mai n(int argc, char *argv[], char *envp[],
CHAN *in_ports[], int ins, CHAN *out_ports[], int outs)
{
int i;
sema_init(&uf _free, 1); /1 initially free
in p =in_ports; /1 nmake ports..
out _p = out_ports; /1 globally avail abl e
for (i=0; i <ins; i++) { /1 one thread per input
t hread_new(recei ve, /1 function
1024*si zeof (i nt), /1 stack size in bytes
(void *)i); /1 port to use

63

Parallel Programs

Any function that is going to be started by t hr ead_new must have exactly one argument, of type void *.
Notice that to pass the number of the input port to each receive thread, we have had to cast it to a void *, and
then cast it back to an int inside the thread.

.Warning

At first glance, the alternative seemsto be to pass a pointer to the variablei:

for (i=0; i <ins; i++)
thread_new(receive, 1024*sizeof(int), &);

This is not appropriate, as we cannot predict when the new threads will start to execute. It is
likely that the value of i will have changed by the time a receive thread comes to pick it up.

Note that the main function of our example task returns when it has finished starting the "receive" threads; those
threads will continue to execute even though their parent has stopped.

If you haven't used semaphores or a similar method for controlling concurrent access to shared objects before,
you should read a good introduction to the subject, such as [Lister] or [Tanenbaum]. It is possible to introduce
difficult-to-trace errors into a program if threads forget to synchronise access to a shared object by waiting for a
semaphore.

Synchronisation Using Channels

A channel can be used to synchronise two threads by including the header <chan. h> and then declaring a
static, extern or heap variable of type CHAN. Once this channel has been initialised using the chan_i ni t
function, a pointer to it can be used to specify the channel to be read or written by any of the channel 1/0
functions.

Remember that each channel can only be used to transmit data in one direction between exactly two threads.
Y ou cannot use a channel to transmit data in both directions (you must use two channels) and you cannot allow
more than one thread to be waiting for input from the same channel.

There follows a task that creates just two threads, a produce thread that generates a sequence of word-sized
messages and a consumer thread that processes them. The messages are transmitted across an internal channel,
chan. The channel transmits the data, and also ensures synchronisation: the consumer cannot proceed once it has
called chan_in_word until the producer sends a message over chan. Similarly, if the consumer thread is busy
when the producer attempts to send a message, it will be blocked until the consumer comes to read its next

message.

r

<1> Caution

Any internal channels used to synchronise the operations of multiple threads must be declared
and initialised before those threads are started. Failing to initialise an internal channel is a
common mistake.

/1 Exanpl es\ General \ ProCon. c

#i ncl ude <stddef. h>
#i ncl ude <t hread. h>
#i ncl ude <chan. h>
#i ncl ude <par. h>

Parallel Programs

#def i ne STACKSI ZE 1024
CHAN chan, consuner_fi ni shed,;

voi d producer(void *p) /1l generate 10 val ues

int i;
for (i=0; i < 10; i++) chan_out_word(i, &chan);
}
voi d consuner (void *p) /1 processes 10 val ues
{
int i, val;
for (1=0; i < 10; i++)
chan_i n_word(&val, &chan);
par _printf("%\n", 2*val);
chan_out _word(1, &consuner_fini shed);
}
mai n()
{
i nt dunmy;
chan_i nit (&onsuner _fi ni shed);
chan_i ni t (&chan);
/1
/1 channels initialised BEFORE starting the threads!
/1
t hr ead_new(producer, STACKSI ZE, NULL);
t hr ead_new(consuner, STACKSI ZE, NULL);
/1
// wait for all threads to term nate
/1
chan_i n_wor d(&Jumy, &consuner_fini shed);
/1
/1 before exiting
/1
}

The following is a variant of the previous example that uses thread_wait rather than a channel to achieve a
controlled termination:

#i ncl ude <stddef. h>

#i ncl ude <t hread. h>

#i ncl ude <chan. h>

#i ncl ude <par. h>
#defi ne STACKSI ZE 1024

CHAN chan;

voi d producer(void *p) /1 generate 10 val ues
for (f:O; i < 10; i++) chan_out_word(i, &chan);

voi d consuner(void *p) /1 processes 10 val ues

int i, val;

for (i=0; i < 10; i++) {
chan_i n_word(&val , &chan);
par_printf("%l\n", 2*val);

mai n()

65

Parallel Programs

i nt dunmmy;

THREAD HANDLE consuner _t hread;

chan_i nit (&chan);

/1

/1 channels initialised BEFORE starting the threads!

/1

t hr ead_new(pr oducer, STACKSI ZE, NULL);

consuner _thread = thread_new(consumer, STACKSIZE, NULL);
11

/1 wait for consuner to termnate

read_wait (consuner _thread);

before exiting

~ Y~
~~—T>

Threads and Standard 1/O

It is abad idea for the main function of atask to return while any threads it has created are till active if, asin
the program above, one of those threads may be using C standard 1/O. If this happens, the main function will
exit, causing the run-time library to attempt to shut down the I/O system and close al open files before some
thread which needs to do I/O has finished. This can lead to several obscure errors, most commonly reports from
the server of "protocol error”. To forestall this possibility, an extra channel has been added in this example from
the consumer thread back to the original main thread. It is used purely for synchronisation. When the consumer
thread is about to terminate, it sends a dummy message over this channel. The main thread waits for this
message before returning. A semaphore could have been used here instead.

Note that the multiplexor example above demonstrates a occasion where it is safe to let main terminate while
other threads are active; those threads do not require access to the host for /0.

When an application has multiple threads that need to continue running when the main function has finished,
you should stop the main thread by callingt hr ead_st op.

Synchronising Server References

Note the use of par _pri ntf inplaceof pri ntf inthe consumer thread above. If multiple threads are active
in atask, and more than one thread needs to communicate with the server (usualy for 1/0), then a semaphore
(par _senmm) must be used as an interlock to ensure that only one thread at a time can interact with the host.
The par . h header provides ready-interlocked versions of some common functions, such as pri ntf. The
interlock is not actually necessary in our example, since no other thread will be attempting to use the full library
at the same time, but it is as well to be aware of the problem. Note that par _sermnma is also used to synchronise
accesses to the memory access functions, malloc and free. Failing to synchronise these accesses can result in
obscure errors like "protocol error".

The following shows an example of explicit synchronisation. Two threads use fprintf to write to the same file.
You must protect these potentially concurrent cals to f pri nt f by waiting for the par _sema semaphore
declared by par . h. Thisis just what the built-in function par _f pri nt f does automaticaly. You must use
this technique to protect concurrent calls to server-access functions for which no par_ version is available.

/1 Exanpl es\ Gener al \ Par Ex. ¢
#i ncl ude <stdio. h>

#i ncl ude <t hread. h>

#i ncl ude <par. h>

#i ncl ude <senua. h>

#def i ne STACKSI ZE 1024
FILE *f;
SEMA al | _done;

voi d out put (voi d *base)

66

Parallel Programs

{
int i;
for (i = (int)base; i < 10; i += 2) {
sema_wai t (&par _senn) ;
fprintf(f, "%\n", i);
sema_si gnal (&par _senn) ;
} sema_si gnal (&al | _done);
?ai n()
f = fopen("out.dat", "w');
sema_init(&all _done, 0);
t hread_new(out put, STACKSI ZE, (void *)0);
t hread_new(out put, STACKSI ZE, (void *)1);
/1 wait for both threads to stop
sema_wait_n(&al |l _done, 2);
/1 before | eaving main
}

Not al library functions need to be protected in this way. Some functions are thread safe and may be called
from any thread without specia precautions. The al t. h, chan. h, ctype. h, li nk. h, par. h, sema. h,
setj np. h, stdarg. h and ti mer. h functions are al thread safe. Descriptions of functions that are not
thread safe are marked Server or Heap.

Note that it is only multiple threads within the same task that must explicitly synchronise their calls to the
server. Synchronisation of threads within separate tasks is automatic.

Threads versus Tasks

Threads are "lightweight" processes:

» They share their code, heap, static and external data memory with all the other threads created by the same
task;

» They can share data and may communicate either via shared memory or by using channels;

» All the threads of a single task run on the same processor, allowing them to share memory.

Tasks on the other hand are more substantial:

e They only communicate via channels;

» Each task has its own code and data areas, separate from al other tasks; code, including run-time library
functions, is not shared between tasks, even tasks placed on the same processor;

» A task can be moved to a different processor simply by reconfiguration.

Two operations to be performed concurrently can be usefully performed by threads rather than tasks if al of the
following conditions hold:

» They will never need to be run on distinct processors;

» The operations are closely coupled, i.e., they share a lot of common code. Code is automatically shared
between threads, but each task has its own copy of al of its code, including library functions, so that if
necessary it can later be moved to a different processor without requiring recompilation or re-linking;

» The operations logically operate on shared data structures. This may be more efficiently performed directly
by concurrent threads than by tasks copying the data back and forth as messages when they are modified.

Using Assembly Language

The effort of hand-coding an inner loop in assembly language can sometimes be worthwhile when performance
is critical. The Optimizing C Compiler[C Compiler] contains information about register usage and function

67

Parallel Programs

argument-passing conventions, which you will need if you want to write assembly-language functions callable
from Diamond.

Assembly language is also used for writing low-level interrupt handlers.

68

Part Il. General Reference

Standard Diamond Features

Table of Contents

L o 41100 o PP 73
L0044 0= a0 IS = 73
Lo 0] 1 73
LIS 0 = £ T PP 74
Adding Your OWN FUNCLIONSc.uuiiiiitieeiiiii et e et e e e eeens 74
ComMEN FIlE ... e 74
FUNCEION INGIME ...t e e e e et e e e eaanns 74

(@] 07 = {0 1 1R 75

Y = o S PP UPRPPPIRN 75
EXBIMPIE e 75

7. CONfIQUIALiON LABNGUBZEeevueieii ettt ettt e et e e e e e nb s 76
Standard Syntactic MetalanQUEaOEoieuniiiiiii e 76
Configuration Language SYNEAXccuuieiereeiiieeeieeeiee e e e e e e e e e e e e e eanas 76
(oY = Y= Y | = 77
Constants and IAENLIFIEISivveeei e 78
NUMEITC CONSIANES ..ovueieieiiie e e e e e e et e e e e eeen s 78
SUNG CONSLANES ...ttt et e e 78
ABNEITIEIS ..ot et een s 79

S 2 < 011 0 TP 80
PROCESSOR SEAEMENT ..vuieiiiiiieieiiine et e et e et e e et e e e e e e e et e eennnns 80
WIRE SEEEMENT ... e e e e e e e e e e e e e eenes 84
PROCTY PE SEEEMENT ...oeuiiiite ittt e e e e e e e anns 85
NS NS - 1= 11 | S 87

L N O S 1= 111 0| P 91
BIND SEABIEMENT ..ieeviieeiiii e e e e e e e e e et e e e eannns 92
DEFAULT SEABEMENE ...ciiiiieeeiiis et e et e e e e et e e enanns 93

L S 1 0= | 93
OPTION SEALEMENT ...ivnieieiieee e e e e e e e e e s e e e e e e e eaes 93

8. THE CONFIGUIET ...ttt e et e et e et e e e nb s 95
USING the CONFIGUIEY .. .eeiee ettt e e eeans 95
F 1Y 0] T o 95
SWITCRES .. e 95

INPUE FITES ot e e e eeees 96

L0 LS S o) B T =P 96
PrOCESSON TYPES ...ttt ettt e 96
MEIMOIY USE ..ottt e e e 97
MEMOPY DIVISIONS ...cuuiiiiiciii e e e e e et e et e e e e ean s 97

VK= aaTo VALY, = o o oo 97

QI LT o AN 11 - 98
LOGICEl ATBASIZESunieiiiii ettt 98
DATA SHIDULE ..eeieeeeee et e e e 99
Separate Stack and Heapoooveiiiii e 99
Explicit Placement of LOgICal AT€aSccouviiiiiiiiiii i 100
BUIlAING @NEIWOIKeeeiiiii e e e e e e 100
Restrictions on Network Configurationcceeiiieiiiiinieiiiiinec e 100
Restrictions on Physical Channelscooouiiiiiiiiiiiii e 101
IMIBSSAgES ...ttt 101
LS I 0 TC TS o = 113
L@ Y T PP 113
The USEr INEEITACE .. .cveeei e 113
LIS 1 113
TheBoard INtErfacecoeu i e e 113
SEATING tNE SEIVET .ot 113
Selecting your DSPDOArdc..oiiiniiiiie e 114
Selecting an apPliCaLIONoivii e 116
EXplicitly resetting the DSPSc.uuiiiiici e e 116
RUNNING the @pPliCaLIONiiiiii e e 116

General Reference

RECONNECHING ThE SEIVEr ..ot 117
StoppiNg the APPHICALTIONiee e e 118
[0 o 01011 oL N 118
PagE MOE ... 118
0 PP 119
1001100 S PP UPPPTR 119
View/Options/General Tahoooeveiiiiiiie e 119
View/Options/Standard 1/0 Tahc..viiiiiiiii e, 121
View/Options/Monitoring Tabhccoeuiiiiiiiii e 122
View/Options/Advanced Taboovviiiiii e 122
BOard PrOPEITIES .. .eeveiieieiie e e 124
HEIP INFOMMBLION ...ttt e 124
ShOMCUL KBYS ...t 124
S Y[YL 6 Lo o PP 124
(0 1015552 o = TR 125
INEENEl DELAIIS ...ueieeiii e 126
L0ading apPliCALIONSccuuieieii e 126
SEIVEN SITUCKUIE .ottt et e e et e et e e e et e e e enaeens 126

The Presentation INerface (P)uuiiiieiiiee e 128
LinK-iNterface AriVErSiie e 130
EXIENAING thE SEIVEr ..o e a e 130
[0l] g To ox U1 = 130
SENVEN OPEIAHION ..eeviieiiii e et eaas 131
Building YOUr OWN CIUSLENcooiiiiiiiiii e 131
Accessing your cluster fromthe DSPcooiiiiiiiiii e 133

The Core INtErface (C) ...coeun i 135
Writing aboard iNterfacecovviiiii i 138
Replacing the SErver GUIcoue e e 138
The CommuniCation ODJECEcccuuuiiiiiiiie e 140
REPIACING thE SEIVEY ... e e 140
10. The Diamond LiDrary ... e 141
T pLu oo 1o o RN PP 141
FOrmMat Of SYNOPSESiviiiiie e e e e e ans 141

[o 141

[1572 [£ 141
ErrorsS <er rN0O. N> 141
Limits<fl oat. h> and<limts. h> .., 142
Common Definitions<st ddef . h> ... 142
AltPackage<al t. h> s 142
Diagnostics<assert. h> . 143
Channels<chan. h> e 143
Character Handling <Ct ype. h> i 144
Links <l i NK. N> o 144
Localisation <l 0cal €. h> o 145
Mathematics<mat h. h> ..o 145
Synchronising Accessto the Server <par. h> ..., 146
SemaphoreS <SEIMA. N> oo 147
EVENtS SEVENT . N> 147
Nonlocal Jumps<set j M. h> 148
Signal Handling <si gnal . h> e 148
Variable Arguments<stdarg. h> ..., 148
INput/Output <St di 0. N> Lo 149
General Utilities<stdl i b. h> ... 152
String Handling <string. h> oo 154
Threads<t hread. h> e 155
Thread return codes <er r code. h> e 155
Dateand TiIMe <t i M. N> oo e 156
Internal Timer <t i MBr. N> oo 156

IR o B W g o)1 156
11, INEErrUPt HANAIING ...cceviee et e e e ettt e e e e et r e e e e e e eee 212
Attaching High-level Interrupt Handlers ..o 212
Communicating with the Kernel ..., 213
Enabling and Disabling Global INterruptscoocvviiiiiiiiii e 214

General Reference

INterrupt ProCeSSING FIOWoiiiiiie e 215
Low-level Interrupt HandIErsco.uniii e 215
HaNAIEr SITUCLUIE .. e e e e eennees 216
Attaching alow-level handlercooviiiiii i, 216
TaKING TNEEITUPLS . 216
Low-level handler CONEXEoveuiiiiieie e 217
AcCesSING the KErNEl ... 217
Low-level Interrupt Handler EXampleooooiiiiiiiiiii e 219

A 1= g = I 1= 0T £ 221
L3, DM A ittt 222
SCOXDMA FUNCHIONS ...uuiiiiiieiee e e e e e e e e e e e e e e e et e e et e e e s e e an e e e eeenns 223
SCOEXDMACHhANNEl FUNCLIONSiiiiiiiiice e e e e aens 224
LA, EDIM A e e et e e e e e et e e e e e e b s 227
EDMA Channel AVailabilityooooiiiiiiiiiiiiei e 228
EDMA eventsused by Diamondcoooiiiiiiiiiiiiiiceir e 228
SCOXEDMA FUNCLIONS ...oeevviiiseeeee ettt e e e e e e e 229
SCHEXEDMACHANNEl FUNCHIONS .. ceuuiiiieei e e e e e e e e e e e e eeens 232
15, QDIMA oottt 234
L1 oo (1 1o o PP 234
PrincCiples of OPEraionoeeuiiiiii e 234
HEAOEN FIIE ... e 234
SEBIUS .ottt 234
Preparing t0 TranSfEr .. .cooeu e 235
LI =05 = £ 236
QDMA REJISLEN'S ...ieeiieeeettie ettt e ettt e e e e ettt e e e e e e e e e bbb e e e e 237
A QDMA EXGMPIE ..ttt e e e et b e e e e e eaaaaa 237
N 00 011> oo T o 239
My appliCation dOBS NOL FUNvvecii e e e e e e e e e eees 239
Compilation, Linking, CoONfigurationcoouuiiiiiiiiiieiie e 240
compiler cannot DETOUNooiiiiiiiiii e 240
compiler cannot find header fileS ..., 240
FEIOCALION BITONS ...ieit ettt ettt e e e e e e e e e e eeees 241
wrong version of software eXeCULedcvevviiiiiii i 241
Complete Failure a RUN TIMEiiuniii e e e e e e e e aens 241
application hangs or rUNSWIldiiiiiiiiiiii e 241
application Will Not [0ad O SEaItviiiiiiiii e 243
communication With host disruptedvviiiiiiiiiii e 244
ProCESSON IOCKS U .. etieiii ettt e e e e e eeans 244
server hangs or rUNSWIldooveiii e 245
ANSI FUNCHIONS ...t e s e e e e e e e e ennnees 246
datain file seem to e COrrUPLooiiie e 246
EDOM SELIN EITIO oevieiiieii et e e e e e e e e e e e et e e e e e e eeenns 246

end of file COrrupt Or @DSENLoiiiiii e 246
ERANGE SELIN @ITN0 ...ciiiiiiciiei e 246

fille POSILION ISWIONG ...vuiiiiciii e e e e e e e ees 247

1/0O behaves UNEXPECLEAIYcovviiii e 247
NULL returned when allocating MemOryoooeuuiieiiiiinieiiiiieeeeei e 248
output does NOt APPEAN OF IS COMTUPL ..vuneeerrieeeerii e eeii e ettt eeeanns 248

time function returNSWIONG tiMeoiiiii e 248
VaraDI@ COMTUPL ...t e e e 248
Parallel and Other FUNCLIONSuuiiieiiiiiiii e 248
channel transfer failSoovvririi e 249

[INK FUNCHIONS O NOt WOK .ovuiiei et e e eens 249
thread cannot see changesto shared dataoovvvvviiiiiiiiiiiei e 249
thread NBNGS ... 249
thread new returNSINULL ... e 250
<timer.h> functionsdo NOtWOrKcoovieiiiiiiiiiii e 250

AV = o] F= oo (o 250

72

Chapter 6. Commands

Diamond applications are built and executed using a variety of compilers, linkers, and other utilities, many of
which will change from edition to edition. Combinations of different hardware targets and board manufacturers
will give rise to numerous command variations.

In order to simplify this and allow project to be built for multiple targets, Diamond includes a command utility,

3L. exe, that hides much of the complexity. You can extend this utility to adapt it to your working
environment.

Command Syntax

The general form of acommand is:

3L options function argunents

options zero or more items from the following list:
-H Display help information
-T target Define the target processor, as described below.
-V Verbose operation. Display information about the execution of the command. This
isuseful for debugging new functions.
function the function to be executed, as described below
arguments | the arguments to be passed to the selected function

Functions

The command utility supports an extensible set of command functions; uppercase and lowercase letters are
equivalent. The standard set is as follows:

C Compile asource file

T Create atask by linking anumber of object files against the full library.

TA Create a stand-al one task by linking a number of object files against the stand-alone run-time
library.

A Build (configure) an application under control of a configuration file. Y ou should not give a
target for this command.

X Execute an application using the server. Y ou should not give atarget for this command.

This list may be extended in particular editions to support different processor types. For the Sundance C6000
edition, the following extra commands are available:

ce67 Compile a source file for a floating-point C6000.

T67 Create atask by linking anumber of object files against the full library and the TI C67
floating-point library.

T67A Create a stand-al one task by linking a number of object files against the stand-alone library and
the TI C67 floating-point library.

ce4 Compile a source file for amember of the C64 family of processors.

T64 Create atask by linking anumber of object files against the full library and the TI C64 library.

T64A Create a stand-al one task by linking a number of object files against the stand-alone library and

the Tl C64 library.

73

Commands

Targets

A target is a way of identifying the particular combination of processor type and board manufacturer that is
relevant to a compile or link function. Command definitions are held in one or more files named
Conmand. dat , and atarget helps the command utility to locate the correct one.

There are three types of target:

Processor The type of processor for which atask isto be built. Examples of this could be
c6000 or ppc.

Manufacturer The manufacturer of the target hardware, for example, Sundance, or Anon.

Processor/Manufacturer Where the processor or the manufacturer alone does not uniquely define the

target hardware, you can give both. For example, c6000/Sundance,
ppc/Sundance, or ppc/Anon.

The command utility searches the Diamond installation folder structure for comand. dat starting at a
subfolder determined by the target. If you provide a target, the subfolder will be bi n\ t ar get , otherwise it
will be bi n\ . Finding more than one command file within the chosen folder is considered an error and the
utility will fail with an message. This means that you must provide a target when you have more than one
edition of Diamond installed. If you only have one, you can always omit the target specification.

Typical commands are as follows:

» 3L cdriver.c Compile driver.c.

» 3L cupc.c Compile upc.c.

» 3L tdriver Create driver.tsk by linking against the full library.

» 3L taupc Create upc.tsk by linking against the stand-alone run-time library.
» 3L aupc Create upc.app by running the configurer.

» 3L x upc Execute upc.app with the Windows Server.

» 3L —T xxxcy.c Execute the ¢ command for the processor or manufacturer xxx.

Adding Your Own Functions

This section describes how you can extend the command utility by adding your own functions. This can be
useful if you have definitions or switches that you invariably add to your commands. Rather than modify
existing commands, we recommend that you add new functions to the end of the standard list.

Command File

Commands are defined in a file called conmand. dat . There is a version of this file for every edition of
Diamond you haveinstalled. Y ou can find the file in the folder:

bi n\ <pr ocessor >\ <manuf act ur er >

As an example, if you have installed the Sundance c6000 edition of Diamond in the standard place, this would
be: ¢: \ 3L\ Di anmond\ bi n\ c6000\ Sundance\

The file comprises a number of lines of text. If aline becomes inconveniently long, you can break it at any point

by inserting a backslash and a newline. Any line starting with / / is treated as a comment and is completely
ignored.

Function Name

A function is defined by a sequence of lines, where the first line gives the name of the function and any aliases
you wish to give it. Each name must start with aminus sign. For example:

74

Commands

- CDEBUG, -CD

This would introduce the definition of a function called CDEBUG. The function could also be invoked by using
the name CD.

Operations

The subsequent lines in the file define the operations needed to perform the function. The list of operationsis
terminated by another function definition or the end of the file.

There are three types of operation:

Execute fn arguments The function fn is executed as a command with the given arguments.

File filename A new text file, f i | enane, is created. All the subsequent linesin the
Conmand. dat filethat start with a colon are written to the file (leading
whitespace and the colon are not written). Writing to the file stops as soon asaline
that does not start with a colon is reached.

Delete filename filename is deleted.

Macros

You can use several macros within the lines making up a function’s operations. They are replaced by strings
computed by the command utility.

@@) is replaced by the single character @.

@1 isreplaced by the first item in the 3L command’ s arguments.

@A is replaced by the whole of the 3L command’ s arguments.

@D isreplaced by the definition of the environment variable Diamond. It gives the path of the

Diamond installation folder and ends with a backslash.

Example

This is an example of a function that is the same as the standard C function (compile) but also defines the
symbol "DEBUG".

- CDEBUG, -CD

Execute cl 6x -qq -1" @hbi n\ c6000\ Sundance\i ncl ude" \
--syndebug: coff -O3 -c - pdsw225 \
- dDEBUG \
@A

Y ou can test this function by running 3L.exe in verbose mode:

» 3L -V CD hello.c
Di anpond: C:\ 3L\ Di anond\
Conmmand: CD

Parameters: hello.c
Command file C:\3L\D anmond\ bi n\ c6000\ Sundance\ Conmand. dat

Execute cl 6x -qq -1"C: \3L\D anmond\ bi n\ c6000\ Sundance\i ncl ude"
--syndebug: coff -3 -c¢ -pdsw225 -dDEBUG hello.c

>

75

Chapter 7. Configuration Language

The 3L configuration language is the language used to write configuration files for the various 3L configuration
utilities. It is designed to alow easy description both of physical processor networks and of user applications
built up out of tasks, without the user being concerned with the details of how the tasks are actually loaded into
the processor network.

Each of the configuration utilities will, in general, accept a subset of the language described here, according to
its needs. In addition, implementations for different processors will differ semantically to some extent. You
should refer to the discussion of the configurer on the C6000.

Standard Syntactic Metalanguage

In the rest of this chapter, we shall be describing the syntax of the configuration language. To make sure that
this description is precise and unambiguous, we shall make use of a metalanguage, that is, a language
specifically designed for describing other languages.

The metalanguage we shall use is the one specified by British Standard 6154. Many readers will be familiar
with similar metalanguages, particularly those of the well-known Backus-Naur family, so here we shall give

only a brief description of BS6154. For more detail, you should consult the standard itself. There is adso a
tutorial introduction, which is available from the National Physical Laboratory.

» Termina strings of the language—those not built up by rules of the language—are enclosed in quotation
marks.

* Non-terminal phrases are identified by names, which may consist of several words.

e A sequence of items may be built up by connecting the components with commas.

» Vertica bars ("|") separate aternatives.

e Optional sequences are enclosed in square brackets ("[" and "]").

* Sequences that may be repeated zero or more times are enclosed in braces ("{" and "}").

e Each phrase definition is built up using an equals sign to separate the two sides, and a semi-colon to
terminate the right hand side.

Configuration Language Syntax

The lower-level syntax of the configuration language deals with the way in which multiple input files are
handled, with comments and with line continuation. This topic is treated informally below.

"Constants and Identifiers® and " Statements" cover the higher-level syntax, which deals with how the tokens and
statements of the language are built up. To help with this, we shall use the standard syntactic metalanguage, but
with an additional simplification to make the syntax more readable. To show this, consider the following syntax
rule written in the BS6154 metalanguage:

exanple rule = "first”, "second";

Interpreted strictly, this rule would be satisfied only by an input text that read "f i r st second" . In the syntax
presented here, it should be taken to match "f i r st " followed by "second" , but in such a way that the two
items are distinguishable. For example, a space character in the input file might separate the two words here.
When the two items are distinguishable in the input file without a space between them, then they may be
abutted, asin the following example:

76

Configuration Language

second exanple rule = "first", "=";

Valid input text for thisrule could be, for example, "fi rst="or"first =".

Low-Level Syntax

The general form of a configuration specification is designed to be as simple as possible to use. The following
example shows the ways in which the formatting, commenting and continuation facilities available in the
configuration language can be used:

I this is an exanple of a coment
I a blank Iine follows...

| next, a statenment continuation..
PROCESSOR -
host

I now, both features in conbination...
PROCESSOR - ! comment AND conti nuati on
r oot

The above sequence is, to the configurer, exactly equivalent to the following:

PROCESSOR HOST
PROCESSOR ROOT

The various facilities used above can be summarised as follows:

» The case of letters is not significant, except in a string constant. In all other contexts, upper and lower case
letters may be used interchangesbly.

» White space within a line (space characters, tab characters and so forth) is compressed; for example, three
consecutive spaces would be seen as one.

» Everything from an exclamation mark character "!" to the end of the line is taken to be a comment, and is
discarded.

» If the last non-whitespace character on aline is a hyphen "-", the line is taken to be continued onto the next
line.

e Continuation and commenting can be used together; the hyphen must then be the last non-whitespace
character before the comment.

Certain statement types (TASK, PROCEDURE, and PROCTY PE) often have several attributes. The complete
list of attributes may be enclosed in braces, in which case newlines are ignored and no continuations are needed.
For example, the following two TASK statements are equival ent:

TASK Fred ins=1 -
outs=2 -
dat a=16K

TASK Fred {
i ns=1
out s=2
dat a=16K

77

Configuration Language

In addition to these line formatting considerations, note that the configurer can accept any number of input files
rather than simply one. This facility is designed to allow different parts of the description of an application to be
held in separate files. For example, the description of the physical network might be held in one file and the
description of the user's application in another. The configurer simply treats each input file in order as part of
one long input stream.

Constants and ldentifiers

Numeric Constants

Severa different kinds of numeric constant are available to meet the different uses of constants within the
configuration language. For example, a constant may be expressed in decimal notation or in hexadecimal.

A special notation is provided to extend the decimal constant with a scaling letter; this is most commonly used
in specifications of memory allocation. The scaling letters "K" and "M" scale the decimal constant they follow
by 1024 and 1024x1024 (1048576) respectively. Note that it is not possible to add a scaling letter to a
hexadecimal constant; the configurer would interpret such a combination as the hexadecimal constant followed
by a single-character word containing the scaling letter.

Although all numeric constants in the configuration language represent integer values, a representation
including a decimal point can be used for input: the number is simply truncated towards zero before use. For
example, 1.6 would simply represent 1. Because this truncation occurs after the scaling letter, if any, has been
applied, the decimal point can be used to express fractions of the scaling value. For example, 1.6M would
represent 1677721, which is the truncated integer part of 1.6x1024x1024.

When a constant is used to refer to an amount of memory, it may express a humber of words or octets,
depending on the processor. For example, on the C6000, such quantities always refer to a number of octets
(eight-bit bytes).

const ant = deci mal constant | hex constant;
hex const ant ="&", hex digits | "Ox", hex digits;
hex digits = hex digit, {hex digit};
hex digit =digit | "A" | .| "F";
deci mal constant = decimal digits,
[".", {decimal digit}], [scaling letter];
scaling letter = "K' | "M;
decimal digits = decimal digit, {decimal digit};
deci mal digit ="0" | ..l "9,

Some examples of numeric constants are given here with their valuesin decimal.

10 10
&10 16
0x12 18
10K 10240
10M 10485760
1.6 1
1.6k 1638

String Constants

The only circumstances in which a string constant is required in the configuration language are when an
identifier is required that does not obey the configurer’s syntax: operating system file names, for example. Such
string constants in the configuration language are ssimply enclosed in double quotes. No notation is available for
including double quotes within the string. The case of the charactersin stringsis preserved.

The trailing string quote may be omitted if the end of the line terminates the string.

78

Configuration Language

string constant = ["""],
{? any character except new i ne and doubl e quote ?},

I

Some exampl es of valid string constants are as follows:

"string"
"c:\ nytasks\x. tsk"
"fred. tsk

Identifiers

Each object in the physical system (processors and wires) and in the user's application (tasks and connections)
has a unique identifier. This is used by the configurer in error reports, and is also used to specify relationships
between the objects. For example, awire run between links on two named processors.

Identifiers for objects in the configuration language are simply sequences of letters, digits and the special
symbolsunderline” " and dollar sign "$". The sequence must start with aletter.

identifier = letter, {identifier character};
identifier character = letter | digit | "$" | "_";
letter ="A" | ... "Z%

Some examples of valid identifiers follow. Note that the configurer would treat all the last three examples
identically, because the case of lettersis not significant.

proc_5

do$wor k

r oot

a_very_l ong_nane
A Very_Long_Name
A VERY_LONG_NAME

Part of the syntax of each of the configuration language statement types which declare an object is the identifier
that is to be used to refer to that object in later statements. For example, the identifier given to a processor is
used again in placing tasks on that processor or in wiring the processor's links to those of other processors.

It is sometimes convenient, when an object will not be referred to later, to alow the configurer itself to choose

an identifier for an object rather than for the user to invent meaningless identifiers for every object. The
declaration statement types all allow a question mark to be used in place of an identifier.

new identifier = identifier | "?";

Normally, this specia form of identifier is used when declaring wires and connections, as there is at present no
statement type that refers back to these objects. Declarations of processors and tasks will almost always require
an explicit identifier to be used, as these identifiers are used later when placing the tasks onto the network of
processors.

An example of using the question mark form of identifier would be as follows:

wire ? root[0] second[3]

This statement declares a wire running from link number 0 on processor root to link number 3 on processor

79

Configuration Language

second. The configurer will be able to report errors concerning this wire by reference to the line number and file
name of the declaration, but the user will not be able to refer to the wire again.

Statements

Given the definitions of such primitives as numeric constants and identifiers, the high-level syntax of the
configuration language can now be presented. The combined input file consists of a number of
newline-separated statements, as follows:

input file = {[statenent], newine};

Note that the statement part of the above is optional, allowing for blank lines appearing between statements.
This may come about either deliberately, perhaps to improve the readability of the input file, or because the line
contained only acomment, which is of course not visible at thislevel.

Each statement in the input file is one of the following statement types. The different statement types are
covered in the subsections that follow.

statenment = processor statenment
W re statenent
task st atenent
connect statenent
pl ace stat enent
bi nd st at enent
defaul t statenent
UPR st at enent
OPTI ON st at emrent ;

There is no restriction on the order in which statements appear in the input file, except that no object may be
referred to before it has been declared.

PROCESSOR Statement

"PROCESSOR', new identifier,

type specification, processor attributes;
"{" {processor attribute} "}" |
{processor attribute};

processor statenment

processor attributes

type specification = ["TYPE", "="], processor type;
processor attribute = "CLOCK", "=", constant
" CACHE" , "=", cache val ue

"KERNEL", " : kernel file specifier
"LCAD", "=", load file specifier

" BOOT", "=", boot file specifier
"AvO D', "=", avoid spec
"BUFFERS', "=", constant
"LI NKS", "=", constant;

processor type = c6Xx processor type |
"TMs320C40" | "C40"
"TMS320C44" | 44t |
"PC';

c6x processor type = identifier;

cache val ue = "ON |
" OFE"
const ant;

kernel file specifier
load file specifier
boot file specifier

string constant;
string constant;
string constant;

physi cal area identifier;
avoi d spec avoid address, ":", avoid size;
avoi d address const ant ;

80

Configuration Language

avoi d size = constant;

The PROCESSOR statement declares a physical processor. If we need to refer to a processor later in the file, it
must be declared with a PROCESSOR statement first. Note that you need one PROCESSOR statement for each
processor in the system, even if the processors are physically clustered together in some way.

The PROCESSOR (and WIRE) statements must correspond to the real hardware network on which the
application will be run. If thisis not so, the application will probably fail to load.

TYPE Attribute

The configurer needs to be given information about the type of each processor you will use in an application,
and this is provided by a type attribute immediately following the processor name in the PROCESSOR
statement.

= Note

The"TYPE=" gtring is optional. The following two statements are equivalent:

PROCESSOR r oot TYPE=MyType
PROCESSOR root MyType

The type attribute tells the configurer many things, including: the amount and location of the processor's
memory, its clock speed, the number of links it has, which kernel file to use, and so on. The valid type
identifiers are described in the manufacturer’s documentation, but you can get a list of the types acceptable to
the configurer using the Diamond utility Pr ocType. The specia processor type DEFAULT may be used to
select the default processor type. This default will usually have been set by the Diamond installation procedure,
but you may set or changeit at any time with Pr oc Type.

The name "DUMMY" is reserved and may not be used as the name of a processor.

The following example declares a four-processor network. The processors host and other_host are of type PC;
the processors root and node are of type C6XBOARD.

processor host

processor root t ype=c6xboard
processor node c6xboard
processor other_host type=pc

Every processor is assumed to be able to support any user task placed on it by the configuration file. Although
certain tasks may not be able to execute on particular types of processor, the configurer cannot check for this
and the responsibility for ensuring avalid configuration is the user's.

CACHE Attribute

All C6000 family processors have a two-level cache scheme. This facility is usualy (but not always) a net
benefit for many applications that are too large to fit entirely into the processor’s internal memory. The L1
cache uses a private memory area within the processor and is always enabled. The L2 cache uses some or all of
the processor’s internal memory to hold cache information. Following reset, the L2 cache is configured to use
no internal memory, and so is disabled.

The cache mechanism is always used for internal memory and its operation there is effectively invisible to the
running program. Use of the cache (both L1 and L2) with external memory is optional and has potential
problems. Cache operation with external memory is not invisible to the running program because the cache is

81

Configuration Language

unable to maintain coherency with DMA operations. A DMA channel can alter the contents of memory that is
being cached. Subsequent program accesses will be satisfied from the cache and so get the old memory
contents. Coherency must be maintained explicitly in software by the application. This can be expensive and
sometimes will reduce performance more than simply disabling the cache. External memory is divided into a
number of areas and each area has an associated Memory Attribute Register (MAR). Following reset, al MARS
are given values that prevent the cache from operating with the corresponding external memory area. This is
particularly important in preventing the cache from interfering with the operation of memory-mapped
peripherals. During program execution, preferably during the program’s initialisation phase, individual MARs
can be set to allow the cache to operate on the selected memory area.

Diamond will automatically enable the cache by setting every MAR that corresponds to external memory
defined by the selected processor type.

The CACHE= attribute of the PROCESSOR declaration alows you to control the amount of internal memory
used for L2 cache. The default state, with no internal memory being used for cache, is equivalent to specifying
the attribute CACHE=OFF. Conversely, CACHE=ON can be used to indicate that the maximum amount of
internal memory should be used for L2 cache. For finer control, the CACHE= attribute may be supplied with a
numeric argument explicitly giving the amount of internal memory to be used for L2 cache; only certain
numeric values are permitted for any given processor type. However, CACHE=OFF is always equivalent to
CACHE=0 and CACHE=ON is always equivaent to CACHE=x where X is the maximum permitted value.

Y ou can find out what values are permitted by looking in the documentation for the particular C6000 processor.

LINKS Attribute

Traditionally, the links have been for the most part serial link ports. There is no necessity for this to be so,
however, and on the C6000, links have been implemented in a variety of ways depending on the architecture of
the board; using shared memory, the processor's host port, the two serial ports or additional peripherals, for
example. Links implemented in all these different ways, however, will behave in a similar way, and can be
handled similarly by the configurers.

CLOCK Attribute

82

Configuration Language

KERNEL Attribute

BOOT Attribute

The BOQOT attribute allows you to send the uninterpreted contents of a file (a "load object") to a processor or
other device. Nothing else will be sent to that processor. In particular, it can have no tasks placed on it. The
processor type information must be present, but is ignored; you can specify any existing processor type, even
when the "processor" is really a non-processor device.

BOOT is useful in systems with non-processor modules, such as ADCs and DACs, that need to be loaded with
configuration information before being used. For example:

PROCESSOR r oot DEFAULT
PROCESSOR adc DEFAULT BOOT="adc. dat"
WRE ? root[3] adc[1]
= Note
The load object specified in a BOOT sttribute must be a multiple of 4 bytes long, that is, it must

be made up of awhole number of 32-bit words.

AVOID Attribute

The configurer allows areas of externa memory to be marked as "do not use". These areas will not be loaded
with code or data by the configurer: a common use of this facility is to preserve an area of memory for some
non-Diamond use. For example, AVOID= might be used to allocate a memory buffer at a fixed location known
by host software or by other processors but not controlled by Diamond at run time.

The format of the AVOID= attribute is as follows:
AVO D=base: si ze

For example:

processor special M/Proc200 avoi d=0x04001000: 16k

BUFFERS Attribute

83

Configuration Language

WIRE Statement

"WRE", new identifier, transmtter, receiver,
{wire attribute};

link specifier;

link specifier;

processor identifier, "[", constant, "]" |

" DUMWY™ ;

" NOBOOT";

W re statenment

transmtter
receiver
link specifier

wire attribute

The WIRE statement declares a physical connection between links on two different processors.

r

<1 Caution

The kernels for most processors automatically include a basic set of link drivers, but some types
of link need extra modules to be included in the kernel. A reference to a link in a WIRE
statement is taken as a request for the configurer to ensure that the relevant driver module is
loaded. If you do not reference alink in a WIRE statement, you are unlikely to be able to use that
link at all.

Every processor in the network is assumed to be able to control a number of links, numbered upwards starting at
0. In most implementations, the configurer assumes a default number that depends on the processor type or the
design of the board. The
two ends of the wire are each defined by using alink specifier construct.

The position of a link specifier, either transmitter or receiver, will be used to initiaise links implemented on
hardware that needs to be set into a particular initial state (SDB links, for example). Other than this, because
each WIRE statement supports communication in both directions, the two link specifiers in a WIRE statement
may usually be interchanged without affecting the statement's meaning. For example, the following statements
both ™ declare a wire named yellow_wire running between link 2 of processor proc_one and link 3 of processor
proc_two:

W Wi re proc_one[2] proc_two[3
w Wi re proc_two[3] proc_one[2

wire yel

. o
wire yello

—_—

The PROCESSOR and WIRE statements must correspond to the real hardware network on which the
application will be run. If thisis not so, the application will probably fail to load.

NOBOOT Attribute

You can use this attribute to prevent a wire from being involved the booting process. The wire will remain
available for carrying channel traffic. Your application will fail to build unless al processors can be reached
using the remaining wires.

wire ? root[2] node[5] NOBOOT

DUMMY link specifier

A DUMMY link specifier may be used to declare awire that is used to communicate with a processor that is not
to be involved in the configuration process or an external device. For example,

" obviously, putting both these statements into a configuration file would result in an error as the identifier yellow_wire would be declared
twice.

84

Configuration Language

PROCESSOR r oot DEFAULT
PROCESSOR node DEFAULT
WRE ? root[0] node[3] O
WRE ? root[6] DUMW [
W RE ? DUMW root [4]

0 Declareanormal wire connection link O of root to link 3 of node. If necessary, root[0] will beinitialised as
atransmitter and node[3] will be initialised as areceiver.

0 Declare that root's link 6 will be used to communicate with an external device and that it should be
initialised as a transmitter.

UsingaDUMMY link specifier implies the attribute NOBOOT.

PROCTYPE Statement

The PROCTY PE statement allows you to define custom hardware, and simplifies supporting additional COTS
boards. It also allows user-defined processor types to be derived from existing types. The general form of the
PROCTY PE statement is as follows:

PROCTYPE new old ["{" {attributes} "}", {attributes}]

The simplest use of thisfacility isto define an alias for an existing processor type:

proctype XXX exi sting type
processor root XXX
processor nodel XxX
processor node2 XxX

Changing the single definition of xxx would change the meaning of all subsequent PROCESSOR declarations
using the xxx type. PROCTY PE declarations may also introduce new processor types based on existing types
but differing in some attributes. For example, this declares a new type like an old type except for processor
clock speed:

proctype new ol d cl ock=300

The attributes permitted in a given PROCTY PE declaration differ according to the base processor type. For
most C6000 processor types, however, the following attributes are permitted in a PROCTY PE declaration:

Attribute Usage

AVOID= Prevent Diamond from using a particular block of memory.
CACHE= Enable or disable the cache. Specify the size of cacheto use.
CLEARMEM Undo the effect of all existing MEM attributes

CLOCK= Specify CPU clock speed in MHz

FORMAT= Tinternal use only: specify configurer output file format
KERNEL= Specify Diamond kernel file to be used for this processor
MAP= tLocate kernel module

MEM= Declare ablock of external memory attached to this processor

All of these attributes, except those marked T, can aso be specified in a PROCESSOR statement: if specified
both in a PROCTY PE and in a PROCESSOR statement using the processor type, the definition given in the
PROCESSOR statement will replace or augment the definition in the PROCTY PE, as appropriate. Thisis also
true when one PROCTY PE is defined in terms of another PROCTY PE.

Kernel Modules

85

Configuration Language

The kernel can be extended when necessary by the inclusion of modules. This is done automatically by the
configurer when it detects that a task needs particular facilities. Typically these include link drivers, EDMA
handlers, and implementation-specific device drivers.

Each module has a specific numeric identifier, and to gain access to a module, you use the kernel's
SC6xKer nel _Locat el nt er f ace function.

SC6xKernd_L ocatel nterface [Stand-alone]

#i ncl ude <c6kobj . h>
voi d *SC6xKernel _Locatel nterface(void *Kernel, unsigned int ID);

This searches the list of modules known to the kernel and returns a handle to the one with identifier
value ID. The first parameter should be a pointer to the kernel object that is available to al tasks as
_ker nel . Every cal with the same ID will return the same handle.

For example:

SC6xExt _I nt *xint = SC6xKernel _Locatel nterface(_kernel, SIID SC6xExt_Int);

NULL isreturned if no suitable module can be located.

MAP= attribute

External Memory Specification
MEM Attribute

86

Configuration Language

CLEARMEM Attribute

TASK Statement

t ask st at enent "TASK", new identifier, task attri butes;

task attributes = "{" {task attribute} "}" | {task attribute};

task attribute = "I NS", "=", constant
"QUTS", "=", constant |
"FI LE", "=", task file specifier |
" OPT", "=", opt area |
"PRI ORI TY", "=", constant |
" URGENT" |
| ogi cal area, "=", nmenory anount;

opt area = logical area, {":", location};

| ogi cal area = "CODE" | "STATIC' | "STACK"
"HEAP" | "DATA" | user-defined section;

nenory anount constant | "?";

task file specifier

| ocation

addr ess

user-defined section

identifier | string constant;
physi cal area | address;
const ant;

string constant;

A TASK statement declares a task, and may contain a number of task attribute clauses, each of which describes
some aspect of the task. The task's attributes may appear in any order within the statement.

INS Attribute

The INS attribute is used to specify the number of elements in the task's vector of input ports. If the task needs
no input ports (because it only requires to send messages to other tasks, never to receive) then this attribute may
be omitted or given the value zero.

OUTS Attribute

The OUTS attribute is used to specify the number of elements in the task's vector of output ports. If the task
needs no output ports (because it only requires to receive messages from other tasks, never to send) then this
attribute may be omitted or given the value zero.

FILE Attribute

87

Configuration Language

> This attribute specifies the task image file where this task is to be found. Task image files are created by the
linker. If a TASK statement has no FILE attribute, the configurer assumes that the task image file has the same
name as the task, with the appropriate extension. This extension, called the task extension, depends on the
processor type. On the C6000, for example, itis".tsk".

If the FILE attribute is present, its argument is either a string constant, which is the name of the task image file,
or an identifier, to which the task extension is added to form the file name. For example, on the C6000, both the
following tasks would be loaded from atask image file called myprog.tsk.

task abc fil e=nyprog
task def file="nmyprog.tsk"

The configurer looks for the file first in the current directory, and then in every folder specified in the
environment variable PATH. This search is not done if the file nameis already afull pathname.

Suppose we have the this statement:

task this

Thereisno FILE attribute, and assume the PATH variable is set up asfollows:

» set PATH=c:\nytasks;c:\dos;c:\tasklib

The C6000 configurer would search for the task image in the following files, in this order:

\Nthis.tsk
c:\nmytasks\this.tsk
c:\dos\this.tsk
c:\tasklib\this.tsk

Logical Area Attributes

The configurer must be told the dynamic data storage requirements for each task in an application. Thisis done
using the STACK, HEAP and DATA attributes of the TASK statement. For example:

task first stack=10240 heap=20K

task second dat a=50K

task third data=?

task fourth stack=10K I'no heap, not recomended
task fifth heap=? Ino stack, not reconmended

In the first example, the STACK and HEAP logical areas are alocated separately, and are given the sizes
indicated. In the second example, the stack and heap are allocated to a single area, and are jointly given 50K,
whilein the third, they arejointly allocated to the largest contiguous area of unallocated memory.

In the fourth and fifth examples, because only one of the areas has been given a size, the other will have no
space at all. Thiswill normally cause the task to fail.

CODE and STATIC may not be used as TASK attributes, as the configurer finds the size of these areas by
inspecting the task image file.

The argument to one of the memory size attributes is an integer expressing the amount of memory to be
allocated to the area in question. Sizes smaller than 128 will not be accepted, to prevent accidental entry of
unreasonably small amounts (for example, by typing 1.6 instead of 1.6k). It is also possible to specify "the rest
of memory available on the processor" by entering a question mark instead of an integer. On the C6000, which
has severa distinct areas of memory, "?" isinterpreted as "the largest remaining area of suitable memory". Only
onetask may request this treatment on any particular processor.

Whether these memory sizes are expressed in octets (eight-bit bytes) or in 32-bit words depends on the

88

Configuration Language

processor type. On the C6000, these attributes always specify a number of octets.

OPT Attribute

This attribute of the TASK statement provides a way to give instructions or preferences to the configurer about
how you wish memory allocation to be carried out. It has three forms, as shown in these examples:

task first opt=stack opt=seg red
task second opt =st ack: hi ghram
task third opt=seg_bl ue: 0x28000

The first form asks the configurer to place alogica area of the task in the fastest memory possible. The fastest
is, of course, the on-chip RAM.

The second asks that alogical section should be placed in a named physical area. Which physical areas you may
specify depends on the processor type; for details, you should consult your board documentation.

.Warning

Beware of placing sections at address 0. This can result in objects having a zero address which
may be interpreted as a NULL pointer. For example, an array of char placed at O cannot be
output using printf as the argument will be seen asa NULL pointer and interpreted as an empty
string.

Using either of the first two forms of this attribute does not guarantee that what you have requested will in fact
happen. The OPT attributes of all the various tasks on a processor, the sizes of their logical areas and the sizes
of the physical areas available are al taken into account by the configurer when it performs the memory
allocation.

As well as the standard logical area names, CODE, DATA, STACK, HEAP and STATIC, you can specify
named sections of the task, defined by the programmer. Where such sections have names that do not conform to
the configurer’s conventions for identifiers, you must enclose the name in quotes:

Task fourth opt= ".tabl es"

PRIORITY Attribute

This attribute provides a way to specify the priority level at which the task's initial thread (mai n) is to be
started. The range of priorities allowed varies between processors; on the C6000, for example, priorities in the
range 0—7 may be specified; level 0 has the highest priority and level 7 the lowest. For example:

task abc priority=5

If no PRIORITY attribute is given, the task's initial thread is started at priority level 1. A task may also be
started at priority 0 by giving the URGENT attribute (see below).

URGENT Attribute

This attribute specifies that the task's initial thread is to be started at the urgent priority level, that is, at priority
level 0. The two following examples have exactly the same effect:

task abc urgent
task abc priority=0

89

Configuration Language

Port Specifiers

After the declaration of atask, its ports may be referred to in much the same way as the links of a processor, by
a port specifier construct consisting of the task identifier followed by a number enclosed in square brackets:

port specifier = task identifier, "[", constant, "]";

For example, either input or output port number 5 on task user would be specified as user[5].

Note that a port specifier as given here does not indicate whether the port concerned is an input port or an output
port, that is, whether the index given isinto the task's vector of input ports or into its vector of output ports. This
information is provided by the context in which the port specifier appears. In the CONNECT statement, the port
specifier's direction is determined by its position within the line. In the BIND statement, the port specifier is
preceded by a direction word (INPUT or OUTPUT).

CONNECT Statement

connect statenent "CONNECT", new identifier,
out put port specifier, input port specifier,
{connect attribute};

port specifier;

port specifier;

connection type | "SHORT", "=", constant;
"PHYSI CAL" | "VIRTUAL";

out put port specifier
i nput port specifier
connect attribute
connection type

The CONNECT statement connects an output port on one task with an input port on another task. For example:

connect ? driver[0] upc[O]
I connect output port O of driver to input port O of upc
connect ? upc[O0] driver[0]
I connect output port O of upc to input port O of driver

While the WIRE statement describes a hardware connection in both directions between two processors, the
CONNECT statement describes a logical, uni-directional connection from one task to another. The connection
creates two new channels, an input channel and an output channel. The output channel is bound to the output
port of one task, and the input channel is bound to the input port of the other task. The configurer arranges for
output sent to the output channel to be received by the input channel. Communication in both directions between
apair of tasks therefore requires two CONNECT statements, as in the example above.

The tasks being connected need not be on the same processor. In some implementations, the CONNECT
statement will be supported by sophisticated run-time software which will arrange for messages to be forwarded
to the appropriate task, wherever it is. In others, the CONNECT statement will be mapped directly onto the
hardware link connections, and as a result, there may be restrictions on the placement of tasks which are joined
inthisway.

These connections may be named. This allows you to give a name to the input or output channel that the named
connection has created for the task. You can then access the channel directly using its name. This is described
under | NPUT_PORT and OQUTPUT_PORT. If you do not name the connections, or do not wish to name the
channels, you access the channel s by indexing into the vectors of ports passed to the task as argumentsto mai n.

A number of optional connection attributes may follow the input port specifier in a CONNECT statement, in
any order.

Connection Type Attribute

A connection may be explicitly specified as either VIRTUAL or PHY SICAL, but not both. For example:

connect ? sender| 2] receiver[0] virtual
connect ? AtoD driver[0] FIRfilter[0O] physical

90

Configuration Language

Physical connections are directly mapped onto WIRES. Virtual connections are more flexible. See here for more
about the differences between virtua and physical connections. Some implementations only support
PHY SICAL connections.

If neither VIRTUAL nor PHY SICAL is specified, the configurer will use a default setting, which is determined
as follows. Connections are normally virtual by default. This behaviour can be changed using the DEFAULT
CONNECT statement. The configurer command-line switch "—p" can be used to make all connections physical
by default. The configurer will report any clashes between these different ways of specifying the default type of
a connection.

Sometimes the configurer will not be able to make a connection virtual. This can happen if either of the
following conditionsis true:

* One of the tasks to be connected is placed on a processor type (transputer or Alpha) that does not presently
support virtual connections.

e One of the tasks to be connected was built using a version of Diamond for the C6000 prior to V2.1, and
therefore does not support virtual connections.

If this happens, the connection will fall back to being physical. If avirtual connection was explicitly requested
(using the VIRTUAL attribute), the configurer will give a warning message. If there are not enough spare
WIREs in the configuration to accommodate an extra physical connection, the configurer will give a further

error message.
SHORT Attribute

PLACE Statement

"PLACE", pl acing;

task placenent | connection placenent;
task 1dentifier, processor identifier;
connection identifier, wire identifier;

pl ace st at enent

pl aci ng

task placenent
connection placenent

processor identifier identifier;
task identifier identifier;
connection identifier identifier;
wire identifier identifier;

The PLACE statement determines on which processor a particular task will execute, or which wire a connection
will use. Every task must be placed on some processor, but placement of connections on wires is optional—the
configurer can automatically choose a suitable wire for you. Except for the restrictions of space, there is no limit
on the number of tasks that may be placed on a single processor.

Examples of the use of this statement might be as follows:

processor root
processor node

wire fast root[0] node[3]
wire slow root[1] node[4]

91

Configuration Language

task one ins=1 outs=1
task two ins=1 outs=1

connect f1 one[0] two[O0]
connect f2 tow O] one[0]

pl ace one root
pl ace two node
place f1 fast
place f2 slow

BIND Statement

bi nd st at enent
bi ndi ng type
bi ndi ng val ue

.Warning

Normally, ports are only bound by means of the CONNECT statement; ports left unbound are
pointed at unique dummy channels so that attempts to send or receive messages through them
cause the minimum of harm; the thread causing the attempt to communicate over the unbound
port simply pauses indefinitely rather than causing failure of possibly all threads running on the
processor.

"BIND', binding type, port specifier, binding value;
“INPUT"} | " OUTPUT";
"VALUE", "=", constant;

The BIND statement allows you to set the contents of a port explicitly to some literal value that does not
correspond to a channel.

One application of the BIND statement is to pass an integer parameter to a user task. For example, suppose the
configuration file contained the following statement:

bi nd i nput event _handl er[5] val ue=17

Thisvalue (17) could be accessed within the task event_handler by code like the following:
#i ncl ude <chan. h>

main (int argc, char *argv[], char *envp[],
CHAN * in_ports[], int ins,
CHAN *out _ports[], int outs)

{

i nt paraneter;
parameter = (int)in_ports[5];

This technique can be used to allow severa otherwise identical tasks to behave differently. For example, tasks
executing on afast processor can have this fact indicated to them by means of a parameter value, and use a more
processing-intensive algorithm for the solution of some problem. Another use of this parameter facility is to
"label" each task with a unique identifier.

.Warning

If an arbitrary value is supplied for a port binding and an attempt is then made to send or receive
amessage using that port, the processor on which the task resides will most probably crash.

92

Configuration Language

DEFAULT Statement

default statenment = "DEFAULT", "CONNECT", connection type;

There are only two forms of the DEFAULT statement:

def ault connect physi cal
default connect virtual

Only one of these statements may appear in the input to the configurer. The DEFAULT CONNECT statement
governs how the configurer treats any CONNECT statements that do not explicitly specify whether a virtual or
physical connection is required. See the description of how defaults are handled, in "Connection Type Attribute”
Note that the effect of DEFAULT CONNECT isglobal. All CONNECT statements are affected, even those that
come before the DEFAULT statement in the input file.

UPR Statement

"UPR', {UPR attribute};
" MAX", "=", constant |
"BUFFERS", "=", constant;

UPR st at enent
UPR attribute

The UPR statement allows you to tune various settings in the Universal Packet Router (UPR) system task.

MAX Attribute

BUFFERS Attribute

OPTION Statement

OPTI ON st at erent
OPTI ON

"OPTI ON', {OPTION sel ection};
"LoadCheck" |
"NoLoadCheck";

LoadCheck option

OPTI ON Loadcheck

The LoadCheck option instructs the configurer to generate extra information in the application file to check that

93

Configuration Language

the actual network used to run an application matches the network specified in the configuration file. The checks
only test the types of the processors and the links being used for loading. Checking needs to be enabled by the
loading software. Host programs that know nothing of this checking can continue to load applications by
sending the contents of the application file down the host link without interpretation; no checks will be
performed.

NoLoadCheck option

OPTI ON NoLoadCheck

The NoLoadCheck option prevents the configurer from placing checking information in the application file.
Thisisthe default option.

94

Chapter 8. The Configurer

This chapter describes the version of the configurer, conf i g. exe, which is distributed with the C6000 edition
of Diamond. The configurer implements the configuration language described in Configuration Language
Reference.

The configurer can build applications to run on C6000 networks, on C4x networks, and on networks containing
a combination of these processors. The way it handles the processors of a network, and the tasks which are
placed on them, depends on the type of each processor.

For the most part, this chapter fillsin the details that are related especialy to the C6000. For details of the way
in which other processors are handled, you should consult the appropriate User Guide.

Using the Configurer

Invoking

The configurer isinvoked with acommand of this format:

config switches input-files output-file or
config sw tches focus

switches control the configurer's options. Although shown here in a fixed position they may appear anywhere
within the command.
input-files are one or more files containing configuration language statements.

output-file gives the name of the application file to be created. The conventional extension is ".app", but the
whole name must be supplied.

focus identifies both the input configuration file and the application file to be created. The configuration file will
bef ocus. cf g and the application file f ocus. For example, the following two commands will have identical
effects:

» config test
» config test.cfg test.app

Y ou may also invoke the configurer without any parameters, when it will display itsidentity and stop.

Switches

Switches may be placed anywhere in the command; they should be introduced with a "-" character. ™ For
example:

config -v test.cfg test.app -L

If two switches are placed together, there must be a space between them:

» config -L -v test.cfg test.app

The configurer recognises the following switches:

-A Prevent the network loader from sending task information or ready-to-go requests to the
host. Thisisintended for use when no host server may be available to service these
reguests, e.g., in a standalone ROM-based system.

1 For compatibility, switches may also start with "/

95

The Configurer

-C Exhaustively check the tables used by the communication software, ensuring that they are
correct, and proving that deadlocks are impossible.
-G Generate symbol tablefilesfor al of the tasks in the system. The name of each symbol

table file will be the name of the task with ".out" appended. Additional symbol table files
will be created for the kernel and other system tasks.

-L Output information to stdout about memory addresses allocated by the configurer.
Compare this with the output generated by - | . Thelisting shows:

the memory addresses allocated for the kernel on each processor;
the addresses allocated to each section of every task;

the external symbols defined by each task;

the address allocated to each external symbol.

L] L] L] L]

Create a brief listing file giving information about memory addresses allocated by the
configurer. Compare this with the output generated by - L. The listing shows:

« thememory addresses allocated for the kernel on each processor;
e theaddresses allocated to each section of every task;

Use-L if you want the listing to include external symbols.

-M Create amap relating PROCESSOR namesin the input configuration file to the UPR
node numbers used by the application at run time. The map is written to the standard
output stream

-P Make all CONNECT statements PHY SICAL by default. If -P is not used, connections are
virtual by default.

-ROM This option is no longer needed with Sundance applications.

-V Display a"running commentary” during configuration

Input Files

Theinput files should be one or more configuration files. These contain instructions for building the application,
written in the language defined in Configuration Language Reference.

Use of Files

The default extension for the filenames of task image files is ".tsk". This means that the following will each
result in file abc.tsk being opened:

t ask abc
task xxx fil e=abc
task yyy file="abc.tsk"

Processor Types

Each processor you wish to use must be qualified by a TY PE=name attribute. This attribute must immediately
follow the processor name. It not only indicates that the processor is a C6000, but aso identifies the board or
module type. From this the configurer knows the physical memory areas that are present and their sizes, the
number and nature of the links, and so on. Y ou should consult the documentation for your C6000 board to find
out the correct TY PE attribute to use for your processors. The "TY PE=" text is optional:

PROCESSOR Capt ure TYPE=XYZ123
PROCESSOR Di spl ay XYZ123 I Interpreted as TYPE=XYZ123

You may use the specia type name DEFAULT to refer to the processor type set as default by the ProcType

96

The Configurer

utility.
Memory Use

Memory Divisions

Logical Memory Areas

The memory used by a C program is divided into a number of logical memory areas.

Code storage is used to hold the executable instructions of the program itself, together with some
constant data and control information

Static storage isused to hold static and external variables, including variables declared at the global
level.

Stack storage (sometimes referred to as workspace) is used for auto variables. The stack is also used for
function calls and passing parameters.

Heap storage isused to hold all variables created by calls on malloc, etc. The run-time library also uses
the heap internally for I/O buffers and other things.

User-defined are created and managed by the user. They can be defined in a C source program by using

sections the CODE_SECTION and DATA_SECTION pragmas; see section 7.6 of the Optimizing
C Compiler.

These areas are mapped onto an arrangement of physical memory that varies widely between different C6000
boards and environments. The configurer knows the arrangement of physical areas from the TY PE attribute of
the PROCESSOR statement.

Physical memory Areas

On-chipmemory The C6000 processors include areas of on-chip, or internal, memory. The size and
properties of these areas depend on the particular processor in use. Some or al of this
internal memory can be used as cache.

External memory ~ C6000 modules may have one or more areas of external memory, depending on the design
of the board. These may be of different speeds.

Memory Mapping
Because of the wide variation in memory hardware, different C6000 modules and environments may need
different methods of mapping the logical areas of a C program into physical memory. This mapping is done at

configuration time by the configurer. The decisions on how the mapping is to be done are made using the
following information:

» The design of the board, including such information as the speed and size of the various physica memory
blocks, so far as these can be known;
» Thesizes of thelogical areas (including user-defined sections) of all the tasks making up the application;

» Hints from the user about which logical areas of which tasksit would be profitable to optimise, that is, place
in fast memory;

» Explicit requests from the user to place certain logical areas in specific physical areas, or at specific memory
addresses.

On each processor, the configurer will map the logical areas into physical memory in the following order:

97

The Configurer

1. logical areas given explicit addresses,
2. logical areas appearing in OPT statements;
3. theinterrupt vector

4. thekernd and other system tasks;

o

remaining logical areas with known sizes;

6. dataareas created by the configurer for task management;

~

asingle STACK, HEAP or DATA areawithout an explicit size.

The configurer will always use fast memory in preference to slow. This means using the internal (on-chip)
memory if it is available, and failing that the fastest available area of external memory.

The configurer is very good at allocating memory and its choices are usually good enough for most applications.
Y ou can see how the configurer has allocated memory to your tasks by examining the listing file which you can
generate with the -L command switch.

The next two sections describe how the user can adjust the memory mapping to improve performance. See also
the description of the TASK statement in Configuration Language Reference.

The OPT Attribute

The OPT attribute of the TASK statement is used to indicate to the configurer that you wish alogical areato be
placed, if possible, in fast memory. The attribute has the following format:

opt =l ogi cal - area

Thelogical-area could be CODE, STATIC, STACK, HEAP or DATA, or the name of a user-defined section:
task integral stack=23K opt=stack opt=ny-segnment

Here, my-segment is a user-defined section; it may have been defined using a CODE_SECTION pragma, for

example.

The logical area name DATA may be used to refer to the heap and the stack, treated as a single, combined area;
see below.

The fact that you code some OPT attributes does not necessarily mean that the mapping you want will happen:

» There may not be enough fast memory available.

e The configurer does not guarantee that the requirements of the various tasks will be dealt with in any
particular order. By the time any particular task is dealt with, other tasks may have used up the resourcesit is
requesting.

e The configurer has a fixed idea about the order in which multiple OPT attributes on one TASK statement
should be processed.

» The configurer cannot optimise a logical area whose size has not yet been determined; see the following
section.

Logical Area Sizes

98

The Configurer

The configurer must know the sizes of the logical areas of all the tasks on a processor. Thisis easy for code and
static storage, as the linker stores the information in the task image files, but you must explicitly supply sizes of
the stack and heap areas.

Working out the stack and heap requirements of atask can be quite difficult. Unfortunately, the compiler cannot
doit, as stack and heap use depend upon the program'’s requirements at run time.

For the size of the stack, you must work out how much space is needed for al the functions that may be active at
once, based on the sizes of the auto variables they use. Each level of function calling uses a minimum of about
three words of stack space in addition to the space required for function data. Also, library functions use varying
amounts of stack space as working storage.

Similarly, for the heap, you must estimate the maximum needed at any one time. Heap storage is currently
allocated by the run-time library in blocks of 4K octets (eight-bit bytes), so if your task uses the heap, be sure to
allocate at least that much space for it.

In addition to the amount of space you estimate your task actually needs, you must alocate an extra 200 octets
(330 octets for processors from the C64 family) on the stack. The kernel uses this to manage the task.

The absolute minimum amount of space you need to execute the simplest of tasks safely is given by the macro
THREAD_MIN_STACK.

Bear in mind that if atask exceeds its stated memory requirements the whole system will probably crash, so err
on the side of caution. It isagood ideato add at least 1K or 2K octets of extra stack overflow space unless you
are absolutely sure the task will never require more space than you have calcul ated.

For tasks that use the heap from a combined stack and heap area (DATA=), a good rule of thumb would be to
alocate at least an extra 8-10K octets.

Once you have decided the sizes of the stack and heap areas, you can chose between two ways of specifying
them to the configurer. These can, if you wish, be used in conjunction with the OPT attribute discussed above,
or by themselves.

DATA attribute

Y ou can specify the stack and heap requirements of tasks together, using the DATA attribute. Thiswill assign a
single block of memory to the stack and heap jointly and it will be divided between them dynamically at run
time, as required. For example:

task integ data=20k
Itisalso possibleto use a"?" with the DATA attribute, like this:
task integ data=?

This alocates the largest contiguous block of memory that is not explicitly assigned to logical areas of this or
any other task. Only one logical area attribute on a processor may be specified in thisway. It is aso possible to
omit all memory specifications from a task. Although the configurer will issue a warning if you do this, it will
treat it as equivalent to coding DATA=?.

Separate Stack and Heap

Rather than using DATA=, you can specify the requirements of the stack and heap separately. This enables the
configurer to map them to different physical memory blocks, if thiswould be useful. For example:

task integ stack=5k heap=15k

99

The Configurer

Itispossibleto usea"?' with the STACK or HEAP attributes, like this:
task integ stack=5k heap=?

This will alocate the largest block of contiguous unassigned memory on the processor to the logical area
specified. Once again, only one logical area attribute on a processor may be specified in thisway.

.Warning

If you specify one of these logical areas without specifying the other, the unspecified area is
given no memory at al. Thiswill nearly always result in the application failing.

Explicit Placement of Logical Areas

The OPT attribute can be used to place a logical area (including a user-defined section) in a specific physical
area. For example:

task one opt=stack: hi ghram
task two opt=ny_seg: | owram

The first of these would place the STACK area of task one in the highram physical area. The second would
place the my_seg user-define section of task two in the lowram physical area. The processor on which the task is
eventually placed must have highram and lowram memory areas; these would normally be defined for you in
the processor's type definition.

In rare and extreme cases, you can place alogical area (including a user-defined section) at an explicit address.
For example:

opt =t hi ng: 0x1000

Thiswould result in the "thing" section of the task being located at absolute address 1000,,.

Building a Network

Restrictions on Network Configuration

The following restrictions currently apply to the target network; you only have to consider them if you make use
of physical channels.

* Aswe have seen, the WIRE statement describes the hardware links between processors. Every processor in
a network must be reachable from the root via a sequence of WIREs. This path may pass through any
number of intermediate nodes. This condition ensures that the network can be booted through its links.
(There may be more than one possible path to any given node.)

» The Universal Packet Router (UPR) system task will be present on every processor containing tasks that use
virtual channel communication or are linked with the full run-time library. Processors on which UPR is
present are called UPR nodes. Every UPR node must be reachable from every other UPR node by some
sequence of WIRESs that only passes through UPR nodes. This condition prevents the construction of
networks with dangling UPR nodes, cut off from the rest by intermediate processors that cannot forward
messages because they are not running UPR. Most networks that use virtual channel communications will
automatically meet this condition, because every node will be a UPR node. The configurer will report a
"UPR connectivity failure" if the rule is broken. This may happen if an intervening node has no tasks placed
on it, or contains only stand-alone tasks that do not use virtual channels (in particular, no executable

100

The Configurer

references to the channel input and output functions). The configurer will attempt to place a suitable dummy
task on otherwise empty processors to prevent the failure.

» The Globa File Services (GFS) system task will be present on every node that contains a task linked with
the full run-time library. A path of UPR nodes must exist from the root processor to every node on which
GFSis present, and the processors on this path must all be of the same family (all C6000 or all C4x). This
condition ensures that the GFS system tasks, which support the standard 1/O facilities of the full run-time
library, can always communicate with the root processor, and therefore with the server. Again, most
networks using virtual channelswill satisfy this condition automatically.

Restrictions on Physical Channels

Additional network configuration restrictions apply when physical channels are used:

» If two tasks are to be connected by a physical channel, there must be at least one WIRE running directly
between the processors on which the tasks are placed. Intermediate nodes cannot forward messages sent on
physical channels.

* Eachlink (WIRE) can carry only two physical channels, one in each direction. If more physical channels are
required than there are links available, the configurer will report an error. Note that any virtual channels
using a WIRE will consume both of the two physical channels available on that WIRE.

 Any WIRE that is allocated to a physical channel is not available for use by UPR (see the previous
restriction). This may result in not enough spare WIRES being available to connect all the UPR nodes. If that
happens, the configurer will report a "UPR connectivity failure". For example, consider a network of only
two processors, in which a physical channel connects one task on the root processor to another task on the
second processor. This can be done with just one WIRE. However, if any virtual channel connections are
also required between the two processors, or any task on the second processor is linked with the full
run-time library and requires GFS, then two WIREs will be needed: one for the physical channel and one for
UPR. If avirtual channel were used instead of a physical one then a single WIRE would be sufficient.

Messages

In this section, al the messages output by the current version of the configurer are listed, with a brief description
of what they mean. The messages are arranged in aphabetical order, except that symbols like filename are not
included. So

ERROR: nane is not a task

comes before
ERROR: KERNEL attribute inconpatible with other attributes

After the configurer outputs an error message, it will usually try to carry on as far as it can. When it can go no
further, the following message will be output:

PROCESSI NG ABANDONED

Any error messages issued by the configurer but not listed here are usually the result of using corrupt task image
files. If the cause of the error is not clear, please contact 3L.

ERROR: AVOID=addr:sizefails: " no such memory on processor proc"

101

The Configurer

ERROR: bad magic number in COFF file, hexnum (expected hexnum or hexnum)

ERROR: bad magic number on optional header

Aninput task fileis badly formatted, and seems to be corrupt.

ERROR: BOOT attributeincompatible with other attributes

The BOOT attribute of the PROCESSOR statement may not be used with the KERNEL or LOAD
attributes; nor may there be more than one BOOT attribute in one statement.

ERROR: cannot access processor kernel file name

The configurer cannot find the file containing the named kernel file. Check that your search path
references the Diamond installation folder.

ERROR: cannot allocate x bytesfor section name of task name

Thereis no area of consecutive bytes large enough to hold the named section.

ERROR: cannot allocate x bytes of private space

The configurer communicates information about the application to the kernel in a small area of
memory. This error indicates that not enough continuous memory is available for this area.

ERROR: cannot boot a network which has no root

The network contains no host or root processor.

ERROR: cannot place section name from task name at address: memory not available

An OPT attribute has been used to place the named section at the given address. The error
indicates that part of the memory required either foes not exist or has aready been alocated to
another section.

ERROR: cannot find alink on which to place connection: name

Each WIRE statement is able to support two CONNECT statements, one in each direction. This
error message indicates that there was no WIRE statement left to support the CONNECT
statement with the specified hame.

ERROR: cannot find load object filename

The file named in a LOAD, KERNEL or BOOT attribute of a PROCESSOR statement could not
be found. Check whether the file exists; also check the search path.

102

The Configurer

ERROR: cannot open application output file filename

The configurer could not open the application file you asked it to create.

ERROR: cannot open input file filename

The configurer could not open the specified configuration file.

ERROR: cannot open task imagefile filename for task name

The configurer could not open the task image file filename. It is needed to build task name.

ERROR: cannot reach processor name from the host

Every processor in the network must be connected, directly or indirectly, with the root processor,
which is connected to the host; detached sections of the network are not allowed. The connections
are made with WIRE statements, but WIRE statements marked NOBOOT are not considered
when determining a path from the host.

= Note

Some processors may provide links that are unable to participate in the loading
process and so the NOBOOT attribute will be assumed for any WIRE statements
referencing them.

ERROR: cannot read load object from file

There was an error when attempting to read data from the file specified in a LOAD, KERNEL or
BOOT attribute of a PROCESSOR statement.

ERROR: connection nameis already connected

The specified name has already been used in a CONNECT statement.

ERROR: connection c-name has already been placed on wire w-name

A PLACE statement has attempted to place the connection c-name onto a wire when it has
already been placed on the wire w-name.

ERROR: could not close application output file

There was an error when the configurer tried to close the output application file.

ERROR: error positioning file

There was an error while the configurer was locating information in atask image file. This usualy
indicates that the task image file is corrupt.

103

The Configurer

ERROR: error whilereading load object filename

There was an error when attempting to read data from the file specified in a LOAD, KERNEL or
BOOT attribute of a PROCESSOR statement.

ERROR: expected a’character’

This error message is given when the configurer was expecting a particular character, such as‘=’,
inits configuration file, but found something el se.

ERROR: expected a bootfile name

The configurer expected to find afilename in the BOOT= attribute, but did not.

ERROR: expected afilenamefor FILE attribute

The configurer expected to find afilename in the FIL E= attribute, but did not.

ERROR: expected akernel file name

The configurer expected to find afilename in the KERNEL = attribute, but did not.

ERROR: expected a keyword at the start of theline

What the configurer found could not be the name of a statement.

ERROR: expected aloadfile name

The configurer expected to find afilename in the LOAD= attribute, but did not.

ERROR: expected a physical area name

What was found was not a valid physical area name for this processor type.

ERROR: expected a processor attribute keyword

On the C6000, the allowed attributes of the PROCESSOR statement are currently TY PE, LINKS
and KERNEL.

ERROR: expected a processor type keyword

This refers to the TYPE= attribute of the PROCESSOR statement. See your hardware
documentation to find out what type names are allowed.

ERROR: expected atask attribute keyword

The dlowed attributes for the TASK statement are INS, OUTS, FILE, OPT, PRIORITY and

104

The Configurer

URGENT. You may also use one the following logical area names as an attribute: DATA,
STACK and HEAP.

ERROR: expected an area nameto avoid

The AVOID= attribute of the PROCESSOR statement must be followed by the name of a
physical memory area.

ERROR: expected an area nameto optimise

The OPT= attribute of the TASK statement should be followed by the name of alogical area. The
following are allowed: DATA, STACK, HEAP, CODE, STATIC, or the name of a section in the
task imagefile.

ERROR: expected an identifier here

Anidentifier is a sequence of letters, digits and the symbols"”_" and "$". It must start with aletter.

ERROR: expected an integer constant

See section "Numeric Constants'. Briefly, a decimal integer constant is a sequence of digits.
Hexadecimal constants start with "0x". A constant may end with a scaling letter, "K" or "M",
indicating that the number isto be multiplied by 1024 or 1024x1024 respectively.

ERROR: expected INPUT or OUTPUT keyword
The BIND statement keyword must be followed immediately by one of the words INPUT or

OUTPUT.

ERROR: expected VALUE=

The BIND statement must end with aVALUE= attribute.

ERROR: extra stuff found at end of line

There are extra characters at the end of the line that cannot be understood as part of the statement.

ERROR: failed to write number bytesto output file

There was an error while writing data to the output application file.

ERROR: file name has already been specified

There should not be more than one FILE attribute on a TASK statement.

ERROR: flood configuration not supported for processor typetype

105

The Configurer

The present version of the C6000 configurer does not support flood configuration.

ERROR: name has already been declared as object

The identifier name has already been used in a PROCESSOR, WIRE, TASK or CONNECT
statement.

ERROR: name has not been declared

Y ou have used the identifier name, but it has not so far been declared.

ERROR: impossible number of symbol table entries

Aninput task fileis badly formatted, and seems to be corrupt.

ERROR: incompatible memory allocation for task name

The logical memory area DATA includes both STACK and HEAP. For this reason, if you specify
DATA, you cannot specify STACK or HEAP aswell.

ERROR: INPUT port task[number] has already been bound

Y ou cannot do more than one BIND statement on a port.

ERROR: INPUT port task[number] has already been connected

Y ou cannot BIND a port that has already been used in a CONNECT statement.

ERROR: input port task[number] isalready connected

You cannot CONNECT an input port which has aready been used in another CONNECT
Statement.

ERROR: insufficient memory to allocate another number bytes

The configurer itself does not have enough memory to configure the application.

ERROR: insufficient memory to extend a block to number bytes

The configurer itself does not have enough memory to configure the application.

ERROR: number isan unreasonably small memory size

The minimum memory size that can be specified in any statement is 128 bytes.

106

The Configurer

ERROR: nameisnot a processor

The configurer expects the name of a processor, as defined by a PROCESSOR statement.

ERROR: nameisnot a task

The configurer expects the name of atask, as defined by a TASK statement.

ERROR: nameisnot a valid area nameto be avoided

The AVOID= attribute of the PROCESSOR statement should be followed by the name of a
physical area.

ERROR: nameisnot avalid area name to be optimised

The OPT= attribute of the TASK statement should be followed by the name of alogical area. The
following are allowed: DATA, STACK, HEAP, CODE, STATIC, or the name of a section in the
task imagefile.

ERROR: character isnot avalid hex digit

Thevalid hex digits are the decimal digits, 0-9, and the letters A—F (or a-f).

ERROR: number isnot avalid input port number for task name

The input ports for a task are defined by the INS= attribute of its TASK statement. If, for
example, you write INS=5, then input ports 0—4 are valid.

ERROR: number isnot a valid link number for processor name

The links on a C6000 that can be used by the configurer are limited to the number defined in the
LINKS attribute of the PROCESSOR statement.

ERROR: number isnot a valid output port number for task name
The output ports for a task are defined by the OUTS= attribute of its TASK statement. If, for

example, you write OUTS=5, then output ports 04 are valid.

ERROR: nameisnot a valid physical area name

The physical area name supplied was not one of those allowed for this processor type.

ERROR: number isnot a valid port number

Negative port numbers are not allowed.

ERROR: nameisnot avalid processor attribute keyword

107

The Configurer

On the C6000, the allowed attributes of the PROCESSOR statement are currently TYPE, LINKS
and KERNEL.

ERROR: nameisnot avalid processor type

This refers to the TYPE= attribute of the PROCESSOR statement. See the documentation for
your hardware to find out what type names are allowed.

ERROR: nameisnot avalid statement type keyword

The given name is not one of the keywords that may start a statement. See the list of allowed
statement types.

ERROR: nameisnot avalid task attribute keyword

The allowed attributes for the TASK statement are INS, OUTS, FILE, OPT, PRIORITY and
URGENT. You may aso use one the following logical area names as an attribute: DATA,
STACK and HEAP.

ERROR: KERNEL attribute incompatible with other attributes

There is more than one KERNEL attribute in this PROCESSOR statement.

ERROR: LINK S attribute specified more than once

Only one LINKS attribute is allowed on a PROCESSOR statement.

ERROR: multiple UPR BUFFERS definitions

Y ou may only specify UPR BUFFERS=n once in your configuration file. That setting applies, by
default, to all processors. If you want a different setting for some processors, use the BUFFERS
attribute of the PROCESSOR statement.

ERROR: multiple UPR MAX definitions
The maximum UPR packet sizeis aglobal constant throughout an application. Therefore you may

only specify UPR MAX=n once in your configuration file.

ERROR: noinput files have been specified

At least one input file is needed.

ERROR: no output file has been specified

The name of an output application file must be supplied on the command line.

ERROR: OUTPUT port task[number] has already been bound

108

The Configurer

Y ou cannot do more than one BIND statement on a port.

ERROR: OUTPUT port task[number] has already been connected

Y ou cannot BIND a port that has already been used in a CONNECT statement.

ERROR: output port task[number] isalready connected

Y ou cannot CONNECT a port that has already been used in another CONNECT statement.

ERROR: priority value must be between O and 7

7 is currently the maximum value allowed for the PRIORITY attribute.

ERROR: processor type hasalready been specified

Only one TY PE attribute may be given in a PROCESSOR statement.

ERROR: relocation information has been stripped

Aninput task fileis badly formatted, and seems to be corrupt.

ERROR: task name cannot be given the rest of memory on processor name, as this has already
been given to task name

By using a TASK attribute of the form logical-area=?, you can assign to that area all the available
space on the processor, but this can only be done once on each processor.

ERROR: task name has already been placed on processor hame

Another PLACE statement has aready been given for thistask.

ERROR: task name has no entry point

The configurer cannot locate the address of the first instruction of the named task.

ERROR: task name has not been placed on a processor

There was no PLACE statement for this task.

ERROR: task imagefilefor task nameiscorrupt

Possibly it is not atask imagefile at al; or perhaps there has been some disruption of the host file
system.

109

The Configurer

ERROR: task imagefileisnot executable

An input task image file cannot be executed. The most usual cause of this is that the linker
terminated in error; for example, because an external reference could not be satisfied.

ERROR: the PLACE statement cannot be used on hame (a sort)

You have tried to PLACE a thing of type sort called name. You may only place tasks on
processors or connections on wires. A common cause of this error is to invert the arguments to
PLACE and attempt to place a processor on atask or awire on a connection.

ERROR: theselinks are already connected to another wire

At least one of the two links mentioned in a WIRE statement has already been used in another
WIRE statement.

ERROR: this configurer restricted to one processor

This message is output by the version of the configurer that is distributed with single-processor
versions of Diamond. It indicates that the user has attempted to define a processor network with
more than one processor.

ERROR: unableto createloader with special RAM attributes

The RAM attribute, which is accepted by the configurer for some other processors, is not allowed
with the C6000.

ERROR: unexpected size for optional COFF header

An input task file is badly formatted, and seems to be corrupt. This is usually the result of
referencing afile that does not contain a Diamond task, for example:

TASK strange FILE= "thing.c"

ERROR: unknown option string

This string, which appeared on the configurer's command line, is not recognised as a valid option.

ERROR: UPR connectivity failure: number processorscould not bereached

There must be a copy of UPR on every node between the root and any non-root processor that
requires host services (such as C standard 1/0). Similarly, for one node to communicate
successfully with another via a virtual channel there must be a copy of UPR on every processor
between those two nodes (see sections "Restrictions on Network Configuration” and "Restrictions
on Physical Channels'. One way to make sure UPR gets |oaded onto a particular node isto link a
task on that processor with the full run-time library. The configurer does not automatically load
UPR onto "empty" nodes with no tasks, so sometimes you may need to put a dummy task linked
with the full run-time library onto a node that would otherwise have no tasks placed on it. This
message will also be generated when one task has a virtual channel that goes to a processor where
no task calls any of the channel 1/0 functions.

110

The Configurer

ERROR: URGENT or PRIORITY can only be used once per task

In each TASK statement, you may have one URGENT or one PRIORITY attribute only.

FATAL INTERNAL ERROR: message

An error has occurred in the internal working of the configurer. Please make a note of the
message, which describes what has gone wrong, and get in touch with your dealer or 3L.

WARNING: adjusting priority of task task to max (largest permitted value for processor type
type)

You have exceeded the maximum allowed value for the PRIORITY attribute for this type of
processor. The configurer has revised the value down to the maximum.

WARNING: connection name cannot be made virtual

The configuration file explicitly requests that the named connection should be made virtual, but
that cannot be done. For example, one or both of the tasks to be connected may be on a processor
type for which Diamond presently does not support virtual channels.

WARNING: ignoring AVOID=area for processor name TY PE=type

The AVOID attribute of the PROCESSOR statement allows you to tell the configurer not to load
anything into a particular physical memory area. However, the named processor is of a type that
doesn't have that kind of memory area.

WARNING: link name[number] has been connected to itself

The two links mentioned in a WIRE statement are the same. Thisis probably an error.

WARNING: no memory allocation specified for task name: assuming rest of processor's memory

If none of the STACK, HEAP or DATA attributes is specified for a task, this message will be
given, and the task will be treated asif you had written DATA=?

WARNING: PLACE and VIRTUAL conflict: connection name will be made PHY SICAL

Thiswarning isissued if you attempt to place a virtual connection on a wire. The placement will
be honoured, but the connection will be made PHY SICAL. This may lead to subsequent errors.

WARNING: PROCESSOR name BUFFERS outside acceptable range: using number

The processor called name has been given the BUFFERS=n attribute, but n is outside the allowed
range of values, so the configurer has substituted a different number instead. The acceptable range
of valuesis described in "BUFFERS Attribute".

WARNING: TASK name OPT=valueinvalid for type processors:. ignored

111

The Configurer

The following are the logical area names allowed for the C6000: DATA, STACK, HEAP, CODE,
STATIC, or the name of a section in the task imagefile.

WARNING: unconnected input port id bound to dummy channel WARNING: unconnected output
port id bound to dummy channel

These two messages indicate that a task’s port has neither been connected to another task nor

bound to a value. Thisis not wrong, but may indicate an omission. The port has been bound to a
dummy channel. Any operations using the port will never terminate.

WARNING: unknown special section name namein file filenameignored

The task that is being read from the specified file apparently requires some special resource that
the configurer does not know about. This message should not normally happen.

WARNING: UPR BUFFERS outside acceptable range: using number
The value of nin a UPR BUFFERS=N statement is outside the allowed range of values.
WARNING: UPR MAX not multiple of four: using number

The value you gave in a UPR MAX=n statement was not a whole multiple of four (see "MAX
attribute™). The configurer has substituted the value number instead.

WARNING: UPR MAX outside acceptable range: using number

The value you gave in a UPR MAX=n statement lies outside the range of acceptable values (see
"MAX attribute"). The configurer has substituted the value number instead.

112

Chapter 9. The Server

The server, WS3L.EXE, isthe component of Diamond that provides the simplest way to load an application into
anetwork of processors and allow it to communicate with the host.

Overview
The server is made up from three main components: the User Interface, the Server, and the Link Driver.

The User Interface

The User Interface provides a window that you can use to control the execution of your application. It provides
controls for starting and stopping the application and an output areato display output sent to stdout or stderr.

:_:.— Diamond Server: C:%31\Diamond’Ce000'Examples'Hellobhello:app i [m] 4|
File Go Miew Board Help
S -l 1D me|s %

Al
Hello world

-
4| I 3
Ready | | MyBoardType B[1] | ¢

The Server

serve3L. dl | isthe module that communicates with the DSP board and provides services for the running
application. While this is usually accessed by the server's user interface, any program may use it to control
Diamond applications. Ther are examples of thisin <Di anond>\ ser ver\ exanpl es\.

The Board Interface

The Board Interface sits between the Server and the DSP board, and provides a read/write communication link
between them. When the server starts running, it looks for all the board interfaces that have been installed on
your system. If it finds only one or you have previously selected an interface, that one will be selected,
otherwise, you will have to select the appropriate board interface yourself.

Starting the server

You can start the server in four ways:

1. By double-clicking on the file WS3L.EXE in the Diamond installation folder (or a shortcut to it). This will
bring up the server window, but no application will be selected.

2. By double-clicking on a. app file. Thiswill only work if you have associated WS3L with the . app file
type. The Diamond installation procedure does this for you, but you can do it yourself at any time by
following the operating system’s instructions in " Start/Hel p/file types/associating extensions with". When
the server starts running it will have selected the application file you double-clicked.

113

The Server

3. Bydragging a. app file from an explorer window and dropping it into the server window.

4. By giving WS3L as a command at a DOS prompt. You can aso give the name of an application file as an
optional argument and the server will start running with that file selected. If you do not specify the .app file
type, the server will append it automatically. Placing the optional argument "-exit" after the application file
name will make the server terminate when the application terminates. This can be useful in batch files that
invoke several applicationsin a sequence.

When the server is started with an application selected, it will attempt to load that application into your DSP
network and start it running. This will only be possible if the server knows which DSP system you have; it
knows this if it can only find one link interface when it is invoked. You can stop the server from running
applications under these circumstances by unselecting Vi ew/ Options/Run .app files when
doubl e-clicked (or when started from DOS) Thisisdescribed further under Options.

The server will normally only allow a single instance of itself to be created; when you start the server, the last
instance of it to be started will be used. If this instance is currently executing a program you will get the
following aert:

Server running |X|

The server is cumrently executing an application

- Do youl wish to terminate that applicaton and run
this new one’?
ves || Mo

If you select "No", the default option, the existing application will continue to run and the request to run a new
application will be ignored. If you select "Yes', the running application will be stopped and your new
application started.

You can change the default behaviour by going to View/Options/Advanced and ticking the box for Allow
multiple instances of the server. With this option selected a new instance will be created each time you start the
server. Note that you will normally need to select a new board interface for each additional instance of the
server.

At any time you can create a new server instance selecting File/New Server Instance.

Selecting your DSP board

In order to communicate with your DSP system, the server needs to obtain a link interface. It finds link
interfaces from hardware interfaces that have been added to the server. Each hardware interface can usually
supply link interfaces for each of the DSP boards you have attached to your PC. Before you can run an
application you must select the particular type of DSP hardware you want to use and from that select an
interface for the DSP board that holds the root processor for your system. Y ou do this by clicking on Board and
then Select. Thisbrings up alist of the installed hardware interfaces.

114

The Server

Diamond hardware interfaces - El

Hardware Interface Myt endar OF.

Boardz detected D

Cancel

Add Interface

In the example above, only one hardware interface (MyVendor) has been added. Click on the hardware interface
for the DSP board you wish to use and the interface will search for boards installed in your PC. A list of the
detected boards will be displayed.

Diamond hardware interfaces - E[

Hardware Interfface Myt endar OF.

Boards detected |C Cancel

Add Interface

The ID is a hardware-dependent value returned by the hardware interface and can be used to identify the
physical board found. The ID is commonly either an indication of the relative slot occupied by the board or the
value of identification switches on the board. Consult your hardware manufacturer for further information.

Double-click on the appropriate board to select it, or click on the interface and then click OK. The name of the
selected board will appear in an indicator at the bottom right of the server’s main window with its ID value in
square brackets.

The server will remember which interface and board you select, and will attempt to make the same selection for
you again the next time it is started. Should the hardware have changed, the server will issue a warning and
select the first board from the first hardware interface it finds.

Z¢ piamond Server: <no Diamond application has been selected > -0l x|
File Go Miew Board Help
= LB E2|ER
[
-
4 I I [
Ready | | MyBoardType B[1] |

115

The Server

If you wish to install a custom interface you may add one to the list by clicking on New Interface. This will
bring up a file selection window where you can navigate to the DLL defining the interface. Refer to Writing a
board interface for details on creating new interfaces. You can also delete link interfaces from the list by
selecting and clicking Delete. Several commonly-used interfaces are installed automatically each time the server
is started.

Selecting an application

If you have started the server by double clicking on a Diamond application file, that file will be selected when
the server starts. If you have started the server by double-clicking WS32.exe, or you want to change the selected
application, click on File. This will give you a drop-down menu that lists the most recent application files that
you have selected. Double-click one of these applications to select it. If the application you want to run is not
listed there, click on Application and this will bring up afile selection window. Y ou can also click on E”u to do

the same thing.

When you have selected an application, its name will appear in the server’ stitle bar.

Z¢ piamond Server: <no Diamond application has been selected > -0l x|
File Go Miew Board Help
LB N2 | R
[
-
1 I I 4
Ready | | | MyEoardType B[1] |,;§

If the option Run application when selected has been ticked, the application will start running immediately.

Explicitly resetting the DSPs

The server will usually reset the DSPs in your network before attempting to load an application. You can use
'ﬁ or Board/Reset to issue a reset to the network without loading an application.

Running the application

Once you have selected your DSP board, clicking on .‘, or Go/Run will start your selected application. The
start button will change to grey and an indicator at the bottom right of the main display will change to Running.

i-‘i_""'Diamund Server: [3L%Diamond',C6000%Examples'Hellohello.app — _|EI|5|

File Go Wiew EBoard Help

=B Nz HR

Ready Running MyBoardType B [1]
o

116

The Server

If the server cannot locate alink interface to use to talk to your board, you will get the following message:

Run [5_<|

@ Ma link ko the hardware is available

There are several possible causes for this:

* You do not have a suitable DSP board plugged into your PC;

* You have more than one board, but have not selected the particular one you want to use;

* You have another instance of the server running and that has aready set up a link to your selected DSP
board;

e Another application, possibly a maintenance utility from the board manufacturer, has claimed the DSP
board.

Reconnecting the server

It is possible for an application to disconnect from the server and yet continue to run (see
di sconnect _server). The server can reconnect to such a running application at a later time using the
Go/Reconnect menu option. Thiswill bring up the following dialog:

Reconnect to running application R‘

Clicking on Reconnect ar Motify will attach the serverto an application
that is already running onwour DSF system. The DSFs will not be reset
and no application will be loaded.

Feconnect will wait until & command is received fram the DS5Ps, while
Matity will start by sending a reply (0) down the host compart.

Reconnect Fecannect and wait for activity fram the application
M otify Reconnect and reply to the application
Cancel

117

The Server

Reconnect

connect and wait for the application to send a command.

Notify

connect and send a zero value to the server. This is usualy seen as the response to a
disconnect_server(1) cal.

Cancel

Ignore the reconnect request.

Stopping the application

You can stop the server from responding to your application by clicking H Note that this does not actually
stop the DSP processors from running; it simply stops the server from listening to them.

Pausing output

Clicking on J J will pause the running application when it next tries to send more text to the output area. It will
remain paused until you press J J again to allow output to continue. An indicator at the bottom right of the
window will show when output has been paused.

‘_*_:,_ Diamond Server: C43L4Diamond', Ce000Examples . Hello hello:app - |EI|5|

File Go Wew Board Help

B riEomzH?

" b

Ready Paused | Running MyEoardTvpe B [1]
Paused | Running | | 2

Page mode

Clicking on Ej will select page mode and set the Page Mode indicator at the bottom right of the main window.

118

The Server

‘_*_:,_ Diamond Server: C43L4Diamond', Ce000Examples . Hello hello:app - |EI|5|
File Go Wew Board Help
= - UEme 7%
=
-
1| I 3
Ready Fage MDdelMyBDardTypeB[l] |,;§

This will have the effect of pausing output every time the number of lines needed to fill the visible output area
has been displayed. Clicking on will restart output for the next screenful. Y ou can leave page mode by pressing
again. Page mode is useful when you have an application that generates large amounts of output to stdout or
stderr.

Input

When your application requests input from stdin, a" Standard input” window will appear:

Standard input

|| Enter

¥ Echao stdin to stdout Terminate Application | End of File |

You can type your line of text into the window and then hit either the Enter button or the Enter key on your
keyboard. By default, everything you type will be echoed to the server’s output area. Clearing the tick on Echo
stdin to stdout will switch this off.

Y ou can signal end of file by typing Ctrl+Z or clicking End of File.

The Terminate Application button will both signal end of file to the application and stop the server from talking
toit (see H).

The window heading "Standard input” can be changed from the Diamond application with the pr onpt
function.

Options
Clicking on View/Options will bring up the Server Options window.

View/Options/General Tab

119

The Server

Diamond Server Options ﬂ

General | Standard /0 I Mu:unitu:uringl .ﬁ.dvancedl

Command line [zets arge[1]. argw[2]. ...]

m

[Debug application [pause after loading]

[Report application termination ¥ Clear screen on run

[Standalone application [does not communicate with server]
¥ Fun application when selected from file menu

¥ Fun .app files when double-clicked [or when started from DOS)

[~ C4x application Foot Kemnel | TIMA0ERR

Rezet to Default Options | (] I Cancel

Command line
The text you put in the Command line box will be broken into "words" and passed to your application, which

can access them using argc and argv in the usual way. argv[0] will aways be set to the full path for the
application you have selected.

Debug application

Tick this box if you want to use Code Composer to debug your application. With this option selected, the server
will pause after loading the application to allow you to pass control to Code Composer.

Report application termination

Tick this box if you want the server to bring up a notification when your application stops. This box will be
ticked when the server isfirst installed on a PC.

Clear screen on run

Tick this box if you want the server to clear the output display each time you run an application.

Standalone application
Sometimes you may want the server to load an application but not attempt to communicate with it afterwards.

Ticking this box will stop the server from attempting to communicate with an application once it has been
loaded. Selecting this option makes the previous three options meaningless and will disable them.

Run application when selected
Tick this box if you want an application to be run as soon as you have selected it using File or . Clearing this

option will mean you have to start the application explicitly using or Go/Run. This box will be ticked when the
server isfirst installed on a PC.

Run .app files

120

The Server

When you launch the server by double-clicking on a .app file or by giving a DOS command, the server will
normally attempt to load and run the given application, providing that there is only one hardware interface
installed and that can find only one DSP board. If you clear this box, the server will simple select the application
but not run it.

C4x application

Tick this box if your root processor is a member of the C4x family. You should make sure that the "Root
Kernel" box contains the full path of the root kernel file for your C4x board (usualy TIM40.KRN). The value
you place in here should be the same value as described under TISROOT in the Parallel C for the C4x User’s
Guide.

View/Options/Standard 1/0O Tab
x|

General Standard [0 |Mnnitnring| .ﬂ.dvancedl

— Stdin
i Kevboard

C Fie | J

— Stdout
I¥ Screen

v Filz Im_l,llu:ng.daﬂ Jp Append

— Stderr
¥ Cereen
™ File I JI‘ &ppend
v Stdout

Reszet to D efault I:Iptin:unsl Qk. Cancel

This tab allows you to control the standard C streams, st di n, st dout , and st der r . Note that these settings
only take effect at the point you start an application running; changing them during an application’s execution
will have no effect.

To specify afile, tick the appropriate File box and type the filename or press the button to the right of the file
input box to bring up a browser.

stdin

You can make st di n take input from either the keyboard or afile. In the example above, input will come from
the keyboard.

stdout

Y ou can make output sent to st dout appear on the PC’s screen, be sent to afile, or both. Ticking the Append
box will cause any output to be sent to the end of the selected file; existing data in the file will not be changed.
In the example above, everything sent to stdout will appear on the screen and will be appended to the end of the
file "mylog.dat”. Clearing both the Screen and File buttons would throw away all output sent to st dout . As
thisis unlikely to be what was wanted and could lead to great confusion, the server will silently reselect Screen
on exit.

121

The Server

stderr

Y ou can make output sent to st der r appear on the PC’s screen, be sent to afile, or both. Ticking the Append
box will cause any output to be sent to the end of the selected file; existing datain the file will not be changed.
Alternatively, you can tick the Stdout box and have all referencesto st der r treated as if they were references
to st dout . In the example above, everything sent to st der r will appear on the screen and will be appended
to the end of the file "mylog.dat". Clearing both the Screen and File buttons would throw away all output sent to
st derr. Asthisis unlikely to be what was wanted and could lead to great confusion, the server will silently

reselect Screen on exit.

View/Options/Monitoring Tab

Generall Standard |40 Monitaring |.ﬂ.dvanced|

¥ General Monitaring
[T Link Maonitaring

[Protocal Monitoring

[T User Manitaring

These options contral diagnostic output that gives
information about data being sent across the link to
the host. They are usually only of interest when
debugging obzcure server problems.

Uzer maonitoring iz provided to azzizt debugging
uzer-defined zervice clusters.

Reszet to Default Options |

Ok

Cancel

View/Options/Advanced Tab

The advanced tab provides unusual options that many users should never need.

122

The Server

Diamond Server Options @

Generall Standard I,-"O] Maonitoring Advanced l

b ms extra delay after reset

[Donotissue a reset befare running an application.

| Allow multiple instances of the servar.

Signal Host Semaphare ‘ ’97

Resetto Default Options ‘ 0K, | Cancel

ms extra delay after reset

In some DSP systems, the time the network takes to respond fully to a hardware reset depends factors that the
server may not be able to determine, including:

e The number of processors present;

» 1/O devices attached to processors;

e Manufacturer-defined processor options.

Normally the vendor’s hardware interface will give the appropriate delay. This option can be used to make the

server wait an extra number of milliseconds after a reset has been completed before it attempts to load your
application.

Do not issue a reset before running an application.

Selecting this option will stop the server from resetting your DSP system before attempting to load an
application. Pressing ‘5\; will still reset the system. Note that most systems must be reset before they will load
applications.

Allow multiple instances of the server.

When this box is ticked, every attempt to start the server will result in a new instance of WS3L.exe being
created. The default state is for this box to be left unticked, so any running instance of the server will be used.
Even with this box clear, you can start a new instance of the server by selecting File/New Server Instance.

Signal Host Semaphore

Send an asynchronous message to the root DSP to signal one of its Host semaphores. The particular semaphore
is specified in the box to the right of the command button by an integer, n, in the range 0 <= n <= 10. Root tasks
can wait on these semaphore using the library function host_sema wait. Internal details of this mechanism are
available here.

123

The Server

Reset to Default Options

This button can be used to set all the available options back to the default settings selected when the server is
first installed.

Board properties

Some DSP boards have settings that you can adjust from the server. Selecting Board/Properties brings up a
window that allows you to manipulate these settings. This option does nothing for boards that do not have
changeable settings.

Help information

You can display this User Guide while running the server by clicking on Help/Diamond Help. If you have more
than one edition of Diamond installed, you will be asked to select the appropriate User Guide.

Shortcut keys

The following keys may be used in the server instead of using the mouse:

Key Button Meaning

F1 (Help/Diamond Help) Display User Guide

F3 (File/Application) Select application

F5 (Go/Run) Run selected application
Shift+F5 (Go/Stop) Stop application

F7 (View/Options) Manage option settings
Alt+C (View/Clear Screen) Clear output display
Pause (Go/Pause) Toggle pause

Scroll Lock (Go/Page Mode) Toggle Page Mode

Server version

Y ou can discover which version of Diamond you are running by clicking or selecting Help/About Server...

124

The Server

Diameond Server Options

Generall Standard I,-"O] Maonitoring Advanced l

b ms extra delay after reset

[Donotissue a reset befare running an application.

| Allow multiple instances of the servar.

Signal Host Semaphare ‘ ’97

X

Resetto Default Options ‘

0K, | Cancel

Error messages

Two classes of error are recognised by the server:

Software exceptions The server reports these on behalf of system tasks

severity

proc

XXXXXXXX

located in the C6000 network. They are displayed in
the following format:

*** Software exception: XXXXXXXX Yy
Processor=proc Severity=severity
nessage

The server does not stop after receiving a software
exception message from the network.

may be information, warning,
error, fatal or unknown.

The processor number, proc, can
be related back to a named
processor in the application's
configuration file using the
configurer's"-m" (map) option
switch.

isa 32-hit hexadecimal message
code. At present, the only codes
that describe user errors are
110216 and 1202__. All other
codes are the result of internal
software errors in system tasks, or
of hardware link errors that have
resulted in corrupt messages being
sent to system tasks.

YYYYYYYy 2zzZ.

125

The Server

yyyyyyyy and are two further 32-bit hexadecimal

27777777 values that give extrainformation
about some message types.
message isonly given for some message

codes. When present, it is atextual
version of the message code.

Server errors These are detected by the server itself during its
operation. When the server detects an error, it outputs
an appropriate message and stops.

Internal Details

This section gives details of the internal operation of the server. It is intended for users who want to add to the
functions provided by the server or develop their own user interface.

Loading applications

Apart from providing host services to a running application, the main task of the server is to load it into the
processor network in the first place.

The loading process proceeds as follows.

1. Thetarget systemisreset. Thelink interface driver decides precisely what this means.

2. Code from the application file is then sent down to each processor. On some systems, this will be done
indirectly, by sending all of the data down the host link to the root processor. This will deal with pieces
relevant to the root and pass the remaining data down appropriate links to the other processors. On other
systems, all of the processors will be loaded directly by the server.

3. Once the various loaders have loaded the code, they start all the tasks on their processors. Finaly, the
network sendsto the server aready-to-go message; this message can be inhibited by configuring with -A.

Server structure

126

The Server

OSSP Applicaion

_put int _get int
_put rec _get rec
etc etc
Osp
Presentation
Layer

:

OSSP Link Layer

LsP
I N N Il Il I S
FC
Haost Link Layer
Ho=t
Presentation
L=yer
P-=get int P->put _int
P-get rec P->put rec
etc etc

Windoms Serwer

The server is made up from a number of components, mainly three types of driver: the cluster drivers, the
presentation layer drivers and the link interface drivers. This reflects the fact that the server works with alayered
communication model; drivers at each of the levels use the functions supplied by the next level down (if one
exists).

Cluster drivers

The cluster drivers correspond to the application layer of the ISO Reference Model. They supply services that
are used by the Diamond libraries or by user-written code to perform standard 1/0O and other host functions.
Each of the various clusters has a number, and when a program wishes to invoke a service, it transmits to the
server a code that includes both the cluster number and the number of the service within that cluster. Following

127

The Server

the code can be parameter values for the service. When the service has been completed, the server will respond
by sending back result parameters.

Presentation-layer drivers

This layer corresponds to the presentation layer of the ISO Reference Model. The presentation layer drivers
provide functions like receive an integer or send a record, which enable the cluster drivers to communicate with
the run-time libraries of the tasks in an application using common data representations. The presentation layer
converts between host and target system formats, e.g., if there are different floating-point formats, or a different
ordering of the octets within an integer.

Presentation protocol 5 (P5) is used for the C6000, and in some other implementations of Diamond. P1 is an
older protocol used by previous 3L software.

The P5 protocol operates on the host by reading a parameter block from the DSP. This contains al the
information needed by the service being called. The block is held in a buffer and accessed by the presentation
input functions (Present::get_int, Present::get_rec, etc). When dl of the information in the
buffer has been taken, the same buffer is reused to collect information being sent back to the DSP by the output
functions (Present:: put _int, Present:: put_rec, etc). The service must read everything it needs
from the buffer before it attempts to return any values to the DSP. Usually, when the service returns, the server
will finish by calling the presentation layer’s push function to transmit the contents of the buffer back to the
DSP. The server will then wait for the next service request.

The Presentation Interface (P)

Every cluster is given a pointer to a presentation layer, P. This provides the following member functions:

Present::get_int
psl integer Present::get_int();

Read a single 32-bit integer from the input buffer.

Present::put_int
voi d Present::put_int(psl_integer);

Put a 32-hit integer to the output data buffer.

Present::.get_rec
size t Present::get_rec(void *);

Get arecord from the input data buffer. A record is transmitted as an array of octet values. The values
are placed in the object pointed at by the parameter, and the function returns the number of octets
received.

Present::put_rec
void Present::put_rec(size t, const void *);

Send a record to the output data buffer. A record is transmitted as an array of octet values. The first
parameter gives the number of values and the second parameter locates the object containing them.

Present::get_double

128

The Server

psl doubl e Present::get_doubl e(void);

Get afloating-point double value from the input data buffer.

Present:

‘put_double
voi d Present:: put_doubl e(psl_double d);

Send a floating-point double value to the output data buffer.

Present:

:get_bits
psl bits Present::get _bits(void);

Get an uninterpreted four-octet value from the input data buffer. This is the same as get_int when the
host and DSP intege formats are equivalent

Present:

put_bits
void Present::put_bits(psl_bits b);

Send an uninterpreted four-octet value to the output data buffer. This is the same as put_int when the
host and DSP integer formats are equivalent.

Present:

:signal_host_sema
voi d Present::signal _host_sema(int n);

Signal an asynchronous event to the root processor. The root maintains 10 host semaphores, so the
parameter must be in the range 0 <= n <= 9. The protocol for communicating between the host and the
root puts the root in charge; the host is usually passive and waits to be told what to do. The root sends
a service request and then waits for a reply. This function alows the host to break into this sequence
and interrupt the root, making it signal one of the host semaphores. Threads in the root can wait for
these semaphores using host _sena_wait and deal with the asynchronous event, rather than
having to ask the host repeatedly if the event has occurred. For example, you may wish to be able to
ask a running application to display some status information. This can be done by having a thread on
the root that waits on a host semaphore. When the semaphore is signalled, the thread can print out the
required information and then wait for the semaphore to be signalled again.

= Note

Note that this function only signals a semaphore and does not transfer any data; al data
transfers must be initiated by the root.

Present:

:signal_host_mask
voi d Present::signal _host_mask(unsigned int m;

Cadll signa_host_sema for each hit set in a bitmask. The function takes a bitmask, m, and calls
Present: :signal _host_ sena(n) for each bit (1<<n) set in the mask. So, signal_host_mask(5)
will cal Present::signal _host _senma(0) and Present::signal host_sema(2). As

129

The Server

there are only 10 host events, all bitsin the mask other than the least-significant 10 must be O

Present::push
voi d Present:: push(void);

Transmit the data buffer to the root DSP. This function must always be called before the server returns
to read in the next command word.

Link-interface drivers

This layer corresponds to the ISO Reference Model's data link layer. In general, different C6000 boards have
different host interface hardware. For each kind, there is alink interface driver, which provides a common set of
low-level functions to the presentation layer drivers. These drivers are usually provided by your hardware
manufacturer and are listed in the Board Selection menu.

Extending the server

As well as providing access to graphical user interface (GUI) features, the 3L Windows Server allows you to
define your own host-based services and make them available to the C6000. Y ou do this by defining your own
cluster of services and building them into a dynamic-link library. When the server sees a request for the cluster,
it attempts to load the relevant library and use the servicesit provides.

Locating clusters

The clusters required by the Diamond run-time library are built into the server. These clusters are installed when
the server starts by being inserted into a table that is efficiently searched each time a service is required. If a
cluster cannot be located in this table, the server attempts to find it externally.

Y ou can use the server object’s member function SetCallback to install a single call-back handler for the server
to invoke when a call is made to any unknown cluster. The base class for a call-back is as follows:

class Call back {
publi c:
virtual bool Handl er(unsigned int C usterNo,
unsigned int ServiceNo,
bool Repl yWant ed,
Pr esent *P) =0;
1

Once you haveinstalled a call-back, its handler member will be called when an unknown cluster is referenced. It
can either handle the service request or install an appropriate cluster handler. If the handler returns true, the
server will flush any pending output requests to the root by calling P->push() and then continue to process the
next command; subsequent references to the cluster will result in direct calls to the handler. If the handler
returns false, the server will assume that a new service cluster has been installed and will attempt to locate it;
once located, the cluster will be entered directly on subsequent references without invoking the call-back.

If the request has still not been satisfied, the server attemptsto install a dynamic-link library for the cluster. This
library is found by searching for the file Cl u3L_xx. dl | , where xx is the hexadecimal representation of the
required cluster number. This will be a minimum of two characters long. For example, given a command word
of 12345678, the cluster number is 3456, and the server will try toload Cl u3L_3456. dl | .

The server will return a value of 0000008016 if both of these methods fail. In addition, if you have selected
General Monitoring, the server will display awarning message. When using your own cluster, the DSP should
start by checking that the services can be located by attempting to call service 0 in the cluster. Thiswill return O
if the cluster has been located:

130

The Server

i nt Checkd uster(unsigned int clu)

int r;

_psl _put_bits(clu<<8); /1 service 0 exists in all clusters
r = psl _get_integer();

if (r '=0) printf("Mssing cluster %d\n", clu);

return r;

Each cluster is given pointersto two classes:

P This is a pointer to the Presentation class, used for all communication between the server and the root
DSP.
C Thisisapointer to the Core class which provides commonly-used functions.

Server Operation

The server module operates as a thread, started by the Server User Interface. It runsin aloop that reads asingle
32-bit service word from the selected host link and uses this to dispatch to the appropriate cluster.

The service word has the following form:

31 30-24 23-8 7-0
NoReply Cluster Number Command Number

On return from cluster, the server optionally sends a reply word back to the root DSP and waits to read the next
service word. The NoReply bit is set if the DSP does not expect any reply from the command. All of th
communication is done through functions defined in the Presentation Interface. The server maintains a pointer to
this class (P).

Runni ng = true;

whi | e (Runni ng)
unsi gned int Service
unsi gned i nt ConmandNo
unsi gned int ClusterNo
C- >NoRepl y

P->get _bits();

Ser vi ce&255;

(Servi ce>>8) &0OxFFFF;
Ser vi ce>>31;

Cluster *cl = {locate the cluster}

unsi gned int Answer = cl->Call (C usterNo, ConmandNo);
if (G >NoReply==0) {
P- >put _i nt (Answer) ; /1 issue reply
P- >push(); /1 send any pendi ng output to ROOT

The loop terminates when Running gets set false. This is done either by the standard stop service from the root
or by the user interface on the host calling the server member function StopRunning. Note that this cannot take
effect until the current iteration of the loop has completed; stopping the server when it is stuck or waiting for a
response from the root has to be done using TerminateServer.

Note that services explicitly requesting NoReply cannot pass back any parameters. It is possible for service

functions to set NoReply, leaving it the responsibility of those functions to send any necessary replies and end
by calling P->push().

Building your own cluster

131

The Server

The Diamond installation provides an example of a user-defined cluster in the folder
<Di anond>\ server\ cl ust er. Thisbuildsalibrary, G u3L_0C. dl I , to support references to cluster 12
(OC.). You can take this code as a base and develop your own cluster from it. The cluster is set up as a
Microsoft Visual C++ project, with workspace ExCluster.dsw.

1. Start by selecting aname for your new service cluster. Y ou should take copies of the relevant files from the
example and rename them accordingly.

2. Select a Cluster Number for your new service cluster: Any application may use cluster number 2 as an
End-User cluster. This service will never be used by 3L or third-party clusters. Cluster 3 is similarly
reserved as a Prototyping cluster. If you intend supplying your service cluster to other users of Diamond as
a third-party cluster, you should develop it using cluster 3 and then apply to 3L for a Registered Service
Cluster before shipping to customers. Cluster 12 isreserved for the example cluster.

3. Define aheader file for your cluster based on ExCluster.h and change:

a. CLASS. This name will be given to the class that will define your cluster. The example uses
Ex_Cluster.

b. CLUSTER ID. This C-style string is returned in exceptions thrown by the cluster. The example uses
"Example Cluster".

Cc. The list of the services that your cluster will provide. This is actually a list of the names of the
member functions in the class that you are going to create. Each entry is of the form:

REF_SERVI CE(<menber function nane>)
For example: REF_SERVICE(Square)

4. Definethe entry point for your library based on the file Example.cpp. The only change you need to makein
your version is to replace "ExCluster.h" with the name of the header file created in step 2 above.

5. Definethe services your cluster will provide based on the file ExCluster.cpp. Y ou need to change 3 things:
a. Replace "ExCluster.h" with your header defined in step 2

b. Define the member functions that will implement your services. These will correspond with the
references specified in step 2.c above. Each service is defined as in the following example:

DEF_SERVI CE(Squar €)

int value = P->get_int();
return val ue*val ue;

This defines a member function Square that will take a single integer value from the parameter stream
(get_int) and return the sgquare of that value. The way services communicate with the server is
discussed here. The example defines three member functions, but you may define any number,
although defining no services would be very strange! The functions communicate with the root DSP
using the presentation interface pointer, P. They may also use common functions accessed through the
pointer C.

6. Define the mapping of command numbers to member functions by creating the array Services. When the
DSP requests command "n" from this cluster, the member function identified by element "n" in this array
will be executed. Each element must be one of:

a. ENTRY(<service name>)
<service name> must be the name of the member function to be called when the corresponding

command is requested. For example, if you want the function Square, defined above, to be called on
command 6, you would set element 6 of the array to ENTRY (Square).

132

The Server

b. NO_ENTRY
This is used as a dummy entry when a command number has no corresponding member function.
Requesting this service will result in a no_service exception being thrown. Note that element O is
aways anull service and that the size of the Services array is derived automatically.

7. You should now build your cluster and create your library. The library name should be "Clu3Lxx.dll",
where xx is the hexadecimal representation of the cluster number you have selected.

8. The server must be able to locate your library. You should put your new library in one of the following
places:

» Thefolder from which the server isloaded, usually \ 3L\ Di anond\ bi n.
e The current directory.

e The Windows system folder, usually C. \ W NNT\ Syst enB2.

o A folder listed in the PATH environment variable.

Refer to the Windows documentation on LoadLibrary for further details.

Accessing your cluster from the DSP

The Diamond library includes functions to allow you to communicate with your cluster. These correspond
directly to the functions in the server’s presentation-level interface, P. Note that the DSP library automatically
does the equivalent of the host’s push operation when it detects you switching from writing (put...) to reading
(get...).

Also note that you must ensure that no other threads attempt to access the presentation layer during a complete
put...get sequence. This can be done by protecting the sequence with the par _sena.

#i nclude <filer.h>

typedef int psl_integer;

typedef unsigned int psl_bits;

t ypedef doubl e psl_doubl e;
_psl get_integer

psl_integer _psl_get_integer();

Read a single 32-hit integer from the input buffer.

_psl put_integer
void psl put_integer(psl_integer value);

Put a 32-bit integer to the output data buffer.

_psl get_bits
psl bits _psl get _bits();

Read a single 32-bit uninterpreted value from the input buffer. Thisis the same as_psl get_integer

133

The Server

when the host and DSP integer formats are equivalent.

_psl_put_bits
void _psl put_bits(psl_bits value);

Put a 32-bit uninterpreted value to the output data buffer. Thisisthe sasme as psl put_integer when
the host and DSP integer formats are equivalent.

_psl _get _double
psl double psl get doubl e(void);

Get afloating-point double value from the input data buffer.

_psl put_double
void _psl put_doubl e(psl_doubl e val ue);

Send a floating-point double value to the output data buffer.

_psl get record
size t psl get record(void *buf);

Get arecord from the input data buffer. A record is transmitted as an array of octet values. The values
are placed in the abject pointed at by buf, and the function returns the number of octets received.

_psl put_record
void psl put record(size_t len, void *buf);

Send a record to the output data buffer. A record is transmitted as an array of octet values. The first
parameter gives the number of values and the second parameter locates the object containing them.

_Qet_bits
psl bits _get_bits(void);

Get an uninterpreted 32-bit value from the input data buffer.

_put_bits
void put _bits(psl_bits b);

Send an uninterpreted 32-bit value to the output data buffer. Thisis often equivalent to _put_int when
the host and DSP integer formats are equivalent.

The following is an example of how the DSP would call service 1 in the example cluster (12).

134

The Server

int reply;

#define COMWAND ((12<<8) | 1)

char text[] = "This is a nessage";

_put _bi t s(COWAND) ; /1 the service word

_put _record(sizeof (text)+1, text); [// +1 for termnating O
reply = psl get_integer(); /1 send output and read reply

The Core Interface (C)

Core::Version

const char *Core:: Version(void);

Return a string showing the version of the server that is running. A typical value would be "Windows
Server V2.6".

Core::Monitor
void Core::Mnitor(const char *format, ...);

Output a monitoring message to the server’s output window. The message will always start with
"MON: ". The call may be thought of as equivalent to:

fprintf(stderr, format, .);

Core::Quit
void Core::Qit(const char *format, ...);

Terminate the running Diamond application after printing a message to the server’'s output window.
The message will start with "Server terminated: " and is generated as though the call were:

fprintf(stderr, format, .);

Core::Dump
voi d Core:: Dunp(const char *heading, void *b, unsigned int n);

Output a sequence of n 32-bit integer values, taken from b, in hexadecimal to stderr. The sequence
will beintroduced with the string "MON: heading n words".

Core::SetCommandLine
i nt Core:: Get ConmandLi neMax(voi d);

Copy the given string into the command line parameter.

Core:GetCommandLine

135

The Server

const char *Core:: Get CoomandLi ne();

Return a pointer to the command line parameter.

Core:GetCommandLineM ax
i nt Core:: Get ConmandLi neMax(voi d);

Return the maximum number of characters that can be put into the command line parameter.

The following five functions manipulate the arguments, argv and argc, that will be passed to the application
when it is started. The arguments are considered to be in two parts: a verb and the rest. The verb will be made
available as argv[0] while the rest will be broken down into "words" and made available through argv[1]... The
total number of words, plus one for the verb, is passed as argc. The most common situation is when the verb is
the application file being executed and the rest is the string set as the command line parameter.

Core::SetVerb
voi d Core:: SetVerb(const char *v);

Define the string that will be used to initialise argv[0].

Core::SetRest
voi d Core:: SetRest(const char *r);

Define the string that will be used to initialise argv[1..argc].

Core:GetVerb
const char *Core:: GetVerb(void);

Return a pointer to the string to be used to set argv[Q].

Core::GetRest
const char *Core:: Get Verb(void);

Return a pointer to the string that will be used to initialise argv[1..argc].

Core::FreeArgs
voi d Core:: FreeArgs(void);

Delete any strings set by SetVerb and SetRest; after this, argv and argc will be derived from the
command line parameter.

Core::GetBootFile

136

The Server

const char *Core:: GetBootFil e(void);

Return a pointer to the currently-selected application file name.

Core::SetResultCode
voi d Core:: Set Resul t Code(int n);
Set a 32-bit value that can be used to control program termination.
Core:GetResultCode
i nt Core:: GetResultCode(int n);
Return the result code, set either by an explicit call on SetResultCode or by the user program calling
exit(n).
Core::Output
void Core:: Qutput(char *buffer, int length, int is_error);
Send length bytes from buffer to either stdout (is_error == 0) or stderr (is_error!=0).
Core::ReadlLine
i nt Core::ReadLine(char *s, int max);
Read aline of characters from either the input prompt or afile, depending on the current stdin settings.
The function will read up to max characters and return the number of characters read. The characters
will be terminated with a zero char, not included in the number of characters. See fgets.
Core::OpenLogFiles
voi d Core:: OpenLogFil es(voi d);
Activate the files associated with stdin, stdout, and stderr.
Core::Closel ogFiles

voi d Core:: d oselLogFil es(void);

Deactivate and close all the files associated with st di n, st dout , and st derr .

Core::

StopRunning
voi d Core:: St opRunni ng(voi d);

Signal the server to stop responding to requests from the DSP. Note that the server will only stop
when the next command from the DSP has been completed.

137

The Server

Core::IsRunning
bool Core::IsRunning(void);

Returns true if a program is running in the DSP and the server is able to process commands from it;
returns fal se otherwise.

Core:G
Ser Com *Core: : G

A pointer to the SerCom object the server is currently using to communicate with the GUI.

Core::Opt
Options3L *Core:: Opt;

A pointer to the active Options3L object.

Core::NoReply
int Core:: NoReply;

Thisflag is set when the NoReply bit is set in a command from the DSP.

Writing a board interface

Please contact 3L if you need to write your own board interface.

Replacing the Server GUI

The server runs as a separate thread to alow the user interface to operate independently, and all of its
functionality can be accessed from host C++ programs. The header files for server access can be found in
<Di anond>\ Ser ver\ I ncl ude. and two sample programs can be found in:

<Di anond>\ Ser ver\ Exanpl es\ Tl S\ DOS application

<Di anond>\ Ser ver\ Exanpl es\ W nApp\ Windows application
The interface to the server isin the library Serve3L.dll and this can be accessed as follows:

#i ncl ude " Serve3L. h"
CServe3dL *Get Server (void)

H NSTANCE DI | = LoadLi brary("Serve3L.dl|");
if (!'D1)
MessageBox(0, "Cannot access Server3L.dl ",
"Fatal Error", MB_OK);
return NULL;

}
FARPROC Get = CGet ProcAddress(Di |, "Get3LServer");

138

The Server

if (!Get)
MessageBox(0, "Get3LServer not in library Server3L.dll",
"Fatal Error", MB (K);
return NULL;

%ypedef void *((*CGetType)(int));
return (CServe3lL *)((GetType)Get)(0);

The steps needed to run an application are as follows:

1. Get apointer to the server object:

CServe3dlL *S = CGet Server(); /1 NULL on error

2. (optional) Bring up adialog to alow the user to set server options:

S- >0OM >Request Opti ons() ;

3. Create an object to allow the server to communicate with this code:
G = new Com(this); /'l see bel ow
S->Initialise(Q;
4. Get apointer to the board's Link object. This can be donein two ways.
a Asktheuser to select aboard:
S->LM >Li nkDi al og(0);
Link *L = S->LM >Sel ect edLi nk(); /1 NULL on error
b. Look for a specific board:

Link *L = S->LM >Locat eLi nk("XYz", 0); // NULL on error

5. Notify the server which link is to be used to access the DSPs:
S->UselLi nk(L);

6. (optional) Set acall-back to deal with special clusters. See WinApp for an example of this.
7. Define the application to be loaded:
S->Set AppFi l e("ny. app");

8. Reset the processors:

S->Reset (1) ;

9. Load the application and start the DSPs running:
S->LoadAndGo() ;

10. When the application terminates, the communication object's Terminated member will be called,
G->Terminated(), see step 3.

139

The Server

The Communication Object

The server communicates with the host using a communication object derived from the SerCom class (see
<Di anond>Ser ver\ | ncl ude\ Ser Com h for more information):

class Com: public SerCom {

public:
Conm() {}; /! add paraneters if needed
vi rtual ~Com() {};
virtual void OQutput(char *buffer, bool error);

virtual int [nput (char *buffer, int nmax);
virtual void Terninated();
virtual void *Hook(int fn, void *p);
virtual HWAD Mai nW ndowHandl e() ;
virtual void Init();
virtual void Exit();
virtual void Pronpt(const char *string);
private:
/1 Add any application-specific private data here

The host should create a single object of this class and make it available to the server (see step 3 above). The
server will call the members of this object when necessary.

For example:

voi d Com : Qut put(char *buffer, bool error)

/1 This is called when the DSP outputs to stdout or stderr.
/] error is true for stderr, false for stdout.
MessageBox(0, Buffer, (error ? "Error" : "Qutput"), MB OK);

Replacing the Server

In some circumstances it may be necessary to dispense with the server interface altogether and control a
Diamond application completely from user code on the host. In order to achieve this you need to do the
following:

1. Build your application out of stand-alone tasks; as there is no host server, the application must not attempt
to communicate with one. If you really do want to interface to the (complex) protocol used by the Diamond
server, contact 3L for further details.

2. Specify the - A switch when you configure the application to prevent the loader from asking for a go-ahead
message from the server. Thisis used to pause the application when debugging.

3. Each processor can communicate with the processor from which it was loaded using the library functions,
_host _inand _host _out . Theroot can use these functions to talk to the host PC.

The host needs access to the link connected to the root processor; this is usually made available through a DLL
supplied by the DSP board supplier. This DLL usually includes a function to load a Diamond application into
the DSP network.

140

Chapter 10. The Diamond Library

Introduction

This chapter describes: Diamond's implementation of the ANSI C run-time library functions, as described in
chapter 4 of the standard; some functions included for compatibility with other implementations of C; functions
supplied by 3L to support Diamond's special multi-processing facilities.

Implementation-specific library functions are described in other chapters.

Format of Synopses

The function synopses indicate how to call library functions. Information about required argument types and
function result types is presented in the form of a C function declaration prefixed by #include statements which
indicate which headers, if any, must be used in order to access the function.

Flags
The following signs are used to flag the entries for certain functions.

DOS Indicates that the function is specific to the MS-DOS operating system.

Heap Indicates a function that manipulates the heap. References to these functions must be
protected from references to other such functionsin threads from the same task. See the
discussion of par _sema. See also Server

Stand-alone Indicates that the function is available as part of the stand-alone library as well as the full
library. It may therefore be used by a stand-alone task. Functions without the stand-alone
mark may only be used by tasks linked with the full library.

Server Indicates afunction that communicates with the server on the host. References to these
functions must be protected from references to other such functionsin threads from the same
task. See the discussion of par _sema. See also Heap

= Note

NUL is used here to indicate a character value of zero, such as used to terminate character
strings. NULL, defined in <st ddef . h> and several other headers, represents a generic "null
pointer” value.

Headers

/Most functions in the Diamond library are accessed through header filesin the Diamond installation folder.

<1 Caution
It isimportant that you use these headers and do not attempt to use headers that may be provided

by Texas Instruments. The Diamond headers are often subtly different, and using the wrong files
will lead to obscure errors.

Errors <err no. h>

This header contains definitions of macros that relate to the reporting of error conditions. In addition, it provides
access to er r no; users are advised not to access errno via a declaration of their own, as in future versions it

141

The Diamond Library

may not simply be the identifier of an object.

Limits <float.h> and<limts. h>

These headers define a number of macros specifying the limits and characteristics of numeric types. Details may
be found in section 2.2.4.2 of the ANSI C standard.

Common Definitions <st ddef . h>

This header contains definitions of the following types and macros.

NULL the null pointer constant

offsetof return the offset of a structure member from the start of the structure
ptrdiff_t the type of the result of subtracting one pointer from another

size t the type of the result of si zeof and of f set of .

wchar_t the type of awide character: see multibyte characters and strings.

NULL and of f set of are discussed further in the list of functions.

Alt Package <al t. h>

The <al t. h> functions allow a program to detect which of a group of input channel becomes ready first.
There are two sets of functions. The _nowait set returns a status value if none of the specified channels is ready
to communicate. The others wait until a channel becomes ready. There are two ways to specify which channels
are to be tested. The _vec functions use an array of pointers to the channels; the others use a variable-length
argument list of pointers to channels.

alt_nowait isany one of alist of channelstrying to send?
alt_nowait_vec isany oneof an array of channelstrying to send?
at_wait await input from any one of alist of channels

at wait_vec await input from any one of an array of channels

<1 Caution

The<al t. h> functions may only be used directly on virtual or internal channels. They cannot
be used directly on physical channels that run over a hardware link. If you need to use the
<al t. h> functions on a physical channel, consider adding an intermediate guard thread to
echo messages from the physical channel to an internal channel, as shown below.

#i ncl ude <chan. h>
#defi ne SI ZE 64

struct map {
CHAN *phys_chan;
CHAN *i nternal _chan;
1

CHAN i nternal O, internal 1;
voi d guard(void *arg)

struct map *s = (struct map *)arg;
char buf[Sl ZE] ;
for (;;) {

chan_i n_nessage(Sl ZE, buf, s->phys _chan);

142

The Diamond Library

chan_out nessage(Sl ZE, buf, s->internal _chan);

}

mai n(int argc, char *argv[], char *envp[],
CHAN *in[], int ins, CHAN *out[], Int outs)
{

struct map sO, sl1,

s0. phys_chan
sl. phys_chan

sO.internal _chan

1; & nt ernal 0;
]1; sl.internal _chan

& nternal 1;

=in[
=in[
chan_i nit (& nternal 0);

chan_init(& nternal 1);

t hread_new(guard, 1024, &sO0);
t hread_new(guard, 1024, &s1l);

for (;;)
int i =alt_wait(2, & nternal0, & nternall);

Here theal t _wai t function is applied to two internal channels, internalO and internal 1, but the effect isto alt
on the underlying ports, in[0] and in[1], which may be physical channels. Clearly, the guard threads must know
the format of the messages expected, in order to echo them properly to the internal channels.

Diagnostics <assert. h>

This header defines the assert macro which assists the programmer in putting run-time diagnostics in a program.

assert program debugging function

Channels <chan. h>

The functions described here allow programs to access the basic communication facility of the Diamond model,
which isto transfer a message across a channel. The header <chan. h> defines the following:

» type CHAN representing the channel data type;

» afunction toinitialise achannd;

» functions to send and receive messages over channels.

The <chan. h> functions must always include in their parameter list the address of a channel. This could be

the address of a user-declared variable of type CHAN; for example:

CHAN mychan;
i nt val ue;
chan_i ni t (&rychan);

E:han_out_word(val ue, &nychan);
Alternatively, it could be a port:
int main(int argc, char *argv[], char *envp[],

CHAN * in_ports[], int ins,
CHAN *out _ports[], int outs)

143

The Diamond Library

i nt val ue;

E:han_out_wor d(val ue, out_ports[O0]);

}

Note that the channels passed in through the port vector arguments of mai n must not be initialised; all others,
such as mychan above, must be initialised by callstochan_i ni t .

The functions provided in the <chan. h> package are listed below. Messages of any type and size can be
transmitted by the two general-purpose functionschan_i n_nmessage and chan_out _nessage. The word
functions are simply convenient shorthands for four-octet messages.

Note that most inter-processor links only support transfers that are multiples of 4 octets.

chan_init initialise a channel word
chan_in_message input a message from a channel
chan_in_word input a 32-bit word from a channel
chan_out_message output a message to a channel
chan_out_word output a 32-bit word to a channel

Character Handling <ct ype. h>

Character Testing Functions

The character testing functions described here are implemented as macros. They return a non-zero value if their
argument meets the condition being tested and zero otherwise. The argument is a single integer.

isalnum determinesif the argument is alpha-numeric

isalpha determinesif the argument is alphabetic

iscntrl determinesif the argument isan ASCII control character

isdigit determinesif the argument is a decimal digit

isgraph determinesif the argument is a printing character but not a space

islower determinesif the argument is alower-case letter

isprint determinesif the argument is a printing character

ispunct determinesif the argument is a punctuation character

isspace determinesif the argument is a space, horizontal or vertical tab, carriage return, form-feed or
newline

isupper determinesif the argument is an upper-case letter

isxdigit determines if the argument is a hexadecimal digit

Character Mapping Functions

tolower converts upper-case characters to lower case; returns other characters unchanged
toupper converts lower-case characters to upper case; returns other characters unchanged

Links <l i nk. h>

These functions allow a Diamond program to access the physical interprocessor links directly. On certain
boards, this may alow you to exchange raw data with external hardware devices. These functions should only

144

The Diamond Library

ever reference link that are not mentioned in the configuration file. You should not use the link functions for
normal communication between tasks on different processors. Instead, the program should use the channel
communication functions. See "links and channels" for more about links and channels.

link_in input a message from alink
link_in_word input a 32-bit word from alink
link_out output a message to alink

link_out word output a 32-bit word to alink

Localisation <l ocal e. h>

Thelocalisation facility of ANSI C makesit possible to vary a number of aspects of the run-time library in order
to follow local conventions regarding the format of numbers, collating sequences when comparing al phanumeric
strings, the format of the time and date, and so on. Currently, Diamond implements the "C" and "" locales only,
asrequired by the ANSI standard.

As well as the following two functions, the header defines a type, Iconv, which contains fields relating to the

formatting of numbers, and a number of macros which are used to specify aspects of the locale to change or
query. For details, see section 4.4 of the standard.

localeconv return details of numeric formatting conventions of the current locale
setlocale change or query all or part of thelocale

Mathematics <mat h. h>

The functions described in this section evaluate various standard mathematical functions such as logarithms,
sines, cosines etc. The header also defines the macro HUGE_VAL as a double expression that is returned as the
result of some of the functionsin certain conditions.

When using the mathematical functions, and real arithmetic in general, it is worth bearing in mind that some of

the range of C6000 processors do not have hardware floating-point instructions, and that all floating-point
operations on them must be carried out by software routines. This has inevitable implications on performance.

Treatment of Error Conditions

Mathematical functions handle errors by returning unusual result values and setting an error code in the external
integer variable er r no.

Trigonometric Functions

The trigonometric functions operate on angles expressed in radians.

acos returns the arc cosine of the argument

asin returns the arc sine of the argument

atan returns the arc tangent of the argument

atan2 returns the arc tangent of the division of the arguments
cos returns the cosine of the argument

sin returns the sine of the argument

tan returns the tangent of the argument

Hyperbolic Functions

cosh returns the hyperbolic cosine of the argument

145

The Diamond Library

sinh returns the hyperbolic sine of the argument
tanh returns the hyperbolic tangent of the argument

Exponential and Logarithmic Functions

exp returns the base e raised to the power of the argument

frexp splits a floating-point number into a normalised fraction and an integral power of 2
Idexp multiplies a floating-point number by an integral power of 2

log returns the natural logarithm of the argument

logl0 returns the base-ten logarithm of the argument

modf breaks the argument into integral and fractional parts

Power Functions

pow returns the value of the first argument raised to the power of the second argument
sort returns the square root of the argument

Nearest Integer, Absolute Value and Remainder Functions

ceil returns the smallest value which is equal to or greater than the argument
fabs returns the absolute value of the floating point argument

floor returns the largest integer which isless than or equal to the argument
fmod calculates the floating-point remainder of the division of its arguments

Synchronising Access to the Server <par . h>

In aprogram in which many execution threads are active, access to the server must be synchronised, so that only
one thread may be performing a server operation at one time. If this were not so, for example if two threads
attempted to open afile at the same time (using f open), then the two sets of messages to the server would get
confused. There are two approaches to resolving this:

1. Make each function in the library thread-safe by automatically claiming and releasing a semaphore around
thecdls;

2. Require usersto do such semaphoring when necessary.

Diamond takes the second approach; the user must semaphore potentially concurrent references to sensitive

functions explicitly. There are two reasons for this choice:

1. The need for synchronisation is fairly uncommon, as synchronisation of server accesses between tasks is
handled automatically; you only need to protect references within threads of each task.

2. When it is necessary, the synchronisation may need to be performed across a sequence of function calls.

For example:

printf("vector =1[");
for (i=0; i<count; i++) printf(" %", a[i]);
printf("]\n");

If the synchronisation were performed on each individual call, it would be possible for another thread to get

146

The Diamond Library

in and spoail the output.

The required synchronisation is achieved by means of a SEMA variable par _sena defined in the header file
<par. h> |, which any thread wishing to use the server must first clam (serma_wai t) and then release
(sema_si gnal) when finished. For example:

sema_wai t (&par_senan) ;
printf("vector =1[");
for (i=0; i<count; i++) printf(" %", a[i]);
printf("]\n");

senma_si gnal (&par_senn) ;

Note that par _senm isinitialised to 1 before your mai n function is entered; you should not try to initialise it
yourself.

Although they do not communicate with the server, the memory alocation functions, mal | oc, cal | oc,
free,real |l oc, and nemal i gn access shared data resources and so must also be protected from each other
in the same way with par_sema.

As an dternative to the explicit use of par _senm, some of the more common functions used in concurrently
executing threads are available in interlocked forms that include these semaphore operations.

par_fprintf interlocked version of fprintf
par_printf interlocked version of printf
par_free interlocked version of free
par_malloc interlocked version of malloc

For example, par _pri nt f (...) isequivalent to:

#i ncl ude <par. h>

sema_wai t (&par_senan) ;
printf(...);

sena_si gnal (&par_senn) ;

Functions that need to be protected in thisway are marked Server or Heap in the list of run-time library entries.

Semaphores <sena. h>

This group of functions allows a Diamond program to create and manipulate semaphores, which can be used to
synchronise the activity of several concurrently executing threads. The header file <sema. h> declares a type
SEMA, which is used by these functions.

In this version of Diamond, threads are placed in a queue of waiting processes, so that the first thread to start
waiting on a semaphore will be the first to be resumed.

sema_init initialise a semaphore

sema_signal perform the signal operation on a semaphore
sema signal_n perform sema_signal n times

sema_test wait check whether waiting on a semaphore would block
sema_wait perform the wait operation on a semaphore
sema_wait_n perform sema_wait n times

static_sema init Initialisation value for a semaphore (macro)

Events <event . h>

This group of functions allows a Diamond program to create and manipulate events, which can be used to

147

The Diamond Library

synchronise the activity of several concurrently executing threads. The header file <event . h> declaresatype
EVENT that is used by these functions.

Events are similar to semaphores, the main difference being that signalling a semaphore can only restart one
thread; setting or pulsing an event will restart all of the waiting threads. An event can bein one of three states:

EVENT_NO The event has not been set and no threads are waiting.
EVENT_YES The event has been set and so no threads can be waiting.
all other values The event has not been set and threads are waiting

Programs should not rely on any relationship between the order in which threads start to wait on an event and
the order in which they will be resumed.

event_pulse Indivisibly set and then reset an event
event_init Initialise an event.

event_set Set an event.

event_wait Wait for an event to be set.

Nonlocal Jumps <setj np. h>

These functions enable the programmer to save the current context of the program, and subsequently to return to
it. The header defines a type jmp_buf, which is capable of holding al the information necessary to recreate the
context.

longjmp returns to the context saved by setjmp
setjmp saves the context of the calling function for a subsequent longjmp call

Signal Handling <si gnal . h>

The signal-handling package enables the programmer to create traps for various signals. These events do not
arise spontaneously when using Diamond, but have to be raised by the appropriate function call. (This is an
ANSI-compliant implementation, by the way; see section 4.7 of the Standard.)

The header defines macros that are used as identifiers for the signals that can be raised, and others which define
the action to be taken when asignal is raised; see the synopses in the list of functions.

signa define way in which asignal isto be handled from now on
raise raiseasigna

Variable Arguments <st dar g. h>

A function whose declaration contains an €ellipsis "..." may be called with varying numbers of arguments. The
facilities described here allow such a function to access its arguments.

The header <st dar g. h> defines atype va_list. The user function should declare an object of thistype, called
the argument pointer, and scan the variable-length argument list with it, using these functions.

Note that it is generally dangerous to attempt to scan over the arguments of a function by incrementing an
ordinary pointer asin the following example:
void func(int a,...)

/1 this will not always work
int b, *p = &a;

148

The Diamond Library

b = *++p;

}

To maintain portability, you should usethe <st dar g. h> functionsinstead.

va start initialise the argument pointer
va arg find the next argument
va end finish accessing arguments

Input/Output <st di 0. h>

The standard 1/O functions provide a portable 1/O interface for C programs. They are available in the form
described here in most implementations of C. They also provide buffering between user programs and files or
devices. This means that 1/O transfers to or from real files remain efficient even if data is transferred between
the file and the user program in small units (e.g., one character at a time). On output, user data is placed in a
buffer allocated "behind the scenes’ by the standard 1/0 functions, until the buffer becomes full, at which point
the contents of the buffer are written en masse to the file. This technique achieves a speed-up because disk
devices are optimised for block transfers. The situation for input is similar.

Other standard 1/0 functions allow random file access and conversion of numeric data between internal (binary)
and external (character string) representations.

All of the functions described in this section require the calling program to include the header <st di o. h>
before they may be called.

Before you can read or write the datain afile, the fopen function must be called to open a path to the file. The
name of the file is passed to fopen, which, if the file is accessible, returns a pointer to a structure of type FILE.
The calling program must use this file pointer to refer to the file in subsequent 1/0O operations (f put c, for
example, requires afile pointer argument to identify the file which is to be written). The FILE type is declared
in<stdi o. h> .

After performing 1/0 on an open file, the path to the file may be broken by closing the file. Files should be
closed when they are no longer in use, since some implementations place alimit on the number of files that may
be open at once Files may be opened again after they have been closed. Having more than one pat open to the
same file at any point in a program should be avoided, since some implementations may disallow or restrict this.
Closing all files explicitly at th e end of a program is, however, unnecessary; this is done automatically by the
standard 1/0 system when atask's mai n function returns or when the exit function is called.

In the following example, afile named fred is opened, some ASCII characters are written out to it and the fileis
closed. For clarity, no error checking is performed in the example.

#i ncl ude <stdi o. h> /1 standard 1/O decl arations
mai n()

FI LE *fp; /1 file pointer variable

file nane

f p=f open("fred", [/
"W /1 open for witing

fprintf(/1 formatted output routine
fp, [l file pointer (identifies file)
"Hi'\n" /1 text string to be witten

fcl ose(fp); /1 disconnect file

To simplify writing programs that read one sequential input file, process it and write another sequential output
file, most implementations of C provide some means externa to a program (e.g., the User Interface) to connect

149

The Diamond Library

at run time files or devices other than the default to the standard input and output of a program. This means that
programs may be written and tested using the keyboard and screen for standard input and output, then run
unchanged using files, without the program itself needing to open the files by name. Y ou can find a description
of the mechanism the server uses to redefine the standard 1/O streams here.

Stream 1/O

The model of 1/O supported by the standard I/O package is known as stream |/O.

In the stream |/O model, afile is considered as a sequence of char values. A notional file pointer, maintained by
the I/O functions, indicates the character position within the file at which the next character will be read or
written. The file pointer is advanced automatically as characters are read or written Allowing the user to position
the file pointer supports random file access.

The basic operations provided by the standard 1/0O package in support of the stream 1/O model are therefore
"read a character" (f get c), "write a character" (f put c), "reposition file pointer" (f seek) and "read file
pointer" (f t el |'). Other, higher level, operations (e.g., write a string) are built up directly from these primitive
operations. Because of this, calls on the character level functions and the higher-level functions may be freely
intermixed and characters will still be transferred in the expected order.

Devices such as the keyboard and the screen are included in the stream 1/O model: characters may be read or
written from them as appropriate (in principle, one at atime), but positioning operations are not supported.

Text and Binary

The basic units in the discussion of stream 1/O thus far have been characters. A character is a value of type char
or unsigned char. On the C6000 thisis held in an octet (or 8-bit byte), which is the smallest addressable unit of
memory. Both in the C6000's memory and in afile, one character is held in one octet.

Larger values than those that can be held in a single octet are stored in files as a sequence of octets. Thus, a
value of type int will be held as a sequence of four octets. By convention, these will be stored in little-endian
order; that is, the octet holding the low-order eight bits of the value is stored in the earliest position in the file,
and the octet holding the high-order eight bitsin the latest.

Characters may be stored in files as text or binary data. The difference is that text files are organised into lines.
From the point of view of the program, the newline character, "\n", separates lines. The program can end aline
by outputting a newline character, and on input, the end of a line can be found by comparing the characters
being read with the value "\n". Under MS-DOS, these newline characters are inconveniently stored in files as
carriage-return line-feed sequences; the conversion between newline and carriage-return line-feed is performed
by the server, and isinvisible to the program.

Binary files are not divided into lines, and each character is read or written "asis", without conversion.

By default, Diamond reads and writes text files. If you need to process binary data without conversion, you must
inform the run-time library that a particular file is to be processed as a binary file. You can do this by using the
"binary" specifier "b" inacall tof open. For example;

fd = fopen("x.bin", "rb");

Notice that the C6000 Diamond implementation of stream 1/O is rather different from the implementations on
some other processors, notably the TMS320C40, where the smallest addressable unit of memory is a 32-bit
word. In particular, these processors require a distinction between packed and unpacked files, which is
unnecessary and not implemented on the C6000.

Standard Streams

For convenience, three file pointers are always automatically opened by tasks linked with the full library. These
aredeclaredin <st di 0. h> asfollows.

FILE *stdin; Thisisthe standard input stream. By default, stdin is the keyboard.
FILE *stdout; Thisisthe standard output stream. By default, stdout is the screen.

150

The Diamond Library

FILE *stderr; Thisisthe standard error stream, used by programs for outputting error messages. It too is
normally opened on the screen.

Files processed or created by redirecting the standard input, output and error streams are always text files. You
cannot process binary files by redirecting standard input and standard output in this way.

Operations on Complete Files

remove removes afile from the file system
rename renames afile

tmpfile create temporary binary file
tmpnam generate unique filename

File Access Functions

fclose closes afile

fflush writes out any buffered information to the file

fopen opensafile

freopen reassigns the address of a FILE structure and reopens the file
setbuf associates a buffer with an input or output file

setvbuf determines how stream will be buffered

Formatted Input/Output Functions

fprintf performs formatted output to a specified file

fscanf performs formatted input from afile

printf performs formatted write to standard output

scanf performs formatted read from standard input

sprintf performs formatted output to a character string in memory

sscanf performs formatted input from memory

viprintf similar to fprintf, but with asingle argument instead of alist of arguments
vprintf similar to printf, but with a single argument instead of alist of arguments
vsprintf similar to sprintf, but with a single argument instead of alist of arguments

Character Input/Output Functions

fgetc returns the next character from afile; generates atrue function call

fgets reads aline from afile; the lineis terminated by a NUL character

fputc writes asingle character to afile; generates atrue function call

fputs writes astring to afile

getc returns the next character from afile; implemented as a macro

getchar returns the next character from standard input

gets reads a line from standard input; replacing the newline with aNUL character
putc writes a single character to afile; implemented as a macro

putchar writes a single character to standard output

puts writes a string to standard output; terminates the string with a newline
ungetc writes a character to afile buffer leaving the file positioned before the character

151

The Diamond Library

Direct Input/Output Functions

fread reads a specified number of items from the file
fwrite writes the specified number of itemsto afile

File Positioning Functions

fgetpos get value of file position indicator

fseek places the file pointer at a specified character offset relative to the beginning of thefile, the
end of thefile or the current location in the file

fsetpos set file position indicator

ftell returns the current character offset from the beginning of the file to the current location
within thefile

rewind places you at the beginning of thefile

Error Handling Functions

clearerr resets the error and end of fileindicators

feof tests for end-of-file

ferror returns a non-zero integer if an error occurs during read or write operations
perror writes (to stderr) the most recent error encountered

Macros

EOF Value returned from input functionsto indicate End Of File.

NULL A null pointer value.

General Utilities <stdl i b. h>

String Conversion Functions

atof converts an ASCII string to a double value

atoi convertsan ASCII string to anint value

atol convertsan ASCI|I string to along value

strtod converts an ASCII string to adouble value

strtol converts an ASCII string to along int value

strtoul converts an ASCII string to an unsigned long int value

Pseudo-Random Sequence Generation Functions

rand pseudo-random number generator
srand change seed for rand

Memory Management Functions

Building complex, dynamically-changing data structures requires a special kind of variable storage. Variables

152

The Diamond Library

that are static or extern are allocated when a program is written and are therefore not flexible. On the other hand,
auto or register variables disappear when the function which created them returns, and do not persist for other
functions to access.

The storage class that allowed the most flexible allocation is generally referred to as heap storage. In C, heap
storageis allocated by calling alibrary function and remains alocated until it is explicitly released.

caloc allocates and clears an area of memory

free deallocates allocated space

malloc allocates the specified number of contiguous octets of memory
memalign allocate amemory-aligned area

realloc changes the size of an allocated area

Communication with the Environment

abort abnormal program termination (unless trapped)
atexit set exit handler function

exit stop program

getenv access environment variables

system execute host operating system command

Searching and Sorting Utilities

bsearch performs a binary search of an array
gsort sorts an array

Integer Arithmetic Functions

abs returns the absolute value of the integer argument
div compute quotient and remainder of an integer division
labs returns the absol ute value of the long int argument
Idiv compute quotient and remainder of along int division

Multibyte Character Functions

The ANSI standard allows the character set to include multibyte characters. Multibyte characters may have
state-dependent coding, in that a sequence of multibyte characters may include shift characters that alter the
interpretation of subsequent characters in the sequence. Such a multibyte string always starts in the same initial
shift state.

A multibyte character may be extracted from such a sequence and converted into a single wide character, which
isof typewchar _t (definedin<st ddef. h>).

The encoding of multibyte characters depends on the current locale. In Diamond, only the locales " and "C" are
implemented. A multibyte character is always a single char, and wchar _t isidentical to the char data type.
Thereis no state-dependent coding.

mblen returns width of a multibyte character
mbtowc convert amultibyte character to awide character
wctomb convert wide character to multibyte character

153

The Diamond Library

Multibyte String Functions

Aswe saw above, in the present version of Diamond multibyte strings and wide character strings both consist of
a sequence of one-word characters.

mbstowcs convert multibyte string to wide character string
wcestombs convert wide character string to multibyte string

String Handling <stri ng. h>

The C language itself allows the manipulation of single characters. Library functions are provided to alow C
programs to process variable-length strings of characters.

Copying Functions

memcpy copies a given number of bytes from one memory location to another; undefined for
overlapping blocks

memmove "safe" block move

strcpy copies one string to another

strncpy copies a maximum number of characters from one string to another

Concatenation Functions

strcat concatenates two strings
strncat concatenates two strings up to a maximum number of characters

Comparison Functions

memcmp compare two blocks of memory

stremp performs lexicographic comparison of two ASCII strings

strcoll compare strings using collating sequence of current locale

strncmp performs lexicographic comparison of two ASCII strings (up to a maximum number of
characters)

strxfrm transform string using collating sequence of current locale

Search Functions

memchr locate character in block of memory

strchr finds a specified character in astring

strcspn returns the length of the initial part of a string that does not contain specified characters
strpbrk locate first character from character set

strrchr find last copy of specified character in string

strspn returns the length of the initial part of a string that contains specified characters

strstr locate substring within string

strtok returns a pointer to the first character of atoken

Miscellaneous Functions

154

The Diamond Library

memset overwrites each octet of an object with a given character code
strerror maps errno codes to strings
strlen Returns the length of a string

Threads <t hr ead. h>

The functionsin this section allow a Diamond program to create new threads of execution within a single task.

You need to decide on a size for the thread's workspace, which is used to hold the thread's stack. This space is

needed for several things:

e Theauto variables of the function you invoke in the new thread, together with all the other functionsit calls;

* A minimum of five wordsfor every level of function calling;

e The stack requirements of any run-time library functions the thread calls. These vary depending on the
functions you call; a good rule-of-thumb would be to alow 4K octets for this, unless you call only trivial

run-time library functions.

As we have seen, the microkernel arranges for the available time to be shared between the various threads.
When a thread is temporarily stopped, data relating to it are stored in its own workspace. Y ou should alow
THREAD M N_STACK bytesfor this.

thread launch

thread new
thread_priority
thread deschedule
thread_set_priority
thread set_urgent
thread stop
thread_wait
THREAD_HANDLE

THREAD_NOTURG
THREAD_URGENT
THREAD_MIN_STACK

general thread-starting facility

simpler shorthand version of thread_launch

return current thread's priority

make current thread momentarily unable to execute
change the priority of the current thread

make the current thread urgent

stop the current thread

wait for athread to stop.

The type of object returned by the thread creation functions. It may be used
by another thread to wait for the termination of the new thread (see
thread wait).

A macro for the priority of urgent threads (priority 0).
A macro for the priority of normal threads (priority 1).
The minimum allowed size, in bytes, of the workspace for athread.

Thread return codes <err code. h>

Every Diamond thread maintains information that can be used externally to determine error conditions or other
status. The information is held in a structure of the following format:

typedef struct {

Ul NT32 code;
const char *text;
Ul NT32 vi;
Ul NT32 v2;

} errcode_t;

The meanings of the fields are not defined; you can use them for any purposes you wish.

155

The Diamond Library

The type ERRCODE is defined to be a pointer to an errcode_t structure.

The following functions are provided:

errcode_get Return a pointer to the errcode t structure of athread
errcode_see Convert an errcode_t structure into atextual format
errcode_set Set values into the current thread’ s errcode_t structure.

Date and Time <ti ne. h>
The following functions return information about the time.

clock returns processor time used
time returns the current calendar time

Note that the ANSI functions difftime, mktime, asctime, ctime, gmtime, localtime and strftime are not
implemented in Diamond.

Internal Timer <ti mer. h>

The C6000 has two internal timers: Timer O is controlled by the microkernel while timer 1 is available for user
programs. User programs cannot access timer O directly, but instead use the <t i ner. h> functions which
work from an internal clock maintained by the microkernel. The timer currently ticks 1000 times a second, and
so has a resolution of 1msec. Note that this applies to threads of all priorities. It is possible that this rate of
ticking may be changed in future releases of Diamond. Rather than assume a rate of 1000 ticks a second you
should use the value returned by the library function t i ner _r at e; this will always return the correct rate. If
your modul€e's processor clock does not tick at the rate defined in the standard processor type for that module,
you can change the rate using the CLOCK attribute of the configurer’s PROCESSOR statement. The CLOCK
attribute can also be used to prevent the kernel from using TIMER 0.

timer_after indicates whether one clock valueis later than another
timer_delay wait at least a specified number of kernel clock ticks
timer_now returns the kernel’ s current clock value

timer_wait wait until the kernel’s clock reaches some value

timer_rate return number of kernel clock ticks per second (currently 1000)

List of Functions

abor t [Server]

#i ncl ude <stdlib. h>
voi d abort (void);

abort raises the signal SIGABRT. If this returns (that is, if no signal handler has been nominated for
SIGABRT by a cal to si gnal) the program is terminated, and the status returned to the host
operating system is set to 1 (EXIT_FAILURE). Before termination, all functions registered by atexit
will be called, and al the task's files will be closed.

abS [Stand-alone]

#i ncl ude <stdlib. h>

156

The Diamond Library

int abs(int arg);

abs returns the absolute value of its integer operand. The result returned by abs is not defined if arg is
the largest negative integer.

acos [Stand-alone]
#i ncl ude <mat h. h>
doubl e acos(doubl e x);
acos returns the arc cosine in the range [0, #]. If x is outside the range [-1, +1], the value 0.0 is
returned, and errno is set to the value EDOM.
alt_nowait [Stand-alone]
#i nclude <alt. h>
int alt_nowait(int n, ...);
Use at_nowait to find out which, if any, of a set of channels is attempting to provide data. The
function can only be used on internal or virtual channels; it does not work with physical channels.
The parameter n is followed by a series of CHAN * arguments chan0, chanl... which are pointers to
the channels to be tested. n is the number of channels to be tested; it must match the actual number of
channel pointers passed.
For example:
alt_nowait (2, &c0, &cl);
alt_nowait returns a non-negative value if another thread has already executed a chan_out_message
cal (or equivalent) using any one of the specified channels. The returned value will be in the range
0...n-1, indicating which channel (chan0, chanl...) is ready to communicate; achan_i n_nessage
call on that channel will then not block. If more than one channel is ready to communicate, one will be
arbitrarily chosen.
A negative value isreturned if no thread is attempting to send a message on any of the channels tested.
alt_nowait_vec [Stand-alone]

#i nclude <alt. h>
int alt_nowait_vec(int n, CHAN *channel s[]);

Use at_nowait_vec to find out which, if any, of a set of channels is attempting to provide data. The
function can only be used on internal or virtual channels; it does not work with physical channels.

The elements of the array channels are pointers to the channels to be tested. n is the number of
elementsin the array. Note that the channels themselves need not bein an array.

at_nowait vec returns a non-negative value if another thread has aready executed a
chan_out_message call (or equivalent) using any one of the specified channels. The returned value
will be in the range 0...n-1, indicating which channel (channelg[0], channelq[1]...) is ready to
communicate; a chan_i n_nmessage call on that channel will then not block. If more than one
channel isready to communicate, one will be arbitrarily chosen.

A negative value isreturned if no thread is attempting to send a message on any of the channels tested.

157

The Diamond Library

alt_wait

[Stand-alone]

#i ncl ude <alt. h>
int alt_wait(int n, ...);

Use alt_wait to block execution of the calling thread until any one of a set of channels is attempting to
provide data. No processor time is consumed while waiting, so alt_wait is to be preferred over a"busy
wait" loop that repeatedly calls alt_nowait. The function can only be used on interna or virtual
channels; it does not work with physical channels. The parameter nis followed by a series of CHAN *
arguments chanO, chanl..., which are pointers to the channels. n is the number of channels; it must
match the actual number of channel pointers passed.

For example:

alt_wait(2, &0, &cl);

alt_wait will only return when a different thread or task executes a chan_out_message (or variant) call
on any one of the specified channels. The returned value will be in the range 0...n-1, indicating which
channel (chan0, chanl, ...) isready to communicate; achan_i n_nessage cal on that channel will
then not block. If more than one channel becomes ready to communicate, one will be arbitrarily
chosen.

al t_wai t_vec [Stand-alone]

#i nclude <alt. h>
int alt _wait_vec(int n, CHAN *channels[]);

Use alt_wait_vec to block execution of the calling thread until any one of a group of channels is
attempting to provide data. No processor time is consumed while waiting, so alt_wait_vec is to be
preferred over a "busy wait" loop that repeatedly calls alt_nowait_vec. The function can only be used
oninternal or virtual channels; it does not work with physical channels.

channelsis an array of pointers to the channels. n is the number of elementsin the array. Note that the
channels themselves need not bein an array.

alt_wait_vec will only return when a different thread or task executes a chan_out_message (or variant)
call on any one of the specified channels. The returned value will be in the range 0...n-1, indicating
which channel (channel[0], channel[1], ...) is ready to communicate; a chan_i n_nmessage call on
that channel will then not block. If more than one channel becomes ready to communicate, one will be
arbitrarily chosen.

as.n [Stand-alone]
#i ncl ude <mat h. h>
doubl e asi n(doubl e x);
asin returns the arc sine of its argument in the range [-#/2, #/2]. If x is outside the range [-1, +1], the
value HUGE_VAL isreturned, and errno is set to the value EDOM.

assert [Server]

#i ncl ude <assert. h>
voi d assert (i nt expression);

If the macro identifier NDEBUG is defined at the point in the source file where <assert. h> is
included, use of the assert function will have no effect, in particular, expression may not be evaluated.
For this reason, the correct functioning of the program must not depend on the execution of any assert

158

The Diamond Library

functions. In particular, the expression should have no side-effects.

The assert function puts diagnostics into programs. The expression argument is any scalar expression.
When it is executed, if expression is false (that is, evaluates to zero), assert writes a message on the
standard error stream and terminates the program. The message gives the filename and line number of
the assert call which failed.

No valueisreturned by assert.

atan [Stand-alone]
#i ncl ude <mat h. h>
doubl e atan(doubl e x);
atan returns the arc tangent of x. Theresult isin radians.

at an 2 [Stand-alone]
#i ncl ude <mat h. h>
doubl e atan2(doubl e x, double y);
atan? returns the arc tangent of x/y. The result isin radians in the range [-#, #]. If both arguments are
zero, the value 0.0 isreturned, and errno is set to the value EDOM.

atexit [Stand-alone]
#i ncl ude <stdlib. h>
int atexit(void (*func)(void));
The run-time library registers the value of func. The function it points to will be called (with no
arguments) at normal program termination, when the main function returnsor exi t iscalled.
atexit returns O if func is registered successfully, otherwise it returns a non-zero value.
Thereis no practical limit on the number of functions that may be registered. The same function may
be registered more than once, and will be called more than once.

at Of [Stand-alone]
#i nclude <stdlib. h>
doubl e at of (const char *nptr);
The string pointed to by nptr is converted to double-precision floating point representation. The
format accepted by atof isthe same as that accepted by st r t od; in fact, acall to atof is equivalent to:
strtod(nptr, (char **)NULL)

atoi [Stand-alone]

#i ncl ude <stdlib. h>
int atoi (const char *nptr);

This function converts the string pointed to by nptr to integer representation. The format accepted by
atoi is the same as that accepted by st rt ol , with a decimal base; in fact, a call to atoi is equivalent

159

The Diamond Library

to:

(int)strtol (nptr, (char **)NULL, 10)

atol

[Stand-alone]

#i nclude <stdlib. h>
I ong atol (const char *nptr);

This function converts the string pointed to by nptr to long int representation. The format accepted by
atol is the same as that accepted by st rt ol , with a decimal base; in fact, a call to atol is equivalent
to:

strtol (nptr, (char **)NULL, 10)

bsearch

[Stand-alone]

#i nclude <stdlib. h>
voi d *bsearch(const void *key,
const void *base
size_t nnenb,
size t size
int (*compar) (const void *, const void *));

This function searches an array of objects for an element matching a given key. The result of bsearch
isapointer to the array element located by the search; if no match isfound, anull pointer is returned.

bsearch is not limited to any particular data type; it is provided with a comparison function which
allowsit to compare two objects of any arbitrary type used by the program.

The array to be searched starts at base and has nmemb elements, each of which is size chars long. key
points to the item to be searched for, which must have the same type as the elements of the array being
searched.

The compar argument points to a comparison function which, given pointers to two objects of the
same type as those pointed to by key and base, returns a negative integer to indicate the first is "less
than" the second, a positive integer to indicate that the first object is "greater than" the second, or 0 to
indicate that the two objects are "equal".

Before calling bsearch, the array must be sorted into ascending order with respect to the comparison
function pointed to by compar. This operation can often be most easily performed by the gqsort
function that can sort an arbitrary array into order. Like bsearch, it uses a comparison function to
determine the ordering to be used.

calloc

[Stand-alone] [Heap]

#i nclude <stdlib. h>
void *calloc(size_t nelem size t elsize);

calloc returns a pointer to enough space for nelem objects of size elsize, or NULL if the request
cannot be satisfied. The space returned will be aligned on an 8-byte boundary and will beinitiaised to
zero. Note that elsize must specify the size of the object in octets (eight-bit bytes).

cell

[Stand-alone]

160

The Diamond Library

#i ncl ude <mat h. h>
doubl e ceil (doubl e x);

cell returns as a double value the smallest integer not less than x.

Ch an_i n | t [Stand-alone]

#i ncl ude <chan. h>
voi d chan_i ni t (CHAN *chan);

This function initialises the channel pointed to by its chan argument, so that it indicates that no threads
are currently attempting to communicate through this channel. All channel objects (i.e., all variables
declared to be of type CHAN) must be initialised before the first attempt to communicate through
them. If thisis not done, the first attempt to communicate through the channel will cause the processor
to crash.

Note that this function should not be used on any channel connected to a task on another processor.
The channel objects bound to a program's input and output ports are already initialised by the calling
environment, and should not be initialised again by the program.

chan_in_message [Stand-alone]

#i ncl ude <chan. h>
void chan_in_nessage(int len, void *b, CHAN *chan);

This function reads a message of length len octets (eight-bit bytes) from the channel pointed to by
chan into the variable pointed to by b. The value of len must be greater than zero and a multiple of 4.
The function will wait if the other end of the channel is not attempting to write.

chan_in_word [Stand-alone]

#i ncl ude <chan. h>
void chan_in word(int *w, CHAN *chan);

This function reads a word-length message from the channel pointed to by chan into the integer
variable pointed to by w. The function will wait if the other end of the channel is not attempting to
write.

chan_out_message [Stand-alone]

#i ncl ude <chan. h>
voi d chan_out _nessage(int len, void *b, CHAN *chan);

This function sends a message of length len octets (eight-bit bytes) from the variable pointed to by b
to the channel pointed to by chan. The value of len must be greater than zero and a multiple of 4. The
function will wait if the other end of the channel is not attempting to read.

chan_out_word [Stand-alone]

#i ncl ude <chan. h>
voi d chan_out _word(int w, CHAN *chan);

This function sends a word-length message consisting of the value w to the channel pointed to by

161

The Diamond Library

chan. The function will wait if the other end of the channel is not attempting to read.

clearerr

#i ncl ude <stdio. h>
voi d clearerr(FILE *strean);

clearerr resets any error indication on the named stream.

clock

[Server]

#i ncl ude <time. h>
clock_t clock(void);

The clock function returns the time elapsed on the host PC since an (unspecified) base time as the best
approximation to the processor time used. The type (clock_t) of the value returned by clock isint. The
units used are not specified by the ANSI standard. To find the number of seconds that have gone by
since the base time, you should divide the result of clock by the value of the macro
CLOCKS PER_SEC, which is 1 in the current implementation. Note that since the base time is not
specified, a program will usualy call clock at least twice: once at the start of a section of code to be
timed, and once at the end. Subtracting the first clock value from the second and then dividing the
result by CLOCKS PER_SEC gives the number of seconds taken by the code section. clock requires
communication with the server, and is only accurate to the nearest second. Do not use clock to
measure the time taken to execute sections of code on the target processors. Use Diamond's
t i mer _now function, which offers millisecond resolution.

Ccos

[Stand-alone]

#i ncl ude <mat h. h>
doubl e cos(doubl e x);

Cos returns the cosine of its radian argument. For very large magnitudes of x (|x| greater than about
12000), the function returns 0 and sets errno to ERANGE.

cosh

[Stand-alone]

#i ncl ude <mat h. h>
doubl e cosh(doubl e x);

cosh returns the hyperbolic cosine of its argument. If the magnitude of x istoo large, HUGE VAL is
returned, and errno is set to the value ERANGE.

div

[Stand-alone]

#i ncl ude <stdlib. h>
div_t div(int dividend, int divisor);

This function divides dividend by divisor and returns both the quotient and the remainder in a
structure of type div_t. Thistypeisdefinedin<st dl i b. h> and includes the following fields:

i nt quot; /'l contains the quotient
int rem // contains the remai nder

162

The Diamond Library

If the division is inexact, the quotient returned is the integer of lesser magnitude that is nearest to the
algebraic quotient. If the result cannot be represented, the behaviour of div is undefined.

disconnect_server
extern void disconnect_server(int wait);

This function is used in the uncommon cases where a running application wishes to disconnect from
the host server but continue to execute. The host 1/0 system will be shut down in the same way as
when an application terminates. All file handles (including stdin, stdout, and stderr) will be closed and
no further reference should be made to them. Y ou should ensure that your application does not have
any connections with the host when this call is made (such as connections established by user-defined
service clusters).

The parameter wait has two possible values:

1 Disconnect and wait for areply from the server. The call will only return when the server
has been reconnected and a Notify message sent.
0 Disconnect and return immediately.

The most common use of this function will have wait=1. This will reopen stdin, stdout, and stderr
when the Notify message is received from the server, alowing the use of /O functions such as
printf.

Typical usage would be as follows:

#i ncl ude <stdi o. h>
extern void di sconnect_server(int);

mai n()
printf("Disconnecting the server\n");

di sconnect _server(1);
printf("Server is connected again\n");

EOF
#i ncl ude <stdio. h>
The value returned from input functions to indicate End Of File.

errcode_get [Stand-alone]
#i ncl ude <errcode. h>
ERRCCDE errcode_get (THREAD HANDLE T);
The function returns a point to the given thread’s errcode t structure. If the parameter T is zero, the
function returns a pointer to the current thread’ s structure.

errcode see [Stand-alone]

163

The Diamond Library

#i ncl ude <errcode. h>
ERRCCODE errcode_see(ERRCODE e, char *buffer);

The values in the structure e are converted into a text string in the given buffer. The text fields of the
structure is used as a format for the conversion. If e->text is NULL, the string "%08x %08x" will be
used. The final string will be given a prefix of the hexadecimal form of e->code followed by a colon
and a space.

For example, assume the following:

char buff[128];

e->code = 0x12345678;

e->text = "failure. line=% position=%d";
e->vl = 12;

e->v2 = 99;

The call "errcode_see(e, buff)" would put the following string into buff:
"12345678: failure. line=12 position=99"

errcode set [Stand-alone]

#i ncl ude <errcode. h>
ERRCODE errcode_set (U NT32 code, const char *text,
U NT32 v1, U NT32 v2);

The fields of the current thread’s errcode t structure are set to the values of the parameters with the
same names. Before being set, all the fields will have zero values.

errno

[Stand-alone]

#i ncl ude <errno. h>
int errno;

Some run-time library functions return a simple true/false value to indicate success or failure. For
example, fopen returns a pointer to a file descriptor, or a null pointer for failure. Many library
functions also set the variable errno to indicate the type of error in more detail. Some functions, like
sgrt, have only one possible error type. In the case of sgrt, the value assigned to errno when the
argument to sgrt is negative is EDOM—domain error. Some other functions, such as strtol, may
provoke several different distinguishable errors;, strtol may set errno either to EDOM or to
ERANGE—range error. The different values of errno are defined as macrosin <err no. h> .

The values of errno that a particular function uses are described along with the function. In this
version of Diamond, errno may also be assigned a server status code by any function which requires
access to file services. For example, a failed call to fopen might set errno to 99—server operation
failed.

At entry to a program’'s main function, errno is zero. A run-time library function that does not detect
an error does not guarantee to return errno to this initial state, although it may do so. Thus, unless
errno is zeroed immediately before a call to a run-time library function, its value should only be
examined if the call is otherwise known to have failed, by examination of the function's return value.

EVENT

[Stand-alone]

#i ncl ude <event. h>

The type of an event object. Threads are waiting on an EVENT if its value is neither EVENT_NO nor

164

The Diamond Library

EVENT_YES.

event_init

[Stand-alone]

#i ncl ude <event. h>
voi d event _init (EVENT *event, EVENT *val ue);

event_init will put the given event into a standard state and discard any list of waiting threads. This
function must be called before the event can be used for the first time. The second parameter, value,

may be one of:

EVENT_YES the event is left set.

EVENT_NO the event isleft reset
EVENT_NO

[Stand-alone]

#i ncl ude <event. h>

The value of an EVENT that has not been set and has no threads waiting on it. Threads are waiting on
an EVENT if itsvalueis neither EVENT_NO nor EVENT _YES.

event_pulse

[Stand-alone]

#i ncl ude <event. h>
voi d event _pul se(EVENT *event);

event_pulse will set the given event and immediately clear (reset) it; the setting and clearing are done
indivisibly. All threads waiting on the event will be restarted and the event will be left in the reset
state (EVENT_NO) with no waiting threads.

e\/ent_wt [Stand-alone]

#i ncl ude <event. h>
voi d event _set (EVENT *event);

event_set sets the given event. All threads waiting on the event will be restarted and the event will be
left in the set state (EVENT_YES) with no waiting threads.

ev ent_waj t [Stand-alone]

#i ncl ude <event. h>
voi d event _wait (EVENT *event);

event_wait tests the current value of the given event. If the event is set, the calling thread will continue
execution. If the thread is not set, the current thread will be suspended and added to the list of threads
waiting for the event. All such waiting threads will be restarted when the event is set.

EVENT_YES

[Stand-alone]

#i ncl ude <event. h>

165

The Diamond Library

The value of an EVENT that has been set; there are no threads waiting on it. Threads are waiting on
an EVENT if itsvalueis neither EVENT_NO nor EVENT_YES.

eX| t [Stand-alone]
#i nclude <stdlib. h>
void exit(int status);
exit is the normal means of terminating program execution. It calls all the functions registered by calls
to atexit (in reverse order of registration), and then closes all the task's files. The call to exit never
returns.
status is used to tell the operating system about the status of the terminating program. The header
<stdl i b. h> defines two macros so that this may be done in a machine-independent way. If status
is zero or EXIT_SUCCESS, the program is terminating successfully. If statusis EXIT_FAILURE it is
terminating unsuccessfully.
The value of statusis given to the host operating system result code: 0 indicates success, and non-zero
indicates failure.
Animplicit call is made to exit(EXIT_SUCCESS) when the main function returns.

eXp [Stand-alone]
#i ncl ude <mat h. h>
doubl e exp(doubl e x);
exp returns €*. The function returns HUGE_VAL and errnois set to ERANGE if the value of eXistoo
large to be represented.

fabS [Stand-alone]
#i ncl ude <mmt h. h>
doubl e fabs(double arg);
fabs returns the absolute value of arg.

fclose [Server]
#i ncl ude <stdi o. h>
int fclose(FILE *stream;
fclose causes any buffers for the specified stream to be emptied, and the file to be closed. Buffers
alocated by the standard 1/0 system are freed.
fcloseis called automatically upon calling exit.
fclose returns non-zero if stream is not associated with an output file, or if buffered data cannot be
transferred to that file.

feof [Server]

#i ncl ude <stdio. h>
int feof (FILE *strean;

166

The Diamond Library

feof returns non-zero when end of file is read on the named input stream, otherwise zero. It is
implemented as a macro.

ferror

[Server]

#i ncl ude <stdi o. h>
int ferror(FILE *strean;

ferror returns non-zero when an error has occurred reading the named stream, otherwise zero. Unless
cleared by clearerr, the error indication lasts until the stream is closed.

ferror isimplemented as a macro.

fflush

[Server]

#i ncl ude <stdi o. h>
int fflush(FILE *strean);

fflush causes any buffered data for the named output stream to be written to the file or device
associated with that stream. The stream remains open.

fflush is called automatically by close, and when all streams are implicitly closed by exi t .

EOF isreturned if stream is not associated with an output file or if buffered data cannot be transferred
to that file.

fgetc

[Server]

#i ncl ude <stdi o. h>
int fgetc(FILE *stream;

fgetc returns the next character from the specified input stream. Successive calls return successive
characters from the stream. fgetc is a genuine function, unlike get ¢ which isamacro.

EOF isreturned at end of file or if aread error occurs.

fgetpos

[Server]

#i ncl ude <stdi o. h>
int fgetpos(FILE *stream fpos_t *pos);

fgetpos stores the file position in the object pointed to by pos. The type fpos t is defined in
<stdio. h> .

If successful, fgetpos returns zero. If it fails, it returns a non-zero value, and sets errno to EBADF for
abad file descriptor, or EINVAL for any other error.

.Warning

In the current version of Diamond, fgetpos should only be used with binary files.

fgets

[Server]

167

The Diamond Library

#i ncl ude <stdio. h>
char *fgets(char *str, int n, FILE *strean);

fgets reads a maximum of n-1 characters from the stream and stores them in the string str. Reading
stops when a newline has been stored or when end-of-file is encountered. The last character read into
strisfollowed by a NUL character.

fgets normally returns str. If an error occurs, or if end-of-file is encountered before any characters
have been read, fgets returns NULL.

Note that fgets behaves differently from get s with respect to any terminating newline character:
fgets keeps the newline, get s deletesit from the string.

floor [Stand-alone]
#i ncl ude <mat h. h>
doubl e fl oor(double x);
floor returns the largest integer not greater than x, expressed as a floating-point value.

f m Od [Stand-alone]
#i ncl ude <mat h. h>
doubl e frod(doubl e x, double y);
fmod returns the remainder from x/y.

fopen [Server]

#i ncl ude <stdio. h>
FILE *fopen(const char *filenane, const char *type);

fopen opens the file named by filename and associates a stream with it. fopen returns a pointer to be
used to identify the stream in subsequent operations; if filename cannot be accessed in the way
reguested, the function returns NULL.

typeis acharacter string made up of the following parts:

1. A specification of whether the file is to be opened for reading "r", writing "w" or appending "a".
This specifier must appear as the first character in the type string.

2. Anoptional "update” specifier "+". If included, the file is opened for both reading and writing. If
omitted, the file is opened in the mode described by the first character of type.

3. An optiona specification of whether the file is to be a text file, "t", or a binary file "b". If this
specifier is omitted, the file is taken to be atext file. Text and binary files are discussed * here*.

The second and third parts of the type string may appear in any order. For example, "r+b" and "rb+"
are equivalent. Here are some examples of possible values for type, along with a description of their
interpretation.

"rt open text file for reading
"rt" open text file for reading
"rb" open binary file for reading

168

The Diamond Library

"rb+" open binary file for update

"r+b" open binary file for update

"w" truncate and write to, or create, text file
"a' append to, or create, text file

"ab" append to, or create, binary file

fopen will fail if the file is to be opened for reading ("r") and it does not exist. For writing ("w") or
appending ("a"), the file will be created if it does not exist.

If afileis open to read and write (the type argument includes a "+"), it is not possible to switch
directly from reading to writing or vice versa. Instead, there must be acall to f seek between them. If
thisis not done, the results are undefined.

fprintf

[Server]

#i ncl ude <stdio. h>
int fprintf(FILE *stream const char *format, ...);

The arguments that follow the format argument are output to the specified stream, using put c. The
format argument controls the way in which the following argument list is converted for output.

The format argument is a character string that contains two types of object: plain characters, which are
simply copied to the output stream, and conversion specifications, each of which causes conversion
and output of the next argument.

Each conversion specification is introduced by the character "%". Following the "%" there may be the
following, in the given order.

Flags Field. This optiona field includes any of the following flags, in any order:

- The value will be left-justified

+ The value will always start with asign.
space If the value does not start with a sign, a space will be placed before it.
Use an "alternate form" conversion. The aternate forms depend on the conversion

character, asfollows:

o] Increase specified precision by one character, so that the leading digit is
awaysO.

X Precede non-zero value by "0x"
X, p Precede non-zero value by "0X"
eEf,0,G Output decimal point even if no digitsfollow it.
0,G Do not remove trailing zeroes

0 For the"d", "i", "o", "u", "x", "X", "p", "€", "E", "f", "g", "G" conversion characters,
the value is padded with zeroes. If the "-" flag appears as well, "0" isignored. For the
tdt 1, o, tut, X, XM, p" conversion characters, if aprecision is specified, the 0"
flag isignored.

Field Width. This optional field is a decimal integer; or an asterisk "*", indicating that the value for
the field width is obtained from the next argument, which should be anint.

The converted value is padded on the left (or on the right, if the "-" flag has been specified). If a"0"
flagisinforce, padding will be with "0" characters; otherwise, it will be with spaces.

169

The Diamond Library

Precision. This optional field consists of a"." and either a decimal integer, or an asterisk, "*". If it is
an asterisk, the value for the precision is obtained from the next argument, which should be an int. If

only a"." is specified, the precision is taken as zero.

The meaning of the precision depends on the conversion character, as follows:

d, 1, 0,u,x, X The minimum number of digits.

e Ef The number of digits to appear after the decimal point.

0, G The maximum number of significant digits.

S The maximum number of characters to be written from a string.

Prefixes. This optional field may contain one of the following:

h Thefollowing "d", "i", "o", "u", "X" or "X" conversion character corresponds to a short int or
unsigned short int argument; or, the following n conversion character corresponds to an
argument which is a pointer to a short int.

I Thefollowing "d", "i", "o", "u", "X" or "X" conversion character correspondsto alongint or
unsigned long int argument; or, the following n conversion character corresponds to an
argument which isapointer to alongint.

L Thefollowing "e", "E", "f", "g" or "G" conversion character corresponds to along double
argument.

Conversion Character. The conversion characters and their meanings are;

d, | The int argument is converted to decimal notation. The default precisionis 1.

o,u, x, X The unsigned int argument is converted to unsigned octal ("0"), unsigned decimal ("u")
or unsigned hexadecimal ("x" or "X"). The default precision is 1. When writing a
hexadecimal number, the |etters abcdef are used for "x" conversion, and ABCDEF for
"X" conversion.

F The double argument is converted to decimal notation in the form "[-]ddd.ddd" where
the number of digits after the decimal point is equal to the precision specification for
the argument. The default precisionis 6.

e E The double argument is converted to decimal notation of the form "[-]d.ddde[+]dd".
Thereis one digit before the decimal point and the number after is equal to the
precision specification for the argument; the default precisionis 6. The "e" conversion
character generates "e" as the exponent character, while "E" generates"E".

0, G The double argument is output in style "f" or "€". The precision specifies the number of
significant digits; the default is 1. Style"€e" isonly used if the exponent after
conversion is less than -4 or greater than or equal to the precision. Style"E" isused in
place of "e" if "G" is specified.

C Theint argument is converted to unsigned char and printed.

S The argument is taken to be a string (character pointer) and characters from the string
are printed until a NUL character is reached or until the number of charactersindicated
by the precision specification is reached; however, if the precision is zero or missing,
all characters up to, but not including, a NUL are printed. Note that aNULL pointer is
interpreted as an empty string:

fprintf(f, "%", 0); [// generates no out put

P The value of the pointer-to-void argument is printed as a hexadecimal number. The
default precisionis 8.

N No output is performed. Instead, the number of characters output so far by thiscall to
fprintf is placed in the int variable that the argument points at.

% Print a"%" character; no argument is converted

170

The Diamond Library

In no case does a non-existent or small field width cause truncation of a field. The maximum length
for asingle converted argument is 512 characters.

fprintf returns the number of characters output, or a negative value if an output error occurred.

fputc

[Server]

#i ncl ude <stdio. h>
int fputc(int cval, FILE *strean);

fputc appends the character cval to the specified output stream. It returns the character written. fputc,
unlike put ¢, isagenuine function rather than a macro.

fputc returns EOF if an error occurs.

fputs

[Server]

#i ncl ude <stdi o. h>
int fputs(const char *str, FILE *strean;

fputs copies the NUL-terminated string str to the specified output stream. The NUL character that
terminates the string is not written to the stream.

Note that unlike put s, fputs does not append a newline to the output string.

fread

[Server]

#i ncl ude <stdi o. h>
size_t fread(void *ptr, size_t size, size_t nitens, FILE *stream;

fread reads nitems objects, each size characters in length, from the specified input stream into memory
at location ptr. It returns the number of complete items actually read. Zero is returned on error
conditions or end of file.

For example, the following code fragment reads ten integer values from the file f into the integer array
a

#i ncl ude <stdi o. h>
FI LE *f;
int a[10];

fread(a, sizeof(int), 10, f);

Note that the size argument specifies the size of an item in characters, that is, in octets (eight-bit
bytes). The program will always receive size octets for each item, and the same number of octets will
be read from thefile.

free

[Heap] [Stand-alone]

#i nclude <stdlib. h>
void free(void *ap);

free frees the space pointed to by ap, which will have been obtained originaly by a cal to mal | oc,

171

The Diamond Library

menmal i gn, cal | oc orreal | oc. If apisanull pointer, no action is taken.

It is an error to attempt to free space that was not alocated by a call to nal | oc, nmenal i gn,
callocorreall oc.

freopen

[Server]

#i ncl ude <stdio. h>
FILE *freopen(const char *filename, const char *type, FILE *strean);

freopen substitutes the named file filename in place of the open stream. It returns the original value of
stream. The original stream is closed.

freopen is typically used to attach the pre-opened constant names stdin, stdout and stderr to specified
files.

type is a character string specifying the way in which the file is to be opened. Refer to the description
of f open for afull description of the type string.

freopen returns the pointer NULL if filename cannot be accessed.

fr eXp [Stand-alone]
#i ncl ude <mat h. h>
doubl e frexp(doubl e value, int *exp);
frexp breaks value into its normalised fraction and an integral power of 2. The function returns the
fractional part and the integral part is stored in the variable pointed to by exp.

fscanf [Server]

#i ncl ude <stdio. h>
int fscanf(FILE *stream const char *format, ...);

fscanf reads characters from the specified input stream, interprets them according to a format string
and stores the results in the variables pointed to by the arguments following format.

The format string is regarded as a sequence of directives, which are processed one by one. fscanf tries
to match each directive with characters read from the input stream; the way in which this matching is
done depends on the directive. If a directive does not match characters from the input stream, we say
that a matching error has happened and the character which caused the error is not read; fscanf returns
at once.

There are three types of directive:

1. White space of any length will match white space of any length. If the input stream does not have

white space at this point, the directive isignored.

2. A conversion specification, which is a sequence of characters starting with a "%". These are
discussed below.

3. Any other character will match the next character of the input stream if they are the same.

A conversion specification consists of the following, in this order:

1. Thecharacter "%";

172

The Diamond Library

2. Anoptiona character "*", indicating that the converted value is not to be stored;

3. The field width: an optional non-zero integer which specifies the maximum alowable width of
the input field;

4. A prefix character, which indicates the type of the associated argument, as shown in the
following table:

Prefix Conversion characters
tdr,tit, ' n” "o","u", " X" e, g
h short int unsigned short int
I longint unsigned long int double
L long double

Note that on the C6000, double and long double variables are represented in the same way.

5. Oneof the conversion specifiers listed below.

Each conversion specification will match a sequence of characters of a particular format, and these
characters are read from the input stream. Reading stops when the first character that does not fit into
this format is encountered; this character is not read. It is a matching error if no characters are read,
that is, if not even one character would fit the assumed format for this specification.

The character sequence that has been read is converted in one of a variety of ways, and the resulting
internal value is stored in the variable pointed to by the next argument (unless "* "was included in the
specifier). If thisvariable is not of an appropriate type for the value that has been converted, the effect
is undefined.

The following specifiers are recognised:

% Matches a"%" character. The complete specifier must be "%%". No argument is used.

C Matches a sequence of characters of the length specified in the field width (1 by
default). The argument should be a pointer to an array of characters large enough to
accept the string. Note that unlike "s*, the "c" specifier does not skip white space; to
read the next non-space character, use "%1s".

d Matches an optionally-signed decimal integer. The argument should be a pointer to an
integer
ef,g Match afloating-point number with a format such as would be acceptable to the

st rt od function. This means an optionally-signed string of digits, possibly
containing a decimal point, followed by an optional exponent field consisting of an "E"
or "e" followed by an optionally-signed integer. The argument should be a pointer to a
floating-point variable.

i Matches an optionally-signed integer with aformat such as would be acceptable to the
strtol functionwith abase value of 0. This means that strings starting with "0x" or
"0X" are interpreted as hexadecimal, strings starting with "0" are interpreted as octal,
and others as decimal. The argument should be a pointer to an integer.

n The argument should be a pointer to an integer, and in thisinteger iswritten the
number of characters read so far by this call to fscanf. The n specifier reads no
characters.

0 Matches an optionally-signed octal integer. The argument should be a pointer to an
integer.

p Matches a pointer value of the format output by ap specifier inaf pri nt f function
call. The argument should be a pointer to a pointer to void.

S Matches a character string which includes no white space. The argument should be a

pointer to an array of characters large enough to accept the string and a terminating

173

The Diamond Library

NUL character, which will be added.

u Matches an optionally-signed decimal integer. The argument should be a pointer to an
unsigned integer.
X Matches an optionally-signed hexadecimal integer with aformat such as would be

acceptabletothe st rt oul function with a base value of 16. This means that the
string may, but need not, start with "0x" or "0X". The argument should be a pointer to
an integer.

[This specifier includes al the characters from the "[" up to alater "]". The characters
between the brackets are called the scan-set. The specifier matches a sequence of
characters all of which are members of the scanset. So, for example, "[aeiou]” would
match a sequence of vowels, of any length and in any order. The argument should be a
pointer to an array of characters large enough to accept this sequence.

If the first character of the scan-set isa"/", then the specifier matches a sequence of
characters none of which are members of the scan-set. To enable the scan-set to
includea"]", the standard provides that if the scan-set starts with "]" or "~]" thiswill
not end the specifier and another "]" will be needed. In other words, "[])>]" isavaid
specifier, defining a scan-set consisting of "],)" and ">".

The conversion specifiers "E", "G" and "X"are treated as being equivalent to "€", "g", and "x". In
addition, for compatibility purposes only, "F" is accepted as being equivalent to "If", that is, a
floating-point conversion that expects a pointer to double as the argument.

If end-of-file or an input error occurs before any conversion is done, fscanf returns "EOF". Otherwise,
it returns the number of input items successfully converted and stored. The specifier n and specifiers
including a"*" do not count towards this number.

fseek

[Server]

#i ncl ude <stdio. h>
int fseek(FILE *stream long int offset, int whence);

fseek sets the file position indicator of the specified stream. The new position is at the signed distance
offset characters from a location specified in whence. Three macros are provided for specifying
whence:

SEEK_SET the start of thefile
SEEK_CUR the current file position
SEEK_END the end of thefile

fseek undoes any effects of unget c; that is, characters which have been "pushed back" into a stream
by unget ¢ will not subsequently be read. Instead, reading will proceed from the new file position.

fseek returns -1 for improper seeks, or zero for normal completion.

When operating on atext file, fseek's arguments are limited in the following ways:
» offset may only be 0.

* whence may only be SEEK_SET or SEEK_END.

The ANSI standard also allows fseek to be applied to a text file with whence set to SEEK_CUR and
offset set to a value previously obtained by applying ftell to the same stream. The current version of
Diamond does not support this.

174

The Diamond Library

fsetpos

[Server]

#i ncl ude <stdio. h>
int fsetpos(FILE *stream const fpos_t *pos);

fsetpos sets the file position of the specified stream to the position stored in the object pointed to by
pos. This value should have been stored by an earlier call to fgetpos.

If successful, fsetpos returns zero. If it fails, it returns a non-zero value, and sets errno to EBADF for a
bad file descriptor, or EINVAL for any other error.

= Note

In the current version of Diamond, fsetpos should only be used with binary files.

ftell

[Server]

#i ncl ude <stdi o. h>
long int ftell (FILE *strean);

ftell returns the current value of the offset relative to the beginning of the file associated with the
named stream. This offset is measured in characters.

When operating on a text file, ftell may not give an accurate position unless the current position is
either at the beginning or the end of thefile.

fwrite

[Server]

#i ncl ude <stdio. h>
size t fwite(const void *ptr, size t size, size t nitens, FILE *strean);

fwrite writes nitems objects, each of size characters, from memory at location ptr to the specified
output stream. It returns the number of complete items actually written. Zero is returned on error
conditions.

For example, the following code fragment writes the contents of theint array ainto thefilef:

#i ncl ude <stdi o. h>
FI LE *f;
int a[10];

fwite(a, sizeof(int), 10, f);
Note that the size argument specifies the size of an item in characters, that is, in octets (eight-bit

bytes). The program will always send size octets for each item, and the same number of octets will be
written from thefile.

getc

[Server]

#i ncl ude <stdi o. h>
int getc(FILE *strean);

getc returns the next character from the named input stream. Successive calls on getc return successive
characters from the stream. getc isimplemented as a macro.

175

The Diamond Library

EOF isreturned on end of file or when aread error is detected.

getchar [Server]

#i ncl ude <stdio. h>
i nt getchar(void);

getchar() isidentical to get c(stdin). It returns the next character from the standard input stream stdin.
getchar isimplemented as a macro.

EOF is returned on end of file or read error conditions.

getenv [Server]

#i ncl ude <stdlib. h>
char *getenv(const char *nane);

This function asks the host operating system to return the value of the string that is pointed to by
name. If name is known to the host operating system, the function returns a pointer to the
corresponding global string value; otherwise, anull pointer is returned.

Note that the string value pointed to by getenv will be valid only until the next call on getenv.
Subsequent calls on getenv will overwrite the memory used for the original result. If you need to make
severa cals to getenv, you should therefore copy the value returned by getenv into a local string
before making further calls.

Under MS-DOS, name is assumed to be a pointer to a string which is the name of an environment
variable, such as PATH, or any of those defined by the SET command.

Note that the names of al environment variables are forced to be upper-case by the command

processor. Thus, the result of the following command would be the definition of a variable called
FRED set to the value Mixed:

set fred=M xed

gets [Server]

#i ncl ude <stdio. h>
char *gets(char *str);

gets reads a string into str from the standard input stream stdin. The input string is terminated by a
newline character, which isreplaced in str by a NUL character. gets returns its argument as result.

getsreturns NULL on end of file or error.

Note that gets works differently to the similarly named f get s in its treatment of the terminating
newline character: gets deletesthe newline, f get s keepsiit.

h 0§| n [Stand-alone]

/1 there is no header file
extern void _host_in(size_t bytes, void *buffer);

176

The Diamond Library

This function is similar to link_in, but gets its data from the next processor nearer to the host (the one
that was used to load this processor). The root processor uses this function to read messages from the
host. This function is normally only used to communicate with user-written code running on the PC,
asit can disrupt communication with the standard host server.

_h ost_out [Stand-alone]

/1l there is no header file
extern void _host _out(size t bytes, void *buffer);

This function is similar to link_out, but sends its data to the next processor nearer to the host (the one
that was used to load this processor). The root processor uses this function to write messages to the
host. This function is normally only used to communicate with user-written code running on the PC,
asit can disrupt communication with the standard host server.

host_sema_wait [Server]

/1l there is no header file
extern void host_sema_wait(int n);

This function waits for the host to signal one of the 10 host event semaphores maintained by the
Diamond kernel. Signalling the host semaphore is discussed here.

The parameter "n" identifies the host semaphore on which the current thread wishes to wait, and must
beintherange0<=n<=09.

INPUT_PORT [Server]

#i ncl ude <chan. h>
I NPUT_PORT(portid, identifier)

The INPUT_PORT macro takes the task’s input port selected by portid and associates the bound
channel with an identifier; thisidentifier will be a variable of type CHAN. The macro may be used as
adeclaration in any file used to build a task.

Portid can be:

e aninteger constant index into the task’ s input port vector, selecting a particular port;

» the name of a CONNECT statement in the configuration file, selecting the input port specification
for this task.

See also QUTPUT_PORT.

For example, given the following extract of a configuration file:

TASK A

TASK B INS=4

CONNECT control Al 1] B[2]

The main function of B could include the following:

| NPUT_PORT(control, control _in)
| NPUT_PORT(3, data_in);

177

The Diamond Library

mai n(int argc, char *argv[], char *envp[],
CHAN *in_ports[], int ins,
CHAN *out _ports[], int outs)

{
i:hén_i n_nessage(16, b, in_ports[2]);
chan_i n_message(16, b, &control _in); /| sane as above
chan_in_nessage(12, b, in_ports[3]);
chan_i n_nessage(12, b, &data_in); /1l sane as above
isalnum [Server]

#i ncl ude <ctype. h>
int isalnun(int cval);

Returns anon-zero valueif cval is aletter or adigit, O otherwise.

isalpha

[Server]

#i ncl ude <ctype. h>
int isalpha(int cval);

Returns anon-zero value if cval is aletter, O otherwise.

iscntrl [Stand-alone]
#i ncl ude <ctype. h>
int iscntrl(int cval);
Returns a non-zero value if cval is an ASCII control character (code less than 20 160 O code 7F 1 6), 0
otherwise.

isdigit [Server]
#i ncl ude <ctype. h>
int isdigit(int cval);
Returns a non-zero valueif cval is one of the digits "0"—"9", O otherwise.

i Sgr aph [Stand-alone]

#i ncl ude <ctype. h>

int isgraph(int cval);

Returns a non-zero value if cval is a printing character, codes 21 -~
Returns O otherwise.

("I'") to 7E) inclusive.

16’ 16 (

Note that this function treats the character values between 128 and 255 inclusive as non-printable,
although most are visible on a PC screen and on some printers.

178

The Diamond Library

i g ower [Stand-alone]

#i ncl ude <ctype. h>
int islower(int cval);

Returns anon-zero value if cval is alower-case letter, O otherwise.

ispr int [Stand-alone]

#i ncl ude <ctype. h>

int isprint(int cval);

Returns a non-zero value if cval is a printing character, codes 20 16 (space) to 7E_ . ("~"
Returns 0 otherwise.

16 ("~") inclusive.

Note that this function treats the character values between 128 and 255 inclusive as non-printable,
although most are visible on a PC screen and on some printers.

i spunct [Stand-alone]

#i ncl ude <ctype. h>
int ispunct(int cval);

Returns a non-zero value if cval is a punctuation character; otherwise 0. A punctuation character is
defined as being any printing character (see isgraph) that is not aletter, adigit or a space.

i SSpace [Stand-alone]

#i ncl ude <ctype. h>
int isspace(int cval);

Returns a non-zero value if cval is a space, horizontal or vertical tab, carriage return, newline or form
feed character, O otherwise.

ISLlpper [Stand-alone]

#i ncl ude <ctype. h>
int isupper(int cval);

Returns a non-zero valueif cval is an upper-case letter, O otherwise.

i S(d | g| t [Stand-alone]

#i ncl ude <ctype. h>
int isxdigit(int cval);

Returns anon-zero valueif cval is a printing hexadecimal digit, O otherwise.

The printing hexadecimal digitsare"0" to"9", "a" to "f" and "A" to "F".

_k ern el [Stand-alone]

179

The Diamond Library

extern void *_kernel;

This variable is declared in several system header files, including <c6xkobj . h> |, and gives a
pointer to the kerne which is required for certain functions, most importantly,
SC6xKernel _Locatel nterface.

[Stand-alone]

#i nclude <stdlib. h>
long int labs(long int val);

|abs returns the absolute value of val .

If val isthe most negative long int value, LONG_MIN, the result cannot be represented and the
value returned is undefined.

Idexp

[Stand-alone]

#i ncl ude <mat h. h>
doubl e | dexp(double x, int exp);

Idexp returns the result of x multiplied by the value of two raised to the power exp. If the result is too
large, the function returns HUGE_VAL and errno is set to the value of ERANGE.

[div

[Stand-alone]

#i ncl ude <stdlib. h>
Idiv_t lIdiv(long int dividend, long int divisor);

This function divides dividend by divisor and returns both the quotient and the remainder in a
structure of type div_t. Thistypeisdefinedin <st dl i b. h> and includes the following fields:

| ong int quot; /1 contains the quotient
long int rem /1 contains the renmai nder

If the division is inexact, the quotient returned is the integer of lesser magnitude which is nearest to
the algebraic quotient. If the result cannot be represented, the behaviour of Idiv is undefined.

link_in

[Stand-alone]

#i ncl ude <l ink. h>
void link_in(size_t len, void *b, int link_no);

This function reads a message of length len octets (eight-bit bytes) from link link_no into the area of

memory pointed to by b. The argument link_no should be an integer specifying one of the processor's
links. The function will wait if no data are available on the link.

<1 Caution

This function should be used with care as it can disrupt channel communications. You
should normaly use the link functions only on links that have been mentioned in

180

The Diamond Library

DUMMY WIRE statements. Communication between tasks is more usually carried out
by using the <chan. h> functions.

I | n k_| n_W0r d [Stand-alone]

#i ncl ude <link. h>
void link_in_word(int *w, int |ink_no);

This function reads a word-length message (four eight-bit bytes) from link link_no, and places the
value read in the variable pointed to by w. The argument link_no should be an integer specifying one
of the processor's links. The function will wait if no data are available on the link.

-

<1 Caution

This function should be used with care as it can disrupt channel communications. You
should normally use the link functions only on links that have been mentioned in
DUMMY WIRE statements. Communication between tasks is more usually carried out
by using the<chan. h> functions.

lin k_OU'[[Stand-alone]

#i ncl ude <link. h>
void link out(size t len, void *b, int link_no);

This function sends a message of length len octets (eight-bit bytes) from the area of memory pointed
to by b to link link_no. The argument link_no should be an integer specifying one of the processor's
links. The function will wait until the link is able to accept the data.

<1 Caution

This function should be used with care as it can disrupt channel communications. Y ou
should normally use the link functions only on links that have been mentioned in
DUMMY WIRE statements. Communication between tasks is more usually carried out
by using the<chan. h> functions.

link_out_word [Stand-alone]

#i ncl ude <l ink. h>
void link out_word(int w, int Iink_no);

This function sends a word-length message (four eight-bit bytes) consisting of the value w to link
link_no. The argument link_no should be an integer specifying one of the processor's links. The
function will wait until the link is able to accept the data.

E

<1 Caution

This function should be used with care as it can disrupt channel communications. Y ou
should normally use the link functions only on links that have been mentioned in
DUMMY WIRE statements. Communication between tasks is more usually carried out
by using the<chan. h> functions.

181

The Diamond Library

localeconv [Stand-alone]

#i ncl ude <l ocal e. h>
struct I conv *local econv(void);

localeconv returns a pointer to an abject of type struct Iconv. The format of this structure is described
in section 4.4 of the ANSI standard, and the type is defined in <l ocal e. h> . The fields of this
structure contain information about the way in which numeric values, including monetary values, are
output by the run-time library with the current locale.

Asthe current version of Diamond only supports locales "C" and ", as laid down by the standard, and
as both of these have the same characteristics, the values returned for the various members of the
Iconv structure are always those laid down in 4.4 of the standard.

| og [Stand-alone]
#i ncl ude <mat h. h>
doubl e | og(doubl e x);
log returns the natural logarithm of x.
If X is negative, log returns HUGE_VAL, and errno is set to the value of EDOM. If x is zero, it returns
HUGE_VAL and sets errno to ERANGE.

| ogl0 [Stand-alone]
#i ncl ude <mat h. h>
doubl e 1 0g10(doubl e x);
10910 returns the logarithm of x to base 10.
If x is negative, 10g10 returns HUGE_ VAL, and errno is set to the value of EDOM. If x is zero, it
returns HUGE_VAL and sets errno to ERANGE.

longimp [Stand-alone]
#i ncl ude <setj np. h>
void | ongj nmp(j np_buf env, int val);
This function, together with set j np, is useful for dealing with errors encountered in a low-level
subroutine of the program. longjmp restores the stack environment saved in its env argument by an
earlier call on setj np. This has the effect of resuming execution immediately after that setj np
cal. set j np's caller can distinguish between the original return from set j np and the second return
caused by longjmp by examining set j np's return value. This is aways O for the initial return, and
the value of longjmp's val argument for subsequent returns. If val is set to 0, longjmp will change it to
alin order to preserve this condition.The function that originally called set j np must not itself have
returned before the call to longjmp. All accessible data still have their values as of the time longjmp
was called.

malloc

[Stand-alone] [Heap]

#i ncl ude <stdlib. h>
void *nmal |l oc(size_t nchars);

182

The Diamond Library

malloc allocates space for an object whose size is specified in octets (eight-bit bytes) by nchars. The
function returns a pointer to the start of the allocated space. If the space cannot be allocated, malloc
will return anull pointer. The amount of storage available to malloc (the heap) is set by the configurer.
See also: calloc, memalign, and realloc. The space returned will be aligned on an 8-byte boundary.

Space alocated by malloc is not initialised by the run-time library, and may contain arbitrary values.
If a zeroed area of storage is required, the function cal | oc should be used. Note that cal | oc has
two arguments compared to malloc's one. Thus, acall to malloc(n) must be rewritten as calloc(n,1).

If arequest for a zero-length block is made, a pointer to a short—but real—block will be returned by
malloc. Note, however, that programs intended to be portable to other implementations of C should
not make the assumption that this is so; some other implementations return a null pointer instead.

m bl en [Stand-alone]

#i ncl ude <stdlib. h>
i nt nblen(const char *s, size_t n);

If sisanull pointer, mblen returns O, indicating that, for the current version of Diamond, multibyte
character encodings are never state dependent. Otherwise, it returns the width in octets (eight-bit
bytes) of the multibyte character pointed to by s. In the current version, this will be 1, unless s is
pointing at a null character, in which case it will be 0.

For further details are available here.

mbstowcs [Stand-alone]

#i nclude <stdlib. h>
size_t nbstowcs(wchar _t *pwcs, const char *s, size t n);

The multibyte string pointed to by s is converted to a wide character string and stored in the array
pointed to by pwcs. Conversion stops when a null character has been converted, or when n elements
have been converted. mbstowcs returns the number of elements converted, excluding the terminating
zero, if any.

Note that, in the present version of Diamond, multibyte characters and wide characters are both one
octet (eight-bit byte) in length and there is no state-dependent encoding, so this function is equivalent
to astring copy. All possible element values are valid, so no error return can happen.

Further details are available here.

m thWC [Stand-alone]

#i ncl ude <stdlib. h>
i nt nbtowc(wchar _t *pwc, const char *s, size_t n);

If sisanull pointer, mbtowc returns 0, indicating that, for the current version of Diamond, multibyte
character encodings are never state dependent. Otherwise, it returns the width in octets (eight-bit
bytes) of the multibyte character pointed to by s. In the current version, this will be 1, unless s is
pointing at a null character, in which case it will be 0.

In addition, the character pointed to by s will be converted to a wide character and stored in the
location pointed to by pwc. In the current version, as both wide and multibyte characters are aways 1
octet in length, this is equivalent to copying the character. The argument n specifies the maximum
number of octets to be scanned.

Further details are available here.

183

The Diamond Library

memalign [Stand-alone]

#i ncl ude <stdlib. h>
void *nenmalign(size_t alignnent, size_t nchars);

memalign allocates space for an object whose size is specified in octets (eight-bit bytes) in nchars.
The alignment of the space is specified in alignment. Thus, if alignment is 16, the space returned will
be aligned on a 16-octet boundary. Note that malloc alignsits result on an 8-byte boundary.

The function returns a pointer to the start of the allocated space. If the space cannot be allocated,
memalign returns anull pointer.

Space alocated by memalign is not initialised by the run-time library and may contain arbitrary
values. The function menset should be used to clear the storage returned by memalign if a zeroed
area of storageis required.

If arequest for a zero-length block is made, a pointer to a short—but real—block will be returned by
memalign. Note, however, that programs intended to be portable to other implementations of C should
not make the assumption that this is so; some other implementations return a null pointer instead.

memchr [Stand-alone]

#i ncl ude <string. h>
void *nenchr(const void *s, int c, size t n);

The memchr function searches for the value ¢ (converted to an unsigned char) in the memory block
starting at s. The memory block is n octets (eight-bit bytes) in length.

The function returns a pointer to the first occurrence of ¢ within the memory block. If the character is
not located, a null pointer is returned.

memcmp [Stand-alone]

#i ncl ude <string. h>
i nt nmencnp(const void *s1, const void *s2, size_t n);

The memcmp function compares the first n octets (eight-bit bytes) of the two objects pointed to by sl
and s2. The result returned will be less than, greater than, or equal to zero according to whether the
object pointed to by sl isless than, greater than, or equal to the object pointed to by s2.

The comparison operation is performed one character at atime on the complete object; aresult will be
returned when the first difference between the objectsis located.

When comparing complex objects, particularly when these were allocated using malloc from the heap,
remember to take account of the following:

"Holes" are sometimes introduced into struct or union objects by the compiler to ensure that fields are
correctly aligned on appropriate address boundaries. The contents of such ““holes" are not defined,
unless the objects are statically allocated, or explicitly initialised in their entirety by use of memset or
caloc.

Character arrays used as string variables may contain string values whose length is less than that of a
previous string value held in the same array. The active values may be followed by parts of the
previous value, causing problemsin a comparison using memcmp.

mem pr [Stand-alone]

#i ncl ude <string. h>

184

The Diamond Library

void *nencpy(void *sl1, const void *s2, size t n);

memcpy copies n octets (eight-bit bytes) from the object pointed to by s2 into the object pointed to by
sl. memcpy returns the value of s1.

If the two objects pointed to by sl and s2 overlap, the behaviour of memcpy is undefined. To copy
from one object to another which overlapsit, or when it is not known whether the two objects overlap,
you can use the menmove function instead of memcpy.

memmove [Stand-alone]

#i ncl ude <string. h>
voi d *nmemove(void *sl1, const void *s2, size_t n);

memmove copies n octets (eight-bit bytes) from the object pointed to by s2 into the object pointed to
by s1. memmove returns the value of sl.

If the two objects pointed to by sl and s2 overlap, memmove will still perform the copy correctly.
This is in contrast to memcpy, for which the behaviour would be undefined. If it is known that the
objects pointed to by s1 and s2 definitely do not overlap, you can use the faster mentpy function
instead of memmove.

memset

[Stand-alone]

#i ncl ude <string. h>
void *nenset (void *ptr, int cval, size_ t nun;

The memset function copies the value of cval (converted to an unsigned char) into each of the first
num octets (eight-bit bytes) of the object pointed to by ptr.

The memset function returns the value of ptr.

modf [Stand-alone]
#i ncl ude <mat h. h>
doubl e nodf (doubl e val ue, double *iptr);
modf splits value into its integral and fractional parts. The function returns the signed fractional part
and the integral part is pointed to by *iptr.

N U L L [Stand-alone]
NULL is a macro defined in <stddef.h> , and dso in <l ocal e. h> |, <stdio. h> |,
<stdlib.h> and<string.h> .It may beused asanull pointer value of any type, such as (char
*)0 or (int *)0, for example.

Offwtof [Stand-alone]

#i ncl ude <stddef. h>
of f set of (type, menber-desi gnator);

185

The Diamond Library

This macro expands to a constant expression of type size t, which has the value of the offset in octets
(eight-bit bytes) from the beginning of the structure type to member-designator. The member may not
be a bit-field.

For example:

#i ncl ude <st ddef. h>
size t ip;
struct s {
char fill[4];
int jim
b
ip = offsetof(struct s, jim;

OUT PUT_PORT [Stand-alone]

#i ncl ude <chan. h>
QUTPUT_PORT(portid, identifier)

The OUTPUT_PORT macro takes the task’s output port selected by portid and associates the bound
channel with an identifier; thisidentifier will be a variable of type CHAN. The macro may be used as
adeclaration in any file used to build a task.

Portid can be:

e aninteger constant index into the task’s output port vector, selecting a particular port;
e the name of a CONNECT satement in the configuration file, selecting the output port
specification for this task.

Seeaso| NPUT_PORT.

For example, given the following extract of a configuration file:
TASK A OQUTS=4

TASK B

CONNECT control Al 1] B[2]

The main function of A could include the following:
QUTPUT_PCRT(control, control out)
QUTPUT_PORT(3, data out);

mai n(int argc, char *argv[], char *envp[],

CHAN *in_ports[], int ins,
CHAN *out _ports[], int outs)

{
éhén_out _message(16, b, out_ports[1]);
chan_out nessage(16, b, &control _out); /1 same as above
chan_out nessage(12, b, out_ports[3]);
chan_out nessage(12, b, &data out); /1l sane as above
par_fprintf [Stand-alone]

186

The Diamond Library

#i ncl ude <stdi o. h>
#i ncl ude <par. h>
int par _fprintf(FILE *stream const char *format, ...);

par_fprintf provides access to the function f pri nt f in circumstances where multiple threads are
active; access to the standard 1/O structures in the run-time library is interlocked through the
semaphore par_sema. In other respects, par_fprintf behaveslike f pri nt f, with the same arguments.
It returns the number of characters output, or a negative value if an output error has occurred.

Do not call this function if the current thread has aready claimed par_sema by caling
senma_wai t . Thiscould cause the thread to hang indefinitely.

pal’_f ree [Stand-alone]

#i ncl ude <par. h>
void par_free(void *ap);

par_free provides access to the function f r ee in circumstances where multiple threads are active;
access to the memory alocation structures in the run-time library is interlocked through the
semaphore par _sensa.

Do not call this function if the current thread has aready claimed par_senma by calling
sema_wai t . This could cause the thread to hang indefinitely.

par _mal loc [Stand-alone]

#i ncl ude <par. h>
void *par_nmalloc(size t nwords);

par_malloc provides access to the function mal | oc in circumstances where multiple threads are
active; access to the memory allocation structures in the run-time library is interlocked through the
semaphore par _sensa.

Do not call this function if the current thread has aready claimed par _sena by calling
senma_wai t . Thiscould cause the thread to hang indefinitely.

par_printf [Stand-alone]

#i ncl ude <par. h>
int par_printf(const char *format, ...);

par_printf provides access to the function pri ntf in circumstances where multiple threads are
active; access to the standard 1/O structures in the run-time library is interlocked through the
semaphore par _sena. In other respects, par_printf behaves like printf, with the same arguments. It
returns the number of characters output, or a negative value if an output error has occurred.

Do not call this function if the current thread has already claimed par_senma by calling
sema_wai t . This could cause the thread to hang indefinitely.

par_sema [Stand-alone]

#i ncl ude <par. h>
SEMA par _senms,;

When atask has more than one thread is running, steps must be taken to ensure that only one thread at

187

The Diamond Library

atime makes use of certain run-time library functions. A thread can ensure that this rule is not broken
by waiting for the semaphore par_sema before using one of these functions. After finishing with the
run-time library, the thread should signal par_sema so that other threads can get access.

par_semais also used by all the functions of the par package. For this reason, you must not call one of
the other par package functions from a thread which has already claimed par_sema as described
above.

Note that par_sema is initialised automatically by the run-time library. Do not try to initialise it in
your own code.

per ror [Stand-alone]
#i ncl ude <stdi o. h>
voi d perror(const char *s);
The perror function maps the value in the global variable errno into a textual message, which is
printed on the standard error stream stderr. If s is not a null pointer, perror first prints the string
pointed to by s followed by a colon and a space. Regardless of the value of s, perror next prints a
message corresponding to errno followed by a newline character.
The error messages produced by perror are the same as those that can be obtained by calling the
function strerror with errno as argument.
For example, if the current value of errno is EDOM, a call such as perror("myprog") might produce
the following outpuit:
nyprog: domain error

pOW [Stand-alone]
#i ncl ude <mat h. h>
doubl e pow(doubl e x, double y);
pow returns xY, the value of x raised to the power of .
If X is negative and y is not an integral number, pow returns HUGE VAL and sets errno to the value
of EDOM. If x is zero, and y is zero or negative, pow returns HUGE_VAL and sets errno to EDOM.
If the result of the function is too large, pow returns HUGE VAL and sets errno to the value of
ERANGE.

pr | ntf [Stand-alone]

#i ncl ude <stdi o. h>
int printf(const char *format, ...);

printf writes output to the standard output stream, stdout. It returns the number of characters that have
been output, or a negative value if an output error occurred. The arguments of printf have the same
meaning as the fprintf arguments of the same name. See the description of fprintf. A call to printf is
equivalent to acall to fprintf asfollows:

fprintf(stdout, format, ...);

188

The Diamond Library

Y ou can use printf for debugging non-root nodes. See here for restrictions.

prompt

[Stand-alone]

#i ncl ude <stdi o. h>
voi d pronpt(const char *string);

prompt sets a new value for the string that is used to identify requests for input from stdin. When
using the windows server, such input requests bring up a dialog; prompt changes the text used in the
title of that dialog. The setting will be used for subsequent input requests until changed by another call
to prompt. The maximum length of the string is 63 characters.

ptr d|ff_t [Stand-alone]

#i ncl ude <stddef. h>

the type of the result of subtracting one pointer from another.

putc

[Stand-alone]

#i ncl ude <stdio. h>
int putc(int cval, FILE *strean);

putc appends the character cval to the specified output stream. It returns the character written.
EOF isreturned on error.
Because it is implemented as a macro, putc treats a stream argument with side-effects improperly. In

particular, the following example causes the pointer f to be incremented several times, which is
unlikely to be intended:

putc(c, *f++); /] DON'T DO TH S

putchar

[Stand-alone]

#i ncl ude <stdi o. h>
int putchar(int cval);

putchar(cval) is a macro defined as putc (cval,stdout). The character cval is written to the standard
output stream, stdout (normally the screen).

EOF isreturned on error.

puts

[Stand-alone]

#i ncl ude <stdio. h>
int puts(const char *pstr);

puts copies the NUL-terminated string pstr to the standard output stream stdout and appends a newline
character. The terminating NUL character is not copied. stdout is normally the screen.

189

The Diamond Library

puts appends a newline to the output string but fputs does not.

gsort

[Stand-alone]

#i nclude <stdlib. h>
voi d gsort(void *base, size_t nmenb, size_t size,
int (*conmpar) (const void *, const void *));

This function sorts an array of itemsinto ascending order. The array of itemsis pointed to by base; in
the array, there are nmemb elements, with each element in the array being size octets (eight-bit bytes)
long.

Note that the type of the elements in the array is completely general: it might be int in a simple
program or some complex struct type in a more sophisticated program. The definition of "ascending
order" for this arbitrary data type is provided by the function compar that is passed to gsort as a
parameter.

The function pointed to by compar takes two arguments, each a pointer to an item of the type that
makes up the array pointed to by base. The function returns an integer less than, equal to, or greater
than, zero according to whether the object pointed to by its first argument is to be regarded as less
than, egual to, or greater than, that pointed to by its second argument. For example, the following
function could be used as a comparison function when it is desired to sort an array of doubles into
ascending order:

static int conpare_doubl es(const void *vl, const void *v2)

double *dl1 = (double *)vl, *d2 = (double *)v2;

if (*dl < *d2) return -1; Il less

if (*d1 > *d2) return 1, /| greater
return 0; // equal

The corresponding call on gsort might be as follows, assuming an array a of 1000 doubles:

gsort(a, 1000, sizeof(double), conpare_doubles);

Although gsort nominally sorts the array into ascending order, it can sort into any desired order by
appropriate choice of the function passed as the compar argument. The array of doubles used in the
previous example could have been sorted into descending order of absolute value using the following
comparison function:

#i ncl ude <mat h. h>
i nt conpare_abs_doubl es(const void *v1, const void *v2)

double *dl1 = (double *)vl, *d2 = (double *)v2;

if (fabs(*dl) < fabs(*d2)) return 1; /Il less => nore

if (fabs(*dl) > fabs(*d2)) return -1; // nmore => |ess
return O;

Here, fabs has been used to obtain the absolute value of the variables pointed to by each argument.
The sign of the return value is opposite from that in the previous example to give the effect of
reversing the order in which gsort will sort the array.

Once an array has been sorted into the correct order using gsort, the function bsearch can be used to
search for a particular element within the array.

Itisnot usually advisable to code as follows, for example:

190

The Diamond Library

return *dl - *d2;

This is because in some circumstances there could be an overflow, resulting in the items being sorted
wrongly.

raise [Stand-alone]
#i ncl ude <signal . h>
int raise(int sig);
This function raises the signa specified in sig. Macros are provided to represent the allowed values of
sig; they are SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV and SIGTERM. The action taken
when the signal is raised depends on what action has been specified for that signal by a call to the
signal function. If no such call has been made, the default action will be taken; that is, to return to the
caller's program. If such areturn is made, O is returned if the call was successful, or 1 if there was an
error.
Note that the allowed signals will only be raised in the current version by means of callsto raise; they
will never happen spontaneously.

rand [Stand-alone]
#i nclude <stdlib. h>
int rand(void);
rand returns successive pseudo—r%dom integers in the range 0 to RAND_MAX, a macro which is
definedin<stdl i b. h> tobe2™-1.

realloc [Stand-alone] [Heap]
#i ncl ude <stdlib. h>
void *realloc(void *ptr, size_t size);
ptr should point to a heap object previously allocated by a call to malloc, memalign, calloc or realloc.
realloc changes the size of the object pointed to by ptr to the size specified (in octets) by size. The
function returns a pointer to the start of the possibly moved object. If the space cannot be allocated,
the realloc function returns a null pointer and the object pointed to by ptr is unchanged.
If ptr isanull pointer, the equivalent of acall to malloc is performed, with the specified value of size
as the number of octets (eight-bit bytes) required.
realloc may be used on an object previously allocated by memalign, but you should not assume that
the resulting pointer meets any particular alignment constraints.

remove [Stand-alone]

#i ncl ude <stdio. h>
int renove(const char *fil enane);

The remove function causes the identified by the string pointed to by filename to be deleted.
Subsequent attempts to open the file will fail, unlessit is created anew.

Zero isreturned if the file has been removed, non-zero if the operation failed.

191

The Diamond Library

rename [Stand-alone]

#i ncl ude <stdi o. h>
i nt rename(const char *old, const char *new);

The file named old is renamed new. old and new are pointers to NUL-terminated character strings
which must be valid host file names.

Zero isreturned if the rename operation succeeds, non-zero if it fails.

The host operating system determines whether or not a particular file renaming operation will
succeed.

rewind [Stand-alone]

#i ncl ude <stdio. h>
void rewi nd(FI LE *stream;

rewind(f) is eguivalent to (void) fseek (f,0L,SEEK_SET). It repositions stream to the first character
(character 0) of the associated file. It has no effect if the stream is associated with a device rather than
afile (e.g., the keyboard or the screen).

scanf [Stand-alone]

#i ncl ude <stdio. h>
int scanf(const char *format, ...);

scanf reads input from the standard input stream stdin. It reads characters (via getc), interprets them
according to the given format and stores the resulting values in the locations pointed to by the pointer
arguments following format.

The exact meaning of the arguments to scanf is the same as that of the arguments of the same nameto
the function fscanf. In fact, the call

scanf(format, ...);

is equivalent to

fscanf(stdin, format, ...);

If an end-of-file or input error occurs before any conversion is done, fscanf returns EOF. Otherwise, it
returns the number of input items successfully converted and stored.

sema_init [Stand-alone]

#i ncl ude <sena. h>
void sema_init(SEMA *s, int v);

This function initialises the semaphore variable pointed to by sto an initial state in which:

192

The Diamond Library

» the queue of threads waiting for the semaphore is empty;

» thevalue of the semaphoreisv.

If a semaphore is |eft uninitialised, the first sema_signal or sema wait operation on the semaphore
will cause the system to behave unpredictably. The server synchronisation semaphore, par_sema, is
initialised for you; do not initialiseiit.

See also static_sema init.

sema_si gnal [Stand-alone]

#i ncl ude <senma. h>
voi d sena_si gnal (SEMA *s);

If there are threads waiting for the semaphore pointed to by s, the first one to wait will be chosen and
made able to execute again. The value of the semaphore under these conditions will always be 0, and
will remain unchanged.

Otherwise, when there are no threads waiting for the semaphore pointed to by s, its value will simply
beincreased by 1.

This function should only be applied to semaphores that have already been initialised (see sema init).

sema_signal_n [Stand-alone]

#i ncl ude <sena. h>
voi d senma_signal _n(SEMA *s, int n);

This function calls the function sema_signal n times, in sequence. The parameter n may be greater
than or equal to zero.

This function should only be applied to semaphores that have already been initialised (see sema_init).

sema_t &Gt_wajt [Stand-alone]

#i ncl ude <senm. h>
int sema_test wait(SEMA *s);

If the semaphore pointed to by s has a non-zero count value, sema test wait decrements the
semaphore count and returns a non-zero value.

If the count in the semaphore is zero and a call on sema wait would have blocked, sema test wait
will return 0. This allows atask to check to seeif waiting on a semaphore would cause its execution to
be suspended.

This function should only be applied to semaphores that have already been initialised (see sema init).

sema_wai t [Stand-alone]

#i ncl ude <senm. h>
voi d sema_wai t (SEMA *s);

If the value of the semaphore pointed to by sis not zero, its valueis reduced by 1.

193

The Diamond Library

If the value of the semaphore is 0, it is left unchanged and the current thread is paused and added to
the list of threads waiting for the semaphore. It can only be resumed by some future call on
sema_signal.

This function should only be applied to semaphores that have already been initialised (see sema_init).

sem a_Wai t_n [Stand-alone]

#i ncl ude <semna. h>
void sema_wait_n(SEMA *s, int n);

This function calls the function sema_wait n times, in sequence. The calling thread may be forced to
wait at any point in the sequence.

The parameter n may be greater than or equal to zero.

sema_wait_n should only be applied to semaphores that have already been initialised (see sema_init).

_server_terminate_now [Stand-alone]

void _server_term nate_nowint exitcode);

Use this function when one task in an application must force the host server to stop immediately.
Normally, the server waits until all tasks linked with the full run-time library have exited before it
stops. When it stops, the server returns exitcode as a status value to the host operating system, as for
the exit function. Usually it is better to avoid this function. Alternative ways of stopping an
application are discussed in Shutting down cleanly.

.Warning

If any other tasks in the application have open files, they will not be properly closed
and data may be lost.

%t b Uf [Stand-alone]
#i ncl ude <stdi o. h>
voi d setbuf (FILE *stream char *buf);
setbuf is used after a stream has been opened but before it is read or written. It causes the character
array buf to be used instead of an automatically alocated buffer. If buf is the constant pointer NULL,
1/0 will be performed without any buffering being interposed by the stdio package. A macro BUFSIZ
tells how big an array is needed:
char buf[BUFSI Z] ;
A buffer is normally obtained from malloc upon the first getc or putc on the file, except that output to
the standard error stream stderr is normally not buffered.

%t C | ear [Stand-alone]

void SetCl ear(volatile unsigned int *w,

194

The Diamond Library

unsi gned int Set,
unsigned int Cear);

This function may be used to change bits in a word without allowing an interrupt to occur during the
modification. It may be thought of as equivalent to the pseudo code:

unsi gned int tenp;
PreviousState = CurrentlnterruptState;
CurrentlnterruptState = DI SABLED;

tenmp = *w;

tenp = tenp | Set;

tenp = tenp &anp; ~C ear;
*w = tenp;

Currentlnterrupt State = Previ ousSt at e;

It is common for systems to control peripheral devices through memory-mapped registers. SetClear is
useful for changing the state of such registers without fear of an interrupt invalidating the change.

setjmp

[Stand-alone]

#i ncl ude <setj np. h>
int setjnp(jnp_buf env);

This function, together with longjmp, is useful for dealing with errors encountered in a low-level
subroutine of the program.

longimp restores the stack environment saved in its env argument by an earlier call on setjmp. This
has the effect of resuming execution immediately after that setjmp call.

setjmp's caller can distinguish between the original return from setjmp and the second return caused
by longjmp by examining setjmp's return value. Thisis always O for the initial return, and the value of
longimp}'s val argument for subsequent returns. If val is set to O, longjmp will changeit to al in order
to preserve this condition.

The function that originally called setjmp must not itself have returned before the call to longjmp. All
accessible data still have their values as of the time longjmp was called.

setlocale [Stand-alone]

#i ncl ude <l ocal e. h>
char *setlocal e(int category, const char *locale);

setlocale enables the user to change or query all or part of the current locale. The part of the locale to
affect is specified in category; the following macros are provided to do thiss LC ALL,
LC _COLLATE,LC CTYPE,LC_MONETARY, LC_NUMERIC and LC_TIME.

If alocale is specified, the locale for the specified category will be changed to that locale, and the new
locale will be returned. If NULL is specified for locale, the current value of the locale for that
category will be returned. If the request cannot be honoured, NULL is returned.

In the current version of Diamond, the only recognised locales are "C" and ""; these have the same
characteristics, as defined in section 4.4 of the ANSI standard.

setvbuf

[Stand-alone]

#i ncl ude <stdi o. h>}
int setvbuf (FILE *stream char *buf, int node, size t size);

195

The Diamond Library

After the specified stream has been opened, and before any other 1/0 has been performed on it, the
function setvbuf may be used to change its buffering method to use the specified mode. The mode
argument determines how the stream should be buffered, and should be one of the following macros,
which are defined in<st di 0. h> :

_|OFBF The stream is fully buffered;
_|OLBF The stream is line-buffered;
_IONBF The stream is unbuffered

If the argument buf is not NULL, the stream may use the buffer it points to instead of one alocated
internally by the run-time library. The argument size specifies the size of this buffer.

The function returns zero to indicate success, or a non-zero value if the mode argument isinvalid or if
the function call cannot be honoured.

S- gn a] [Stand-alone]
#i ncl ude <signal . h>
void (*signal (int sig, void (*func)(int)))(int);
signal defines how a specified signal will be handled from now on. The allowed values for sig are
listed in the discussion of raise.
For the second argument, func, you may specify the macros SIG_DFL or SIG_IGN, both of which
result in the specified signal being ignored. Alternatively, you can specify the name of a function,
called asignal handler, that isto be called when the signal is raised. During the execution of the signal
handler, that signal is ignored. Execution of the signal handler may be ended by calling longjmp, exit
or abort; or by executing a return, which will resume execution from the point where the signal was
raised.
If thereis an error in the call of signal, it will return the value of the macro SIG_ERR, and set errno to
EINVAL. Otherwise it will return the value of the func argument.
In the present version of Diamond, signals may only be raised by calling the raise function. They do
not happen spontaneously.

Sin [Stand-alone]
#i ncl ude <math. h>
doubl e sin(double x);
sin returns the sine of its radian argument.
For very large magnitudes of x (|x| greater than about 12000), the function returns 0 and sets errno to
ERANGE.

sinh [Stand-alone]

#i ncl ude <mat h. h>
doubl e si nh(double x);

sinh returns the hyperbolic sine of its argument.

If the magnitude of x istoo large, HUGE_VAL isreturned, and errno is set to the value of ERANGE.

196

The Diamond Library

sizeof

[Stand-alone]

An operator that returns the number of bytes that are associated with an object of the given type. You
can specify the type explicitly, asin si zeof (struct foo) or si zeof (i nt), or implicitly by
giving an instance of that type, asin:

struct foo MyStruct;

int Mylnt;

size_ t TheSi ze;

TheSi ze = si zeof (MyStruct);
TheSi ze = sizeof (Mylnt);

Assi zeof isan operator, the brackets are optional.

size t

[Stand-alone]

#i ncl ude <stddef. h>

the type of the result of si zeof and of f set of .

sprintf

[Stand-alone]

#i ncl ude <stdi o. h>
int sprintf(char *pstr, const char *format, ...);

sprintf writes formatted output into a character array via a pointer pstr supplied by the caller. It returns
the number of characters (octets) written into the array.

The meaning of the format string and the use of the other argumentsis as for fprintf.

A NUL character automatically terminates the output string written to pstr. Note that this terminator is
not included in the character count returned by sprintf.

sgrt

[Stand-alone]

#i ncl ude <mat h. h>
doubl e sqgrt(double x);

sgrt returns the square root of x.

sort returns HUGE_VAL when x is negative; errno is set to EDOM.

srand

[Stand-alone]

#i ncl ude <stdlib. h>
voi d srand(unsigned int seed);

The srand function uses its argument as a seed for a new sequence of pseudo-random numbers to be
returned by subsequent calls to rand.

sscanf

[Stand-alone]

#i ncl ude <stdio. h>
int sscanf(char *pstr, const char *format, ...);

197

The Diamond Library

sscanf reads input from the string pstr. It interprets the characters it reads according to the given
format string and stores the resulting values in the locations pointed to by the pointer arguments
following format.

The exact meaning of the arguments to sscanf is the same as for fscanf.

If the end of the string is found before any conversion is done, sscanf returns EOF. Otherwise, it
returns the number of input items successfully converted and stored.

static_sema_init [Stand-alone]

#i ncl ude <senm. h>
SEMA static_senma init(SEMA S, int Value);

static_sema init constructs a value that can be used to initialise a semaphore, most often when a static
SEMA variable is being declared. It corresponds to the dynamic initialisation: sema_i ni t (&S,
Value);

static SEMA d obal Sena = static_sena_init(d obal Sema, 3);

strcat

[Stand-alone]

#i ncl ude <string. h>
char *strcat(char *sl1, const char *s2);

strcat appends a copy of string s2 to the end of string s1. A pointer to the NUL-terminated result is
returned.

strchr

[Stand-alone]

#i ncl ude <string. h>
char *strchr(const char *pstr, int cval);

strchr locates the first occurrence of cval (converted to a char) in the string pointed to by pstr. The
terminating NUL character is considered to be part of the string. The function returns a pointer to the
located character, or anull pointer if the character does not occur in the string.

stremp

[Stand-alone]

#i ncl ude <string. h>
int strcnp(const char *sl1, const char *s2);

strcmp compares its arguments and returns an integer greater than, equal to, or less than 0, depending
on whether sl is lexicographically greater than, equal to or less than s2.

strcoll

[Stand-alone]

#i ncl ude <string. h>
int strcoll (const char *sl, const char *s2);

strcoll compares its arguments, interpreting both in the light of the LC_COLLATE category of the
current locale. It then returns an integer greater than, equal to, or less than 0, depending on whether s1

198

The Diamond Library

islexicographically greater than, equal to or less than s2.

Note that as the current version of Diamond only supports the "C" and "" locales, strcoll is equivalent
toacalonstrcnp.

strcpy

[Stand-alone]

#i ncl ude <string. h>
char *strcpy(char *sl1, const char *s2);

strcpy copies string s2 to sl, stopping after the NUL character has been moved. sl is returned. If
copying takes place between objects that overlap, the behaviour is undefined.

strcspn

[Stand-alone]

#i ncl ude <srting. h>
size_t strcspn(const char *sl1, const char *s2);

strespn calculates the length of the initial part of the string pointed to by sl which consists of
characters not from the string pointed to by s2. The terminating NUL character is not considered part
of s2. The function returns the length of the part in characters (octets).

strerror

[Stand-alone]

#i ncl ude <string. h>
char *strerror(int errnum;

This function maps the error number in errnum into a textual error message string, to which it returns
a pointer. For example, an errnum argument of EDOM might return a pointer to the string "domain
error".

The caller must not modify the string whose address is returned by strerror. In addition, subsegquent
callsto strerror may overwrite this string with a new error message. Thus, if the result of strerror is not
to be used immediately (for example, to be printed out) it should be copied elsewhere until it is needed
to avoid being overwritten.

strlen

[Stand-alone]

#i ncl ude <string. h>
size_ t strlen(const char *pstr);

strlen returns the number of non-NUL charactersin pstr.

strncat

[Stand-alone]

#i ncl ude <string. h>
char *strncat (char *sl1, const char *s2, size_t nun;

strncat appends a copy of string s2 to the end of string sl. It copies at most num characters (octets). A
pointer to the NUL-terminated result is returned.

strncmp

[Stand-alone]

199

The Diamond Library

#i ncl ude <string. h>
int strncnp(const char *sl, const char *s2, size t num;

strncmp compares its arguments and returns an integer greater than, equal to, or less than 0, depending
on whether sl is lexicographically greater than, equal to or less than s2. At most num characters
(octets) are examined.

strncpy

[Stand-alone]

#i ncl ude <string. h>
char *strncpy(char *sl1, const char *s2, size_t nun;

strncpy copies string s2 to sl. Exactly num characters (octets) are copied: s2 is truncated or
NUL-padded as required. The target may not be NUL-terminated if the length of s2 is num or more.
sl isreturned.

strpbrk

[Stand-alone]

#i ncl ude <string. h>
char *strpbrk(const char *str, const char *cset);

The strpbrk function scans the string pointed to by str for the first character in that string which is aso
contained in the string pointed to by cset. It returns a pointer to this character once located. If the
string pointed to by str does not contain any of the characters from the string pointed to by cset then
strpbrk returns anull pointer.

The following example shows how strpbrk might be used to scan a string, replacing any vowels with
the character "*":

char str[] = "this is some exanple text";
char *p;
while (p = strpbrk(str, "aei ouAEIQU')) *p = "'*';

After execution of this code fragment, the array str would contain the string: "th*s *s s*me *x*mpl*
text".

strrchr

[Stand-alone]

#i ncl ude <string. h>
char *strrchr(char *s, int c);

This function locates the last occurrence of ¢ (converted to a char) in the string pointed to by s. It
returns a pointer to the located copy of c. If no copy of ¢ can be located in the string, a null pointer is
returned.

Note that strrchr treats the NUL character that terminates the string pointed to by s to be part of that
string; therefore, acall such as strrchr(s,0) will locate that NUL terminator.

strspn

[Stand-alone]

#i ncl ude <string. h>
size_t strspn(const char *sl, const char *s2);

200

The Diamond Library

strspn calculates the length of the initial part of the string pointed to by s1 which consists of characters
from the string pointed to by s2. The function returns the length of the segment in characters (octets).

strstr

[Stand-alone]

#i ncl ude <string. h>
char *strstr(const char *str, const char *sub);

This function searches within the string pointed to by str for the string pointed to by sub. If the
substring cannot be located, a null pointer is returned. Otherwise, strstr returns a pointer to the first
occurrence of the substring.

If sub pointsto an empty string (i.e., just to a NUL character) then strstr returns str.

As an example of the use of strstr, consider the following code fragment:

char *str
char *subl
char *sub2
char *ansl
char *ans2

"The quick fox junps.";
"fOX";

"dOg";

strstr(str, subl);
strstr(str, sub2);

After the execution of this code fragment, ans1 will contain a pointer to the part of str starting at "fox",
i.e, "fox jumps.”. On the other hand, str does not contain the substring "dog"”, so ans2 will contain a
null pointer.

strtod

[Stand-alone]

#i ncl ude <stdlib. h>
doubl e strtod(const char *nptr, char **endptr);

Starting from the place pointed to by nptr, strtod skips over initial white space, then attempts to
interpret characters as forming part of afloating-point constant. Conversion stops at the first character
that does not fit into the format of the constant.

The format expected is. an optional sign, a sequence of digits optionally including a decimal point,
then an optional exponent part, consisting of an "e" or "E", followed by an optionally-signed integer.
The value of this constant is returned as the value of the function, and the object pointed to by endptr
is set to point to the first character which is not converted (unless endptr isNULL).

If no conversion could be performed or if the string is empty, zero is returned, and the initial value of
nptr is stored in the object pointed to by endptr (unless endptr is NULL). If the value is out of range,
+HUGE_VAL or -HUGE_VAL, depending on the sign of the value, is returned. If the value causes
underflow, zero is returned. In both these cases, errno is set to ERANGE.

strtok

[Stand-alone]

#i ncl ude <string. h>
char *strtok(char *sl1, const char *s2);

strtok breaks the string pointed to by sl into tokens, each of which is delimited by a character from the
string pointed to by s2. The first use of strtok must have sl pointing at a string. Subsequent use can
either have sl pointing at a new string or a null pointer asits first argument. If a null pointer is used,
the function starts from the position the last call terminated. s2 can be different for each call. The
function returns a pointer to atoken or anull pointer if thereis no token found.

201

The Diamond Library

strtol

[Stand-alone]

#i ncl ude <stdlib. h>
long int strtol (const char *nptr, char **endptr, int base);

This function converts the initial portion of the string pointed to by nptr to long int representation.
First the string is split into three parts. an initial string of white-space characters (which may be
empty), a subject string resembling an integer, to be decoded using the radix information specified in
base, and a final string which starts at the first character which is not acceptable in the expected
format of the subject string, and extends to and includes the terminating NUL character of the input
string. Then it attempts to convert the subject string to an integer, and returns the result.

If the value of base isin the range 2—36, the expected form of the subject string is a sequence of digits
and letters representing an integer with the radix specified in base. The letters "a" to "z" (or "A" to
"Z") are ascribed the values 10..35. Only those characters that are representations of values less than
base are alowed. If base has the value 16, the characters "0x" (or "0X") may precede the sequence of
letters and digits, but have no effect.

If the value of base is 0, the subject string is treated as hexadecimal (if it starts with "0x" or "0X"),
octal (if it startswith "0") or decimal (for any other case). All other values of base areillegal.

Uppercase letters are everywhere equivalent to lowercase ones, and the subject string may start with a
plus or minus sign. However, suffixes (like"L" or "U") are not allowed.

The function attempts to detect overflows, and if this happens the value LONG_MAX or LONG_MIN
isreturned (these aredefinedin<l i m t s. h>), and errno is set to ERANGE.

If the subject string is empty, or base has an illegal value, then zero is returned, errnois set to EDOM,
and the object pointed to by endptr is set to the value of nptr (unless endptr is equal to NULL); in all
other cases, including overflows, this object is set to the address of the start of the final string. The
subject string will be empty if, for example, the input string is empty or contains only white space.
Here are some other input strings whose subject strings are empty:

ottt oxt oM/t "- 1" "0ox-5"

strtoul

[Stand-alone]

#i ncl ude <stdlib. h>
unsi gned long int strtoul (const char *nptr, char **endptr, int base);

This function operates in the same way as strtol, except:

e It returnsan unsigned long int;

* Inthe event of an overflow being detected, the value returned is aways ULONG_MAX.

strxfrm

[Stand-alone]

#i ncl ude <string. h>
size_t strxfrm(char *sl1, const char *s2, size_t n);

The function transforms the string pointed to by s2 and places the result in the string pointed to by sl.
The nature of this transformation is controlled by the LC_COLLATE category of the current locale,
and the effect is that two strings that have been transformed in this way can be correctly compared
using stremp. A maximum of n characters (octets is transformed, including the final NUL character; in

202

The Diamond Library

any case, transformation stops after a NUL character has been converted. strxfrm returns the number
of characters which have been transformed, excluding the NUL character. The s1 argument may be
NULL if niszero.

Note that, as the current version of Diamond only supportsthe "C" and " locales, this function simply
performs a copy operation.

system

[Stand-alone]

#i ncl ude <stdlib. h>
int system(const char *string);

string is passed to the host command-line interpreter and executed as if it had been entered as a
command. The string argument to the system function should be avalid host command line.

system returns O if the server accepts the command; otherwise it returns a non-zero value. Any host
return code generated by the command is not passed back to the calling program.

system("dir \\nydir*.c");

Note that it is not normally possible to use a host command that involves the use of the C6000 system.
Attempting to do this will normally result in the program calling system being overwritten by the
reguested program: when the requested command terminates, the server associated with the original
program will not be able to communicate with it and will probably appear to "hang".

tan [Stand-alone]
#i ncl ude <mat h. h>
doubl e tan(doubl e x);
tan returns the tangent of its radian argument. You should check the magnitude of the argument to
make sure the result is meaningful.
Common error: If you forget to include <mat h. h> |, thisfunction will be automatically declared as a
function returning int and will give unpredictable results.

tan h [Stand-alone]
#i ncl ude <mat h. h>
doubl e tanh(doubl e x);
tanh returns the hyperbolic tangent of its argument. Y ou should check the magnitude of the argument
to make sure the result is meaningful.
Common error: If you forget to include <mat h. h> |, this function will be automatically declared as a
function returning int and will give unpredictable results.

thl‘ ead_d %Ched UI e [Stand-alone]

#i ncl ude <t hread. h>
voi d t hread_deschedul e(voi d);

This function causes a thread to become momentarily unable to execute; this will cause it to be
descheduled, thus allowing some other thread of the same priority to resume execution in its place.

203

The Diamond Library

Eventually, the thread that called thread_deschedule will resume.

Most applications should never need to use thread deschedule. If you find yourself wanting to use it,
first ask yourself:

e Will the usual time-slicing mechanism give a better effect?

* Will the priority mechanism make the call redundant?

e Will the thread be descheduled anyway as the result of a call that may wait (channel operation,
sema_wai t,timer_del ay,event _wait)?

The function can be used by athread to ensure that it does not "hog" the processor to the detriment of
other threads at the same priority. This is particularly important for a thread whose priority is
URGENT, as it cannot be pre-empted by a thread of a higher priority nor stopped because it uses up
itstime-dlice.

THREAD_HANDLE [Stand-alone]
#i ncl ude <thread. h>

Thetype of valuereturned by acall tot hr ead_newor t hr ead_| aunch.

thread_launch [Stand-alone]

#i ncl ude <t hread. h>
THREAD HANDLE t hread_| aunch(void (*fn)(void *),
void *ws,
size_t wssize,
i nt priority,
void *arg);

This function starts a new thread based on the function fn. The new thread will stop either when it
executes the function thread_stop, or when fn returns.

The new thread will use the double-aligned area ws as its workspace (stack), which should be wssize
octets (eight-bit bytes) long. It may be allocated from the heap using malloc, or it could be a static or
auto array variable.

The function returns a (non-zero) handle to the created thread on success. If wssize is less than
THREAD_MIN_STACK the function will fail and return O.

The priority argument defines the priority at which the new thread will run. It isan integer in the range
0-7, where 0 represents the highest priority and 7 the lowest. The header defines the literals
THREAD_URGENT and THREAD_NOTURG, corresponding to priority levels 0 and 1 respectively.
Normally, new threads should be started at the same priority as the current thread. Y ou can do this by
using the function thread_priority (see below) to provide a value for this argument.

The argument arg will be passed to the new thread's function, fn. It could be, for example, a pointer to
a simple variable, or to a struct variable containing a number of parameter values. When you pass a
pointer to a variable into a thread in this way, you must make sure that the variable does not change
before the thread readsiit.

By using acast, it is also possible to pass a value argument to the thread function:
t hread_l aunch(func, ws, 1000, 1, (void *)150);

The func function could take up its argument like this:

204

The Diamond Library

voi d func(void *val ue)

int param = (int)val ue;

In this example, param would take the value 150. Note that this technique will not work with float or
double value parameters; they must be passed by reference.

The value returned by the function may be used to refer to the thread (seet hr ead_wai t).

See also the description of thread new, which simplifies thread creation by starting a thread at the
current priority and allocating the thread's workspace from the heap.

thr ead_new [Stand-alone]

#i ncl ude <t hread. h>

THREAD HANDLE t hread new(void (*fn)(void *),
size t wssize,
voi d *arg);

The function fn is started as a new thread, running at the same priority as the current thread, with a
workspace of wssize octets (eight-bit bytes). This workspace is taken from the heap (using
par_malloc); you can return it to the heap by passing the returned THREAD_HANDLE to par_free
once you know that the thread has stopped.

If there is not enough free heap space to create the workspace or if the size of the workspace is less
than THREAD_MIN_STACK, thread _new will return NULL.

The return value may also be used to wait for the termination of the thread (see thread wait).

The argument arg is the argument that will be passed to the new thread's function, fn. This mechanism
is the same as the one used by thread_launch.

thread new is a shorthand way of calling the more general thread creation function thread launch in
the most common circumstances.

A thread that calls thread new must not have claimed the par_sema semaphore. This is because
par_malloc is used to get the workspace from the heap, and par_malloc itself waits for par_sema. So if
par_sema has aready been claimed, par_malloc will wait for ever and the call to thread_new will
never return.

thread_priority [Stand-alone]

#i ncl ude <t hread. h>
int thread_priority(void);

This function returns the priority level of the current thread, which will be an integer in the range O..7.
The literals THREAD_URGENT and THREAD_NOTURG are defined in the header to correspond to
levels 0 and 1 respectively.

thread_set_priority [Stand-alone]

#i ncl ude <t hread. h>
void thread_set priority(int newpri);

This function changes the priority of the current thread to newpri, which must be in the range 0..7.

205

The Diamond Library

thread_set_urgent [Stand-alone]

#i ncl ude <t hread. h>
int thread_set _urgent(void);

This function makes the current thread urgent (priority 0). It returns the priority the thread had
previously, allowing the old priority to be restored later by a call to thread set priority, if required.

thr ead_st op [Stand-alone]

#i ncl ude <t hread. h>
voi d thread_stop(void);

This function stops the current thread. The current thread is also stopped if the function in which it
started returns. Note that returning from the main function of a task linked against the full run-time
library will result in the connection with the host being closed. Another thread may wait for the thread
to stop by calling the function thread wait with the thread's handle as argument.

thr ead_waj t [Stand-alone]

#i ncl ude <t hread. h>
voi d thread_wait (THREAD HANDLE handl e);

This function waits for another thread to stop. handle must be the value returned when the thread was
created (see thread_launch and thread_new).

For example,

THREAD_HANDLE h;

h = thread_new(ny_t hread, 4000, 0); // start a thread
do_sonet hi ng();
thread_wait(h); /1 wait for it to finish

time

[Stand-alone]

#i ncl ude <tine. h>
time_t tine(time_t *timer);

The time function determines the current calendar time. The type (time_t) of the value returned by
timeisint. The value returned is the number of seconds that have elapsed sinc 00:00:00 GMT on 1st
January, 1970, according to the host system clock.

If the timer argument is not a null pointer, the result of time is also assigned to the variable pointed to

by time. Therefore, the time function can be used in either of two ways, as shown in the following
example, where the two statements each assign the current calendar time to the variable t:

t time((tinme_t *)0);
(void)time(&t);

Although the PC software on which time depends attempts to give you the timein GMT, by default it
does this on the assumption that you are in the Pecific Standard Time zone. As most people are not in
that zone, you will almost certainly need to make the system aware of your actual time zone. Defining
the MS-DOS environment variable TZ does this. For example, if you live in Great Britain, you could

206

The Diamond Library

define TZ like this:

set tz=GVIl
set tz=GMI1BST (during Sunmer Tine)

timer _after [Stand-alone]

#i nclude <tiner.h>
int tinmer_after(int t1, int t2);

This function returns non-zero if the kernel clock value tl is after the kernel clock value t2, and zero
otherwise.

The kernel clock, available to threads of all priorities, tickstimer_rate() times per second.

timer _del ay [Stand-alone]

#i nclude <tiner.h>
void tiner_delay(int d);

This function causes the current thread to wait for at least d ticks of the kernel’s clock. This timer is
used by threads of all priorities and ticks timer_rate() times per second.

timer_now [Stand-alone]

#i ncl ude <tiner. h>
int tinmer_now void);

This function returns the current value of the kernel’s clock. This clock is used by threads of all
prioritiesand tickst i mer _r at e() times per second.

timer _rate [Stand-alone]

#i ncl ude <tiner. h>
long int tinmer_rate(void);

This function returns the number of times the kernel’s clock ticks per second. Thisis usually 1000.

-

<1 Caution

It is likely that the tick rate will be changed in future releases of Diamond.
Applications should not assume any particular value for timer_rate.

timer _wait [Stand-alone]

#i ncl ude <tiner. h>
void tinmer_ wait(int t);

This function causes the current thread to wait until the value of the kernel’s clock ist. This clock is
used by threads of all prioritiesand tickst i mer _r at e() times per second. The function will not wait

207

The Diamond Library

if the clock is aready at or has passed time t. timer_wait(t) is equivalent to ti mer _del ay(t —
ti mer _now()).

tmpfile

[Stand-alone]

#i ncl ude <stdi o. h>
FILE *tnpfil e(void);

This function creates a temporary binary file that will automatically be deleted at the end of the
program run. Thefileis opened for update with wb+ mode.

tmpnam

[Stand-alone]

#i ncl ude <stdio. h>
char *tnpnam(char *s);

This function generates a unique filename that is not the name of any existing file. Despite the name
of the function, a file opened with this name is not automatically deleted at the end of the program
run. If the argument sis anull pointer, the filename is generated in an internal buffer; otherwise, sis
assumed to be a pointer to an array of at least L_tmpnam chars, and the filename is written there. The
value returned isin both cases a pointer to the place where the filename has been written.

You may call tmpnam a maximum of TMP_MAX times, and each time it will generate a different
filename. The internal buffer isonly guaranteed to remain unchanged until the next call to tmpnam.

In the current implementation, TMP_MAX is 10000, and L_tmpnam is 9. The form of the
generated filenames is tmp$nnnn, where nnnn is a hexadecimal number (using lower-case letters,
rather than upper-case.)

tolower

[Stand-alone]

#i ncl ude <ctype. h>
int tolower(int cval);

If cval is the ASCII code for an upper-case letter, tolower returns the code for the corresponding
lower-case letter. Otherwise, the value of cval is returned unchanged.

toupper

[Stand-alone]

#i ncl ude <ctype. h>
i nt toupper(int cval);

If cval is the ASCII code for a lower-case letter, toupper returns the code for the corresponding
upper-case letter. Otherwise, the value of cval is returned unchanged.

THREAD_MIN_STACK [sencaond

#i ncl ude <t hread. h>

This macro gives the smallest acceptable size of a thread's workspace in bytes. The thread creation
functions will fail and return NULL if the given workspace size is less than this value. Note that most
threads will probably need more space that this.

208

The Diamond Library

THREAD_NOTURG [Stand-alone]

A macro giving the priority of normal (not urgent) threads. It hasthe value 1.

THREAD_URGENT [Stand-dlone]

A macro giving the priority of urgent threads. It hasthe value O.

ungetc

[Stand-alone]

#i ncl ude <stdi o. h>
int ungetc(int cval, FILE *stream;

ungetc pushes the character cval back on an input stream. That character will be returned by the next
getc call on that stream. ungetc returns cval.

One character of pushback is guaranteed provided something has been read from the stream and the
stream is actually buffered. Attempts to push EOF are rejected.

fseek erases all memory of pushed back characters.

ungetc returns EOF if it can't push a character back.

va_arg

[Stand-alone]

#i ncl ude <stdarg. h>
type va_arg(va_list ap, type);

The va arg macro is used to access the next argument in a variable-length argument list. The
parameter ap should be a variable of the type va list, which isdefined inthe <st dar g. h> header; it
must have been initialised by va_start. The macro expands into an expression that has the value of the
next argument and the specified type; if thisis not in fact the type of the argument, or if there are no
more arguments, the behaviour is undefined. For example:

#i ncl ude <stdarg. h>

voi d ourfunc(char *nessage, ...);
{

va_list ap;

int ival;

va_start(ap, nessage);

ival = va_arg(ap, int);

va_end(ap);

On each call of va_arg, the parameter ap is modified to point to the next argument in the list.

va _end

[Stand-alone]

#i ncl ude <stdarg. h>
void va_end(va_list ap);

209

The Diamond Library

When accessing a variable length argument list, a function should call this macro once al the
arguments have been processed. This ensures a correct return to the calling function. The parameter ap
should be a variable of the type va list, which is defined in the <st dar g. h> header; it must have
beeninitialised by va_start.

va_start [Stand-alone]

#i ncl ude <stdarg. h>
void va_start(va list ap, parmN);

va start is called before accessing a variable-length argument list. The parameter ap should be a
variable of the type va list, which is defined in the <st dar g. h> header. The parameter parmN
should be the parameter in the variable-argument list immediately beforethe "...".

Vf pr | ntf [Stand-alone]

#i ncl ude <stdi o. h>
int vifprintf(FILE *stream char *format, va_list ap);

This function corresponds to fprintf, and performs formatted output to the specified stream. As with
fprintf, the format argument controls the conversions to be performed. However, the variable
argument list has been replaced by the single argument ap, which should be an argument pointer
initialised by va_start. For example:

#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>
void error(char *func_nane, char *format, ...)

va_list ap;

va_start(ap, format);

fprintf(stderr, "Error in %: ", func_nane);
viprintf(stderr, format, ap);

va_end(ap);

}

The function returns the number of characters output, or a negative value if an output error occurred.

Vpl’ | ntf [Stand-alone]

#i ncl ude <stdi o. h>
int vprintf(char *format, va_list ap);

This function corresponds to printf, and performs formatted output to the standard output stream,
stdout. As with printf, the format argument controls the conversions to be performed. However, as
with vfprintf, the variable argument list has been replaced by the single argument ap, which should be
an argument pointer initialised by va_start.

The function returns the number of characters output, or a negative value if an output error occurred.

vspr intf [Stand-alone]

#i ncl ude <stdio. h>
int vsprintf(char *pstr, char *format, va list ap);

This function corresponds to sprintf, and writes formatted output into a character array via a pointer
pstr supplied by the user. As with sprintf, the format argument controls the conversions to be

210

The Diamond Library

performed. However, as with vfprintf, the variable argument list has been replaced by the single
argument ap, which should be an argument pointer initialised by va_start.

The function returns the number of characters output, or a negative value if an output error occurred.

WCh ar _t [Stand-alone]
#i ncl ude <stddef. h>

The type of awide character. See <st ddef . h>

wcstombs [Stand-alone]

#i ncl ude <stddef. h>
size_t westonbs(char *s, const wchar _t *pwcs, size t n);

The sequence of wide characters pointed to by pwcs is converted to a multibyte string and stored in
the array pointed to by s. Conversion stops when a NUL character has been converted, or when the
next character stored would exceed the limit of n words. If the two strings overlap, the effect is
undefined.

wcestombs returns the number of octets (eight-bit bytes) stored, excluding the NUL character, if any.
Note that, in the present version of Diamond, multibyte characters and wide characters are both one
octet in length and there is no state-dependent encoding, so this function is equivalent to a string copy.
All possible element values are valid, so no error return can happen.

Further details are available here.

WCt om b [Stand-alone]

#i nclude <std.lib. h>
int wetonmb(char *s, wchar_t wchar);

If sisanull pointer, mbtowc returns 0, indicating that, for the current version of Diamond, multibyte
character encodings are never state dependent. Otherwise, it returns the width in octets (eight-bit
bytes) of the multibyte character corresponding to value of wchar. In the current version, this will
awaysbe 1.

In addition, the multibyte character corresponding to the value of wchar will be stored at the location
pointed to by s. In the current version, as both wide and multibyte characters are always 1 octet in
length, thisis equivalent to storing wchar at *s.

Further details are available here.

211

Chapter 11. Interrupt Handling

Diamond allows you to use interrupts to control the execution of your application. The general procedure for
managing interruptsis as follows:

1. If youareusing an external interrupt line, reserveit for your exclusive use. See External Interrupt Manager.
Y ou need to do this to prevent your application and the Diamond kernel from both using the same external
interrupt line. Other interrupt lines do not need to be claimed in this way.

2. Attach a high-level or a low-level handler for the interrupt to the appropriate interrupt source. High-level
handlers are used when the interrupt rate is low. If your device generates a high rate of interrupts, you
should consider using alow-level interrupt handler.

3. Enable the appropriate interrupt. This will usually require setting a combination of enable bits in the
processor’s Interrupt Enable Register, IER, and in device-specific registers. When the interrupt occurs,
your handler will be invoked and will run with the specific interrupt that has occurred disabled in IER. The
interrupt will be re-enabled in IER when the handler returns.

4. Typicdly, your application will wait for a semaphore or event that the handler will signal to indicate that
the interrupt has happened.

Attaching High-level Interrupt Handlers

cbxint_attach _fn [Stand-alone]

#i ncl ude <c6xint. h>
int c6xint_attach fn(int sel, void (*fn)(void),
void *sp, size_ t size)

This function attaches a C interrupt function, f n, to the interrupt selected by sel. Multiple handlers
may be attached to the same interrupt, but there is no way to detach a handler from an interrupt.

sel is a CPU interrupt number, not an interrupt source number. Diamond runs with the hardware
default mapping of CPU interrupts to interrupt sources, as set out in table 13-4 of the TM S320C6000
Peripherals Reference Guide (SPRU190C, April 1999). At present, there is no way to configure a
different mapping. If you are attaching to an external interrupt line (EXTINT4—EXTINT7) you
should make sure that you have claimed this interrupt for your own exclusive use. Some Diamond
implementations reserve an external interrupt line to manage interprocessor communications. This is
described in Reserved Hardware Resources.

fn is a pointer to your handler function. If you choose to write this function in C, it must be declared
with the i nt er rupt keyword. User-defined handlers are entered with interrupts globally disabled
(GIE cleared) and a return address in the IRP register. This matches the requirements of code
generated by the C compiler for interrupt functions.

Sp points to the start of a stack area of si ze bytes provided by the caller. Before entering the handler,
the kernel sets the stack pointer (register B15) to the end of this area, which must remain valid for as
long as the interrupt can occur. Therefore it is usually, but not necessarily, allocated from static
storage. Using a separate stack for interrupt handlers means that ordinary threads don’'t have to worry
about allocating enough stack space for any interrupt handlers that may be invoked while they are
executing.

size is the length, in bytes, of the interrupt handler stack pointed to by sp. It must be large enough to
accommodate the stack frames of the handler and any functions it calls. Note that if a C interrupt
function calls any other functions, includingi _sena_si gnal ori _event _set (seelater), theC
compiler will generate code to save all registers on entry to the function and restore them on exit. This
can be costly.

212

Interrupt Handling

c6xint_attach fn returns a non-zero value if the operation fails or zero if it succeeds. It callsmal | oc
to alocate a structure describing the handler and its stack, so it may fail if the heap is full. Also be
aware that you may need to protect the call with par _sema if céxint_attach fn is called while other
active threads may beusing mal | oc.

For example, to attach a handler to CPU interrupt 15 (interrupt source TINT1 in the default mapping):

#i ncl ude <c6xint. h>
char handl er _st ack[2048];

void interrupt hanldler(void)

{
}
mai n()
c6xint _attach_fn(15, handler,
handl er _stack, sizeof (handl er_stack));
}

Communicating with the Kernel

In general, high-level interrupt handlers must not call Diamond functions, such as those found in <st di 0. h>
and <chan. h> . Often however, a handler needs to restart a thread that is waiting for an interrupt. Three
specia functions that can be called from a high-level interrupt handler (and only from a high-level interrupt
handler) are provided for this:

i_m a_Si gnal_n [Stand-alone]

#i ncl ude <c6xi nt. h>
void i _sema_signal _n(SEMA *s, unsigned int n);

This function will signal a semaphore n times from an interrupt handler. Up to n threads waiting on
the semaphore will become eligible to execute once the interrupt handler terminates.

i_sem a_si gnal [Stand-alone]

#i ncl ude <c6xi nt. h>
void i _sema_signal (SEMA *s);

This function will signal a semaphore from an interrupt handler. If a thread is waiting on the
semaphore, it will become €eligible to execute once the interrupt handler terminates. i_sema _signal is
implemented as a macro. It is equivalent to calling i _sena_si gnal _n with the parameter n set to
one.

i_ev ent_set [Stand-alone]

#i ncl ude <c6xint. h>
void i _event _set (EVENT *e);

This function will set an event from an interrupt handler. Any threads waiting for the event will
become eligible to execute once the interrupt handler terminates.

213

Interrupt Handling

.Warning

Do not call plain sermra_si gnal or event _set from an interrupt handler; this will certainly
cause your application to fail.

.Warning

Always make sure that all semaphores and events used by interrupt handlers have been initialised
appropriately before attaching the handler to an interrupt.

When an ordinary thread needs to wait for an interrupt it can simply wait for a semaphore to be signalled or an
event to be set. For example:

#i ncl ude <sema. h>
static SEMA int_semm; // global to handl er and waiting thread

void interrupt my_handl er (voi d)

{
i _sema_signal (& nt_senn) ;
mai n()
sema_init(& nt_sema, 0); /1 BEFORE attaching interrupt
. . . attach ny_handler to interrupt as described above
for (;;) {
sema_wai t (&di nt _semn) ; /1 Wait for a block of data
process devi ce data
}
}

As well as (optionaly) signalling semaphores and setting events, handler code can freely read and write the
contents of memory. Just remember to declare variables that are shared with the rest of an application as
vol ati | e (thisis not necessary for semaphores and events). Don’t be tempted into making user threads wait
for interrupts by polling flags in memory though: use semaphores or events instead. In general you should avoid
polling because it starves other tasks and threads of CPU cycles. Even devices that transfer only a small amount
of data per interrupt can be efficiently dealt with if the handler buffers up datain memory and only signals the
user thread when a complete block of data has been processed.

The folder t ar get\ c6000\ Sundance\ exanpl es\i nt errupts\attachfn contains example code
that handles interrupts using events and semaphores. The examples both set up C6x timer 1 to interrupt once per
second. Each second, when the hardware interrupts, the interrupt handler will signal a semaphore or set an
event. This wakes the main thread, which prints a message. The message includes the current value of a counter
variable updated by the handler.

Enabling and Disabling Global Interrupts

cobxint_off [Stand-alone]

#i ncl ude <c6xint. h>;
unsi gned int c6xint_off(void);

This function disables interrupts by clearing the GIE bit in the CSR; it returns the original CSR value.
It is implemented as a true function to dissuade the compiler from performing unfortunate code
reordering.

cbxint_restore [Stand-alone]

214

Interrupt Handling

#i ncl ude <c6xint. h>
voi d c6xint_restore(unsigned int old csr_val ue);

This function restores a previously saved CSR value returned by c6xi nt _of f . It isimplemented as
atrue function to dissuade the compiler from performing unfortunate code reordering.

The standard usage of these functionsis:

unsi gned int old;

old = c6xi nt_of f(); /1 interrupts off

11

/1 do sonething with interrupts disabled

/1

c6xint_restore(old); /1 restore old CSRRGE state

Do not be tempted to disable and enable interrupts by simply clearing and setting GIE directly in the CSR.
Doing so can lead to unexpected behaviour because of code reordering by the compiler and unhelpful processor
behaviour involving PGIE.

Note that indiscriminate global disabling of interruptsislikely to have a bad effect on performance.

Interrupt Processing Flow

When an interrupt occurs, the hardware globally disables interrupts (clears GIE) then executes the
corresponding Interrupt Service Fetch Packet (ISFP) from the kernel’s Interrupt Service Table (IST).

This enters the kernel’ sinterrupt service routine which handles the interrupt as follows:

1. It preparesfor interrupt handling by:
a disabling the interrupt by clearing the corresponding bit in the Interrupt Enable Register (IER).
b. pushing two words on the current thread’ s stack to free up work registers.
c. saving more work registers and the Interrupt Return Pointer (IRP) in an Interrupt Control Block (1CB).
There are 16 of these, one for each CPU interrupt.
d. popping the two words previously pushed onto the interrupted thread’ s stack.
e. globaly re-enabling interrupts (setting GIE), allowing for nested interrupt processing.

2. It then invokes each handler function from a chain of handlers associated with the interrupt. Low-level
(kernel) handlers are called directly and run with interrupts enabled (to permit nested interrupts), but when
calling a high-level handler the kernel:

Saves the stack pointer (register B15) then pointsit at the top of the handler stack.

Globally disables interrupts (clears GIE).

Sets up IRP so that when the user handler returns, processing of the chain will resume.

Enters the handler, which returns by branching to IRP; this globally re-enables interrupts.

Restores the saved stack pointer.

3. After al handlers have been called, it returns to the kernel which:

a globaly disablesinterrupts (clears GIE).

b. re-enablesthe active interrupt by setting the corresponding bit in the IER.

c. restoresthe previously saved IRP from the ICB, in case there were any nested interrupts.

d. branchesto IRP, which globally re-enables interrupts and resumes execution of the interrupted thread.

Pop T

Low-level Interrupt Handlers

Applications that need to support devices generating a high rate of interrupts may need to install low-level
handlers. These are written in assembler and have the minimum overhead. Typically such handlers will simply
acknowledge the interrupt in a device-dependent way, and signal an event to activate a thread to deal with
high-level aspects of the device.

215

Interrupt Handling

Handler structure

A low-level handler is entered when its associated interrupt is taken. The kernel will call the first handler
attached to the interrupt, passing in standard parameters. The handler must deal with the interrupt and then pass
control on to the next handler for that interrupt. The kernel itself automatically appears as the fina handler on
the chain, and so regains control once all handlers have executed.

Handlers are identified by a 3-word structure called an Interrupt Control Block (ICB):

struct céxint_ICB {

struct c6xint_ICB *Next; /1 next ICB for this interrupt
voi d *Ar g; /1 Argurment for this handler
voi d *Handl er; /1 Address of handl er code

b

Attaching a low-level handler

Y ou attach alow-level handler to an interrupt selector using céxint_attach_handler:

cbxint_attach_handler [Stand-alone]

#i ncl ude <c6xint. h>
int c6xint_attach_handler(int sel, struct céxint_|ICB *MWICB);

Sel selects the interrupt to which the handler must be attached.

MyICB is a pointer to an céxint_ICB structure that has aready had its Ar g and Handl er fields
initialised; this structure must continue to exist for the rest of the execution of your application. Once
you have attached a handler, you must not ater the values in the ICB and the ICB cannot be removed
from the list of handlers for the interrupt. Attaching a handler does not enable the associated interrupt.
Note that all handlers attached to an interrupt will be invoked. It is the responsibility of each handler
to check that the deviceit is controlling is the one that has provoked the interrupt.

For example:

extern void Myl nt12Handl er(voi d); /1 the interrupt handler
static struct c6xint_|ICB Mylnt12]CB;
static int Paraneters[3] = {0, 0, 0}; // depends on the handl er

Myl nt 121 CB. Arg = Paraneters;
Myl nt 121 CB. Handl er = (void *) Myl nt 12Handl er;
c6xi nt _attach_handl er (12, &WIl nt 121 CB);

/1 now enable interrupt 12...

When interrupt 12 occurs, the handler will be called and register a2 will contain the address of the array
Par anmet ers.

Taking interrupts

The kernel will perform the following actions when it is activated by an interrupt:

1. It first saves @l of the registers used in interrupt handling in a save area reserved for that purpose. Only a
small selection of registersis saved.

2. Thebitin IER corresponding to the interrupt is cleared.

216

Interrupt Handling

3. Interrupts are re-enabled by setting GIE=1.

4. It loadsthe address of thefirst ICB into register b11 and calls the first handler, as follows:

ldw *+b11[2], b3 ; load address of handl er

ldw *+bl11[1], a2 ; load handl er’s argunent

ldw *+b11[0], bll ; load address of next handl er
nop 2 ; wait for b3 to | oad

b b3 ; call the handl er

nop 5

5. Thehandler executes and terminates by repeating the above sequence to enter the next handler.
6. Thefina handler in thelist has an ICB that takes control back to the kernel.
7. Thekernel restores the registersit saved earlier and either:

a. entersthe scheduler to deal with threads that have been activated by the handlers; or
b. resumestheinterrupted code if no rescheduling is necessary.

Low-level handler context

When alow-level handler is entered, interrupts are enabled (GIE=1), but the particular interrupt that invoked the
handler is disabled: the corresponding bit in |ER has been cleared.

The following registers may be used by low-level handlers:

a0 work register — may be used freely
al work register — may be used freely
a2 handler argument

a3 work register — may be used freely
a4 work register — may be used freely
all kernel pointer

b0 work register — may be used freely
bl work register — may be used freely
b3 work register — may be used freely
b4 work register — may be used freely
b1l address of next ICB

* Register all must not be altered.

* Registers a2 and b11 must be set correctly when the current handler passes control on to the next handler in
the chain.

» All other processor registers not listed above must be left unaltered.

Accessing the kernel

Low-level handlers may only use two kernel services, k_event _set and k_sena_si gnal _n. These
functions are accessed through pointers held in the kernel structure addressed by al1:

Word offset from all Contents

-2 address of k_sema signal_n
-1 address of k_event_set
0

217

Interrupt Handling

k_event_set

[Stand-alone]

This service sets an event. Any threads waiting on the event will be made ready to execute. The
following registers are used:

Register valueon entry to k_event_set valueon return
al unimportant unknown

a4 address of event word unknown

b0 contents of event word unknown

b3 return address unchanged

b4 unimportant unknown

For example:

;this assunes that a2 contains the address of the event to set.
ldw *+all[-1], b3 ; address of k_event set
nop 4
b3 ; call k_event set
ldw *a2, b0 | oad event word
nv az, a4 set address of event word
nmvkl Next, b3 return address
nmvkh Next, b3
nop

Next :

= Note

The loading of b0 and a4 must have completed by the time control passes to
k_event _set.

k_%m a_Si gn al _n [Stand-alone]

This service signals a semaphore N times. Up to N threads waiting on the semaphore will be made
ready to execute. The following registers are used'® :

Register valueon entry tok_sema signal n valueon return
a0 return address unchanged

a2 contents of first word of semaphore unknown

a3 address of semaphore unknown

a4 unimportant unknown

b0 unimportant unknown

bl N unknown

b3 unimportant unknown

b4 unimportant unknown

For example:

218

Interrupt Handling

; this assunes that a2 contains the address of the semaphore.

ldw *+all[-2], b3 ; address of k_senm_signal _n
nmv az, a3 ; address of semaphore
nop 3
b b3 ; call k_event set
ldw *a3, a2 ; load first word of semaphore
mvkl Next, a0 ; return address
mvkh Next, a0
mvk 1, bl i N=1
nop
Next :
= Note

The loading of a2, a3, and b1l must have completed by the time control passes to
k_senm_signal _n.

¥ The use of registersin interrupt handlers has been optimised for the case of k_event _set asthisisthe most common case.

Low-level Interrupt Handler Example

The following is an example of a low-level interrupt handler for interrupt 6. This handler needs to write to a
device-specific register at 0x03fe0000 to acknowledge the interrupt. Note that the return from i_event_set goes
directly to the next interrupt handler.

.title "interrupt 6 handler”
. text

| NT_CLEAR .set 0x03EF0000 ; wite O to acknow edge
.def _interrupt6

; = kernel pointer
; a2 = &event

; b1l = address of next icb

; Interrupts are ENABLED

; on exit: bll = address of next handler
; a2 = arg for next handler

; free regs:a0, al, a3, a4, b0, bl, b3, b4 ;
I

_interrupt6: |dw *+all[-1], bl ; pick up pointer to i_event_set
nv az, a4 ; argunent for i_event_set
ldw *+b11[1], b3 ; return address (next handler)
ldw *+b11[2], a2 ; next argument
ldw *+b11[0], b1l ; next handler |ICB
b bl ; call i_event _set (& eturn)
ldw *a4, b0 ; contents of event word
mvkl | NT_CLEAR, a0
mvkh I NT_CLEAR, a0 ; address |INT_CLEAR
zero al
stw al, *a0 ; acknow edge interrupt
NOTE: i_event_set corrupts:

; b0, al, a4, b4 ;

This handler could be attached and used as follows:

extern void interrupt6(void)
static struct c6xint_ICB | CB
static event Event6 = EVENT_

/1 the interrupt handler

6;
NG, // initialised event

219

Interrupt Handling

extern cregi ster unsigned int |ER,
| CB6. Arg = &Event 6;

| CB6. Handl er = (void *)interrupt6;
c6xi nt _attach_handl er (6, &l CB6);

| ER | = (1<<6); /1 enable interrupt 6
for (5;)

event wait (&Event6);
/1 the interrupt has occurred — deal with it

220

Chapter 12. External Interrupts

C6000 processors have four external interrupt lines, INT4...INT7, which can be used to control external devices.
One or more of these interrupt lines (and DMA engines) may be permanently reserved by Diamond's device
drivers, and others may be dynamically assigned during program execution. If you need to use one of these
external interrupt lines to handle an external device, your code must first explicitly claim it from a pool
maintained by the kernel’ s external interrupt manager module. Outline code to use INT4 is shown below:

#i ncl ude <ext _int.h>
SC6xXExt _Int *xint;
unsi gned int got;

xi nt = SC6xKernel Locatelnterface(_kernel, SIID SC6xExt_Int);

if (!xint) error(); /1 can't locate interface

got = SC6xExt_Int_d ainmxint, 4); /1 try to get INT4

if ('got) error(); /1 INT4 already in use

...do things that use INT4...

SC6xExt | nt_Rel ease(xint, 4); /1 return it to the kernel
SC6xExt_Int_Claim [Stand-alone]

#i ncl ude <ext_int. h>
unsi gned int SC6xExt I nt_ d ai m(SC6xExt I nt *x,
unsi gned i nt wanted);

This function tries to allocate the requested interrupt line, "want ed" . If it succeeds, it returns a
non-zero value. If it fails, it returns zero. The (SC6xExt _I nt *) argument x must be a pointer to
the kernel’'s external interrupt manager interfface as retuned by a cal to
SC6xKer nel _Locat el nt er f ace with asecond argument of SI | D_SC6xExt _I nt.

SC6xExt_Int_Claim_Any [Stand-dlone]

#i ncl ude <ext _int. h>
unsi gned int SC6xExt _Int_C ai m Any(SC6xXxExt I nt *Xx);

This function is similar to SC6xExt _| nt _Cl ai m except that instead of being told which interrupt
line to alocate, it finds any free interrupt line. If it succeeds, it returns the interrupt number allocated.
If it fails, it returns zero.

SCGXEXt_I nt_ReI ease [Stand-alone]

#i ncl ude <ext _int.h>
voi d SC6xExt I nt_Rel ease(SC6xExt _I nt *x, unsigned int which);

This function is used to return an interrupt line to the available pool. The parameter whi ch identifies
an interrupt line that had previously been clamed using SC6xExt _|Int_C aim or
SC6xExt _I nt _Cl ai m_Any.

221

Chapter 13. DMA

This chapter deals with the DMA channels provided on the C620x and C670x processors. Refer to the following
chapter for information on EDMA channels.

C6000 processors have a limited number of DMA channels, usually far fewer than the number of threads that
might want to use DMA. The Diamond kernel manages all of the available channels and dynamically alocates
them to concurrently active inter-processor <chan. h> and <I i nk. h> calls. User code that wants to make
direct use of the channels must claim them from the kernel, complete the DMA operation, and return the
channels to the kernel.

The following code fragment demonstrates this by using DMA1 to copy count 32-bit words from memory at
here to memory at there:

#i ncl ude <dma. h> O

#define START_DVA (DVA P_SRC DIR(1) | DMA P _DST DIR(1) | \
DVA_P_TCI NT(1) | DVA_P_START(1))
static SC6xDVA *dnmal ;
voi d get _dmal (voi d)
if (!dmal) { /1 only done once
dmal = SC6xKernel Locatelnterface(_kernel, SIID SCoxDMA); O
if (!dmal) error(); /1 no interface
}
DVA_REG *dma;

SC6xDMAChannel *channel ;
unsi gned i nt *here, *there, count;

get drml 0);

|f ('drra) error();
dma- >sec_control

init dmal pointer
claimDVA1L [
failed to get it?
enabl e bl ock int

SCsxDMA_d ai m(dmal, 1, &channel);
DVMA S BLOCK_ | E(1);

~ Y~~~
~ Y~~~

dma- >count er = count; nmeasured i n words
dma- >dst _address = here;
dma- >src_address = there;

SC6xDMAChannel _Qper ati on(channel, START DMA); O
SC6xDMAChannel _Rel ease(channel) ; /1 finished with channel O

There are several things to notice about this code:

O

This declares the kernel functions used in the rest of the code and creates areference, _ker nel , to kernel
data structures. It also contains a typedef for a structure type, DMA_REG, which can be used to access the
DMA channel hardware registers, plus definitions for the global DMA registers and the hit fields within
the primary and secondary DMA control registers. The START_DMA macro in the example is based on
these bit field definitions.

get _dmal () findsand returns a pointer to the kernel’s DMA manager interface. This pointer is required
in order to claim a DMA channel. Production code would be unlikely to find the interface repeatedly.
SC6xDVA_d ai m() actualy claimsthe channel (DMAL). It returns a pointer to the corresponding DMA
hardware registers, or NULL if the requested DMA engine cannot be allocated (because it is already
claimed by another thread, or by the kernel for an inter-processor link communication). Using this pointer,
the example code then fillsin the required values in the DMA1 secondary control, counter, destination and
source address registers, as members of the DMA_REG structure. If SC6xDMA_Claim() succeeds, it
returns an SC6xDMAChannel pointer via its final argument. This pointer refers to a software structure in
the kernel that describes the allocated DMA channel.

SC6xDMAChannel _Oper ati on() isone of the functions that can be applied to such a DMA channel
pointer. It sets the primary control register of the DMA channel referred to by its first argument to the
value given in the second argument, which should set the st ar t bit (and, in more complex examples, any

222

DMA

required synchronisation of the DMA transfer with an interrupt source). The function then suspends the
calling thread until the DMA channel interrupts at the end of the block (as specified by the setting of the
secondary control register). While the thread is suspended and the DMA operation is executing, other
threads can continue to execute on the CPU. The kernel will catch the DMA completion interrupt, resume
the suspended thread and return control to the caller. In this example the DMA channel is no longer
required and is released for use elsewhere.

0 SC6xDMAChannel _Rel ease() informs the kernel that a previously-claimed DMA channel is no
longer required and can be returned to the kernel’ s pool of free channels.

There is no obligation to use SC6xDMAChannel _Oper ati on(); it is provided to make handling DMA
interrupts easier—but you are free to wait for DMA completion either by polling (not recommended) or by
manually installing an interrupt service routine for the DMA interrupt, using the <c6xi nt. h> functions
described later. The only mandatory step is to claim the DMA channel before attempting to touch the
corresponding hardware. Failure to do so will result in mysterious hangs when your code clashes with a
concurrent inter-processor <chan. h> or <l i nk. h> call in some other task or thread, and the kernel then
decidesto service that call using the same DMA channel that you are already using for something else.

SC6xDMA Functions

This group of functions allows you to claim DMA channels from the kernel’ s pool for your own use. Y ou must
use one of these functions before touching the DMA hardware. Each of the functions returns a (DVA_REG *)
pointer to the allocated DMA channel’s hardware registers, or NULL if the requested DMA channel cannot be
allocated. See <DVA. H> in the Diamond installation folder for the names and types of the DMA_REG
structure’ s members.

SCGX D M A_CI a] m [Stand-alone]

#i ncl ude <dna. h>
DVMA REG * SC6xDMA_d ai n{ SC6xDVA *dmal , int n, SC6xDMAChannel **c);

This function attempts to allocate DMA channel number n from the kernel’s pool of free channels. If
it succeeds, it returns a pointer to the requested channel’s hardware control registers. If it fails, it
returns NULL.

dmal must be a pointer to the kernel’s DMA manager interface, as returned by a call to
SC6xKer nel _Locat el nt er f ace with asecond argument of SI | D_SC6x DVA.

n istherequested DMA channel number. It must be in the range 0-3.

C is a pointer to an (SC6xDMAChannel *) output variable passed by the caller. The function
modifies this variable to point to aDMA channel descriptor in the kernel. This pointer is used to refer
to the allocated DMA channel when calling the functions described below.

SC6xDM A_Cl aimWait [Stand-alone]

#i ncl ude <dma. h>

DVA REG * SC6xDMA Cl ai mi t (SC6x DVA *dmal ,
i nt n,

SC6xDMAChannel **c);

This function attempts to allocate DMA channel number n from the kernel’s pool of free channels. If
the requested channel is unavailable, the calling thread will be suspended (indefinitely) until it does
become available. Therefore this function will never fail simply because the requested channel is not
available. When it succeeds, it returns a pointer to the requested channel’ s hardware control registers.
If it fails for some other reason, it returns NULL. The arguments are the same as for
SC6xDMA_d ai mabove.

SC6XD M A_CI a] mAny [Stand-alone]

223

DMA

#i ncl ude <dna. h>
DVA_REG * SC6xDMA_C ai mAny(SC6xDVA *dnal ,
i nt oper, SC6xDMAChannel **c);

This function is similar to SC6xDVA_Cl ai m except that instead of requesting a particular channel
number, the call returns a pointer to any DMA channel that happens to be free. If no channel is
presently free, or if the call fails for some other reason, it returns NULL.

dmal and ¢ have the same meanings as for SC6XDVA_Cl ai m

oper must be either READ _OPERATI ON or WRI TE_OPERATI ON, two values defined as macros by
<DMA. H> . This argument is a hint to the function about whether the caller is more likely to use the
allocated DMA channel for reading or writing. The kernel uses this information when there is more
than one free DMA channel. If WRI TE_OPERATI ON is specified, it will allocate the
lowest-numbered (highest priority) DMA channel currently available. A FIFO in the DMA engine
buffers the highest priority active DMA channel. This has most benefit when writing. If
READ_OPERATI ON is specified, the kernel will alocated the highest-numbered (lowest priority)
DMA channel available.

SCGXDM A_CIalmAnyWaJt [Stand-alone]

#i ncl ude <dnma. h>
DVA_REG * SC6xDMA_d ai mAny Wi t (SC6XDVA *dnal ,
i nt oper, SC6xDMAChannel **c);

This function is similar to SC6xDVA_Cl ai mAny, except that if no channel is presently free, the
caling thread will be suspended (indefinitely) until a channel does become free. Therefore this
function will never fail simply because a channel is not available. When it succeeds, it returns a
pointer to the allocated channel’ s hardware control registers. If it fails for some other reason, it returns
NULL. The arguments are the same as for SC6xDMA_Cl ai mAny above.

SC6xDMAChannel Functions

These functions all operate on one of the SC6xDMAChannel pointers returned by the "claim" functions
described above. Note that functions dealing with external devices do not set the various enables that are
necessary to allow DMA synchronisation or CPU interrupts. Refer to your C6000 module's hardware
documentation for a description of enabling events and interrupts for particular devices. DMA interrupts are
automatically managed for you.

SC6xDMAChannel_Release [Stand-alone]

#i ncl ude <dna. h>
voi d SC6xDMAChannel _Rel ease(SC6xDMAChannel *channel);

channel must be a pointer returned by one of the claim functions listed above. The DMA channel
described by this pointer is released to the free pool.

SC6xDMAChannel_ResetEvent [Stand-alone]

#i ncl ude <dna. h>
voi d SC6xDMAChannel _Reset Event (SC6xDMAChannel *channel);

Each SC6xDMAChannel has an EVENT synchronisation object associated with it. The kernel
catches interrupts from the underlying hardware DMA channel (DMA_INTX) and arranges for the
event to be signalled. This function is used to clear the event before waiting for an interrupt by calling
SC6xDVAChannel _Awai t | nt er rupt . You must be careful to do this before starting the DMA

224

DMA

transfer or setting the DMA interrupt conditions, as setting them might trigger an unexpected
interrupt.

channel must be apointer returned by one of the "claim" functions listed above.

SC6xDM AChannel_Awaitl nterrupt [Stand-alone]

#i ncl ude <dna. h>
voi d SC6xDMAChannel _Awai t | nt errupt (SC6xDMAChannel *channel);

Each SC6xDMAChannel has an EVENT synchronisation object associated with it. The kernel
catches interrupts from the underlying hardware DMA channel (DMA_INTX) and arranges for the
event to be signalled. This function suspends the calling thread until that event is signalled. You
should clear the event with SC6x DMAChannel _Reset Event before setting up the transfer and
waiting for the interrupt.

channel must be apointer returned by one of the "claim" functions listed above.
The following gives an outline example of using interrupts:

#i ncl ude <dma. h>
#i ncl ude <dma. h>

SC6xDVAChannel *channel; // DMA channel to be clained
DVA REG *dnm; /'l channel’s hardware registers

...claimDVA channel using claimfunctions ...

SC6xDMAChannel _Reset Event (channel) ; /'l clear channel event
dma- >count er = count;

dma- >dst _address = to;

dma- >src_address = from

dma- >sec_control DVMA S BLOCK | E(1); // enable block interrupt

/] Start the DMA, interrupt on count expired
dma->pri_control = DMA P _TCINT(1) | DVA P_START(1) |

...do sone work while the DVA operation executes...

/1 Wait for the DMA to finish
SC6xDMAChannel _Awai t I nterrupt(channel); // waits for DMA | NTX

SC6xDMAChannel_Operation [Stand-alone]

#i ncl ude <dma. h>
voi d SC6xDMAChannel _Qper ati on(SC6xDVAChannel *channel ,
unsigned int prictrl);

This function is provided for the common situation where a thread has nothing to do between
initiating a DMA operation and it being completed. It encapsul ates the sequence:

* SC6xDMAChannel _Reset Event (channel) ;

e Assignprictrl tothe DMA primary control register for the selected channel. This value should
usually have at least the START and TCI NT bits set. If START is not set, the DMA operation will
not start (it could be started separately later). If TCl NT is not set, the DMA channel will not
interrupt at the end of the transfer, and the function will therefore never return.

e SC6xDMAChannel _Awai t | nterrupt(channel);

225

DMA

channel must be apointer returned by one of the "claim" functions listed above.

226

Chapter 14. EDMA

This section assumes you are familiar with the operation of the C6000 EDMA channels, in particular, the way in
which EDMA transfers can be synchronised. The Diamond kernel manages the available EDMA channels and
dynamically allocates them to concurrently active inter-processor <chan. h> and <l i nk. h> calls. User
code that wants to make direct use of the channels must claim them from the kernel, complete the DMA
operation, and return the channels to the kernel. Holding on to EDMA channels can seriously affect the
performance of other transfers, in particular, link operations.

The following code fragment illustrates using EDMA to copy Frames blocks of 8 32-bit words from a device
FIFO to memory at Buffer. The code assumes that the device asserts EXT_INT4 when it has 8 words available.
The code does no error checking in order to keep it simple.

#i ncl ude <edma. h> O
#i ncl ude <ext _int.h>

struct EDmaControl *C = EDVA CTRL; // EDMA control registers

SC6x EDVAChannel *channel ;

EDVA REG *dmg,;

SC6x EDVA *Edmal ;

SC6xExt _I nt *Ext_Intl;

Ednal = SC6xKernel Locatelnterface(_kernel, SIID SC6xEDWA); O
Ext _Intl = SC6xKernel Locatelnterface(_kernel, SIID SCéxExt Int); O
SC6xExt _Int_Caim(Ext _Intl, 4); /1 claimEXT_INT 4 O

dma = SC6XEDVA _Cl ai m(Edmal, 4, &channel); O

SC6XEDVA_Fl ushCache(Edmal, 1, Franmes*8*sizeof(int), Buffer);

dma-

>opt = EDVA 2DS(1) | EDMA LINK(1) | EDMA TCINT(1)
| EDVA PRI (1) | EDMA_SUM 1)
EDMA DUM 1) | EDMA TOC(4);

dma->cnt = ((Franes-1)<<16) + 8;

dma- >dst = Buffer; /] destination buffer

dma- >src = DEVI CE_FI FO /1 device data address

dme- >i dx = 0;

dma->rld = EDVA LI NK_OFFSET(EDVA_NULL_PARAM ;

C->ECR = 1<<4, /1 clear any pending events
Enabl eMyDevi ce(); /1 for synchronisation
SC6xEDVAChannel _StartWit (channel); // do the transferO

Di sabl eMyDevi ce();
SC6xEDVAChannel _Rel ease(channel); O
SC6xExt _I nt _Rel ease(Ext _Intl, 4);

There are several things to notice about this code:

O

<ednm. h> declares the kernel functions used in the rest of the code and creates a reference, _ker nel
to kernel data structures. It aso contains a typedef for a structure type, EDMA _REG, which can be used to
access the EDMA transfer parameters, plus macros for accessing the various fields within the EDMA
registers. EDMA_CTRL is also defined to be a pointer to the hardware’ s block of EDMA control registers.
Production code would not call SC6xKer nel _Locat el nterface for every transfer but would
initialise the interface pointers once on program startup.

The code is using an external interrupt line (EXT_INT4), so it needs to claim that interrupt line from the
kernel to prevent it being used elsewhere. You do not need to claim an externa interrupt line if you are
using devices that have dedicated interrupt lines, for example, the McBSP devices which use interrupts
12..15).

SC6xEDVA_d ai mactually claims the channel (DMAA4). It returns a pointer to the corresponding EDMA
transfer parameters, or NULL if the requested DMA engine cannot be allocated (because it is already
claimed by another thread or by the kernel for an inter-processor link communication). Using this pointer,

227

EDMA

the example code then fills in the required values. If SC6XEDMA_Cl ai m succeeds, it returns an
SC6x EDVAChannel pointer via its final argument. This pointer refers to a software structure in the
kernel that describes the allocated DMA channel.

0 SC6xEDMAChannel _Start Wit isone of the functions that can be applied to such an EDMA channel
pointer. It sets up the various EDMA control registers needed to control the transfer and then suspends the
calling thread until the EDMA channel interrupts at the end of the block. While the thread is suspended
and the EDMA operation is executing, other threads can continue to execute on the CPU. The kernel will
catch the EDMA completion interrupt, resume the suspended thread and return control to the caller.

0 SC6xEDMAChannel _Rel ease informs the kernel that a previously clamed EDMA channd is no
longer required and can be returned to the kernel’ s pool of free channels.

There is no obligation to use SC6XxEDMAChannel _St ar t WAi t —it is provided to make handling EDMA
interrupts easier—but you are free to wait for EDMA completion either by polling (not recommended) or
waiting for the interrupt yourself with (SC6xEDMAChannel _Awai t | nt er r upt). The only mandatory step
is to clam the EDMA channel before attempting to touch the corresponding hardware. Failure to do so will
result in mysterious hangs when your code clashes with a concurrent inter-processor <chan. h> or
<l i nk. h> cal in some other task or thread, and the kernel then decides to service that call using the same
EDMA channel that you are already using for something else.

EDMA Channel Availability

Different C6x processors provide different numbers of EDMA channels: the C64 has 64 while other processors
have 16. As it is highly unlikely that many applications will require large numbers of EDMA channels,
Diamond usually arranges for the first 16 to be made available. This minimises the amount of memory needed
to support EDMA and has proved to be adequate for the kernel and the most users. However, if you do need
more than 16 channels, you can request 32, 48, or the full 64. Y ou do this by defining a new processor type and
using the "MAP=" qualifier to identify the appropriate EDMA handler module. For example, to create a variant
of an existing processor type "MyProc" with 64 EDMA channels you could define a new processor type as
follows:

PROCESSORTYPE MyProc64 MyProc NMAP=DIVA: EDMAG4

The available EDMA modules are:

EDMA16 (default) 16 channels (0..15)
EDMA32 32 channels (0..31)
EDMAA48 48 channels (0..47)
EDMAG4 (default) 16 channels (0..15)

EDMA events used by Diamond

Diamond uses only EDMA transfer compl ete codes 4..8.

Event Used Function

0 Host-to-DSP interrupt

1 Timer O interrupt

2 Timer 1 interrupt

3 EMIF SDRAM timer interrupt
4 yes External interrupt 4

5 yes External interrupt 5

6 yes External interrupt 6

7 yes External interrupt 7

8 yes GPIO event 0 (EDMA compl etion)
9 GPIO event 1

228

EDMA

Event Used Function

10 GPIO event 2

11 GPIO event 3

12 McBSPO transmit event
13 McBSPO receive event
14 McBSPL1 transmit event
15 McBSP1 receive event

SC6xEDMA Functions

The first functions in this group allow you to claim EDMA channels from the kernel’s pool for your own use.
You must use one of these functions before touching the EDMA hardware. Each of the functions returns an
(EDMA_REG *) pointer to the allocated EDMA channel’ s hardware registers, or NULL if the requested EDMA
channel cannot be allocated. See EDMA.H in the Diamond installation folder for the names and types of the
various structures' members.

SCGXEDM A_Cla] m [Stand-alone]
#i ncl ude <ednma. h>
EDVA REG * SC6XEDVA_Cl ai m(SC6x EDVA *Edmal ,
i nt n

SCBXEDMAChannel ** c);

This function attempts to allocate EDMA channel number n from the kernel’s pool of free channels. If
it succeeds, it returns a pointer to the requested channel’s hardware control registers. If it fails, it
returns NULL.

Edmal must be a pointer to the kernel’s EDMA manager interface, as returned by a call to
SC6xKernel_L ocatelnterface with a second argument of Sl | D_SC6x EDVA.

n isthe requested EDMA channel number. It must be in the range 0—15 by default. This range can be
extended by selecting more EDMA channels for the processor in the configuration file.

C isapointer to an (SC6XxEDMAChannel *) variable. The function sets this variable to point to an
EDMA channel descriptor in the kernel. This pointer is used to refer to the allocated EDMA channel
when calling the functions described |ater.

SCGXEDM A_CIa]mWalt [Stand-alone]

#i ncl ude <edma. h>

EDVMA REG * SC6XEDMA O ai mhai t (SCEx EDVA *Ednal ,
i nt n,

SC6xEDMAChannel **c);

This function attempts to allocate EDMA channel number n from the kernel’s pool of free channels. If
the requested channel is unavailable, the calling thread will be suspended until it does become
available, if ever. Therefore this function will never fail smply because the requested channel is not
available. When it succeeds, it returns a pointer to the requested channel’ s hardware control registers.
If it fails for some other reason, it returns NULL. The arguments are the same as for
SC6xEDVA_Cl ai mabove.

SC6XEDM A_Cla] mAny [Stand-alone]

#i ncl ude <edma. h>
EDVA REG * SC6XEDMA_Cl ai mAny (SC6x EDVA *Edmal ,

229

EDMA

i nt oper,
SC6xEDMAChannel **c);

This function is similar to SC6XEDMA_Cl ai m except that instead of requesting a particular channel
number, the call returns a pointer to any EDMA channel that happens to be free. If no channd is
presently free, or if the call fails for some other reason, it returns NULL.

Edrmal and ¢ have the same meanings as for SC6XEDVA Cl ai m

oper isignored. It isretained for compatibility with the older DMA functions.

SCGXEDM A_CI a] mAnyWa]t [Stand-alone]
#i ncl ude <edma. h>
EDVA REG * SC6XEDVA_Cl ai mAnyWai t (SC6x EDVA *Edmal ,
i nt oper,

SC6xEDMAChannel **c);

This function is similar to SC6XEDVA _Cl ai mAny, except that if no channel is presently free, the
calling thread will be suspended (indefinitely) until a channel does become free. Therefore this
function will never fail simply because a channel is not available. When it succeeds, it returns a
pointer to the alocated channel’ s hardware control registers. If it fails for some other reason, it returns
NULL. The arguments are the same as for SC6XEDMA_Cl ai mAny above.

SC6xEDMA_FlushCache [Stand-alone]
#i ncl ude <edmna. h>
voi d SC6xEDVMA Fl ushCache(SC6x EDVA *Edmal ,
Ul NT32 Modi fy,
Ul NT32 Byt es,

volatile void *Menory);

Thisfunction is provided to control the cache when using EDMA.

Edmal must be a pointer to the kernel’s EDMA manager interface, as returned by a call to
SC6xKer nel _Locat el nt er f ace with asecond argument of SI | D_SC6x EDVA.

Byt es and Menor y specify the size and location of the memory to be used in a subsequent EDMA
transfer.

Modi fy should be set non-zero if the EDMA transfer that is to follow will modify the memory;
otherwise it should be 0.

The function will flush any data in the cache corresponding to the external memory area defined by
Byt es and Menory. If Modi fy is non-zero, that cache data will also be invalidated. The function
does nothing if internal memory is specified.

The C6000 cache on processors with EDMA is unable to maintain coherence with external memory
when both the CPU and an EDMA channel access the memory. This means, for example, that it is
possible for a CPU read of externa memory to be satisfied with erroneous data from the cache even
though an EDMA operation has written new values directly to that memory. To work round this
hardware limitation it is necessary to manipulate the cache explicitly each time you perform an
EDMA transfer involving external memory.

The following guidelines should be followed for each EDMA transfer:

1. Ensure that the CPU cannot access any external memory that will be associated with the EDMA
transfer you are about to start. "Associated" here includes memory that falls into the same cache

230

EDMA

line (128 bytes) as the memory specified in the EDMA transfer parameters. For example, the
memory associated with atransfer of 32 bytes from AO000030__ to B0000120 extends from
AOOOOOOO16 to AOOO0O07F, . and from BOOOOlOO1 to 8000]817F16. The simplest way to do
thisisto align buffers on 1281-%yte boundaries and make them muiti ples of 128 bytes. Thisis not
aways possible.

2. Cal SC6xEDVMA Fl ushCache before starting the transfer. You will need to call this function
twice if the transfer is from external memory to external memory.

3. Start thetransfer.

4. Oncethetransfer has completed, the CPU may safely access the affected memory.

.Warning

This function can be quite slow as it must poll to detect completion of the cache
operation to complete.

SC6xEDM A_C| aimParam [Stand-alone]

#i ncl ude <ednmm. h>
EDVMA REG * SC6XEDMA O ai nmPar anm(SC6XxEDVA * Ednal ,
Ul NT32 Whi ch) ;

The parameters for EDMA operations are held in blocks of registers. This function returns a pointer to
one such block. The parameter Whi ch determines selects the block you want. If Whi ch is 0, the
function returns a pointer to the first free block it finds, otherwise the value (in the range 16 <=
Whi ch <= 84) is used to select a particular block. Parameter block 85 is reserved for use as a
terminating null block (see EDMA_NULL__PARAM). The function returns a NULL pointer if a suitable
parameter block cannot be claimed.

SC6xEDM A_Rel easePar am [Stand-alone]

#i ncl ude <edna. h>
voi d SC6xEDVA Rel easePar an(SC6XxEDVA * Ednal ,
EDVMA_REG *Par am ;

Release a parameter block for reuse. The block, Param, must have been claimed previously using
SC6XEDMA_C ai mPar am

EDMA_LINK_OFFSET [Stand-alone]

#i ncl ude <ednma. h>
U NT32 EDVA LI NK_OFFSET(EDVA REG *P);

This macro converts a pointer to a parameter block into an offset from the start of the parameter area.
Thisoffset isrequired inthel i nk field of one parameter block to chain it to the next.

EDMA_EVENT_PARAM [Stand-alone]

#i ncl ude <edna. h>
EDVA REG *EDAM EVENT_PARAM i nt n);

231

EDMA

This macro converts a parameter number (in the range 0 <= n <= 85) into a pointer to the
corresponding parameter block.

EDMA_NULL_PARAM [Stand-alone]

#i ncl ude <edma. h>
EDVA REG *EDVA NULL PARAM

This macro returns a pointer to the reserved parameter block that has been initialised to zeros. It
should be used to terminate a chain of transfer requests.

SC6xEDMAChannel Functions

These functions all operate on one of the SC6X EDMAChannel pointers returned by the "claim” functions
described above. Note that functions dealing with external devices do not set the various device enables that are
necessary to allow EDMA synchronisation or CPU interrupts. Refer to your C6000 module’'s hardware
documentation for a description of enabling events and interrupts for particular devices. EDMA termination
interrupts are automatically managed for you.

SC6xEDMAChanne_Release [Stand-alone]

#i ncl ude <edna. h>
voi d SC6xEDMAChannel _Rel ease(SC6xEDMAChannel *channel);

channel must be a pointer returned by one of the claim functions listed above. The EDMA channel
described by this pointer is released to the free pool.

SC6XxEDMAChannel_ResetEvent [Stand-alone]

#i ncl ude <edna. h>
voi d SC6xEDMAChannel _Reset Event (SC6XxEDMAChannel *channel);

Each SC6xEDMAChannel has an EVENT synchronisation object associated with it. The kernel
catches interrupts from the underlying hardware EDMA channel (EDMA_INT) and arranges for the
appropriate event to be signalled. This function is used to clear the event before waiting for an
interrupt by caling SC6XEDMAChannel Awai tlnterrupt. You must be careful to do this
before starting the EDMA transfer or setting the EDMA interrupt conditions, as setting them might
trigger an unexpected interrupt.

channel must be apointer returned by one of the "claim™ functions listed above.

SC6XxEDMAChannel_Awaitlnterrupt [Stand-alone]

#i ncl ude <edna. h>
voi d SC6xEDMAChannel _Awai t | nt errupt (SC6xEDMAChannel *channel);

Each SC6xDMAChannel has an EVENT synchronisation object associated with it. The kernel
catches interrupts from the underlying hardware EDMA channel (EDMA_INT) and arranges for the
appropriate event to be signalled. This function suspends the calling thread until that event is
signalled. You should clear the event SC6XEDMAChannel _Reset Event before setting up the
transfer and waiting for the interrupt.

channel must be apointer returned by one of the "claim" functions listed above.

232

EDMA

SCGXEDM AChannel_Start [Stand-alone]

#i ncl ude <edna. h>
voi d SC6xEDMAChannel _St art (SC6XxEDMAChannel *channel) ;

This function starts an EDMA transfer by setting the appropriate bit in ESR.

SC6xEDM AChanneI_StartWajt [Stand-alone]

#i ncl ude <edna. h>
voi d SC6xEDMAChannel _St art Wi t (SC6xEDMAChannel *channel);

This function is provided for the common situation where a thread has nothing to do between
initiating an EDMA operation and dealing with its completion. It encapsul ates the sequence:

1. SC6xEDMAChannel _Reset Event (channel);

2. Setthebitsin Cl ER and EER corresponding to the given channel; note that ESRis not used;

3. SCo6xEDMAChannel _Awai t | nt errupt (channel);

4. Clear thebitsin Cl ER and EER corresponding to the given channel .

channel must be apointer returned by one of the"claim" functions listed above.

This function assumes that the actual transfer will be initiated by the synchronisation event associated
with the EDMA channel being used. You should call SC6xEDMAChannel _Ki ckWai t when you
want the transfer to start immediately.

SCGXEDM AChanneI_K|CkWa]t [Stand-alone]

#i ncl ude <edma. h>
voi d SC6xEDMAChannel _Ki ckWai t (SC6XxEDVAChannel *channel);

This function is provided for the common case where the EDMA channel does not need to wait for a
synchronisation signal before initiating a transfer. It encapsulates the sequence:

1. SC6xEDMAChannel _Reset Event (channel);

2. Setthebitsin Cl ER and EER corresponding to the given channel ;

3. Setthebit in ESR corresponding to the given channel to start the transfer;
4, SC6xEDMAChannel _Awai t | nterrupt (channel);

5. Clear the bitsin Cl ER and EER corresponding to the given channel .

channel must be apointer returned by one of the "claim" functions listed above.

233

Chapter 15. QDMA

Introduction

The QDMA Manager gives you access to the Quick DMA (QDMA) hardware that is present on certain C6000
processors. It presents a simple and efficient interface that permits all modes of operation of QDMA and
supports different options for determining the completion of transfers.

This document assumes you have read and understood TI's documentation on EDMA and QDMA, and the
chapter on the EDMA manager.

Principles of Operation

QDMA is similar to EDMA, but alows for faster transfers at the cost of restricted functionality; not all of the
EDMA facilities are available with QDMA.

QDMA has a single set of five registers. These can be accessed in two ways: directly or through "pseudo
registers'. Writing directly simply sets a register value; writing to a pseudo register sets the register value but
also initiates the transfer. On completion, the registers retain their starting values, so subsequent, similar
operations can be performed by updating only the changed values, the final value being written to a pseudo
register to start the transfer.

The QDMA mechanism uses EDMA techniques to indicate termination; a "transfer complete code" value is
used to set a bit in the CIPR system register on completion of the operation. This bit can be polled or used to
generate an interrupt. From this point of view, a QDMA transfer could be confused with an EDMA transfer. To
avoid this confusion when using Diamond, claiming the QDMA channel with a specific transfer completion
code will also claim the EDMA channel that uses the same bit for synchronisation. It is anticipated that QDMA
will always be used with a TCC corresponding to an EDMA channel that is otherwise unused by Diamond and
the application (for example, EDMA channel 15).

.Warning

Note that nothing can be done to protect against a user using the same TCC in a concurrent
transfer with a different EDMA channel; thiswill inevitably lead to program failure.

The module does not take any action to deal with potential problems that may result from the C6000 DMA
processor’ s inability to maintain coherency between external memory and the cache; thisisleft to the user.

Header File

The header file QDMA.H gives accessto all of the functionsin the QDMA module. It also includes EDMA .H.

Status

All of the functions provided in the QDMA module return a status code of the following type:

t ypedef enum {
(014 success
not cl ai med

QDVA_NOTCLAI MED

AWNEFLO
~—~————
~—~————

QDVA RANGE - illegal EDVA channel

CQDVA _EDVA -3, EDMVA al ready cl ai ned

(QDNVA_HOW - illegal arg to daim
} QDVA_STATUS;

234

QDMA

Preparing to Transfer

Y ou must take several steps before you can use the EDMA module:

1. Firdt, call QDMA _Interface to obtain an interface to the QDMA module for use in subsequent QDMA

calls. For example:

#i ncl ude <qdna. h>

SC6x QDVA * Qdral

= QDVA_Interface();

if (!Qnmal) error("cannot obtain CQDVA interface");

Y ou only need do this once in any task; calling it repeatedly is not wrong but will waste time. The function

returns NULL if QDMA cannot be found.

2. Beforeusing QDMA, you must claim the channel:

QDMVA_STATUS St at us;
Status = QDVA _d ai n{ Qdnal

This reserves the single QDMA channel on a processor for the thread’s exclusive use and specifies three

things:

15, QDMVA POLL);

a The QDMA interface obtained in step 1 above.

b. The termination event to be used. This must be in the range 0<=N<=15 and also indicates which
EDMA channel is to be claimed. Y ou should chose an event that is not used €l sewhere for a different

purpose. This example uses event 15 which is never used by Diamond.

c. Theaction taken once atransfer has started. There are three options:

QDMA_INTERRUPT

The module will suspend the calling thread and wait
for the QDMA to indicate completion of the transfer
with an interrupt. Other threads will continue to
execute while the thread is waiting. It will be
rescheduled when the interrupt is detected. All
interrupt handling is managed by the module. In
particular, the CIPR and CIER system registers must
not be altered by user code.

QDMA_POLL

The module will loop testing for completion of the
transfer. This should only be used for transfers that
will terminate quickly, as the thread will consume
CPU cycleswhile it waits.

QDMA_NOWAIT

The function can return four values:

Control will be passed back to the calling thread
immediately; the transfer will continue to progress. It
isthe caller’ s responsibility to determine when the
transfer has completed. Most users will find the
interrupt or polling options more convenient

The termination event is not in therange 0 <= N <= 15.

QDMA_OK The claim was successful.
QDMA_RANGE
QDMA_HOW The termination action is unknown.

QDMA_EDMAINUSE

The corresponding EDMA channel isin use.

235

QDMA

If another thread on the processor has claimed the QDMA channel, this call will suspend the calling thread
until the QDMA channel is released.

A QDMA_Clam/QDMA_Release sequence has been timed on an 150MHz SMT374 6711 as takng 5.2us.
3. Now you can perform as many QDMA transfers as you wish (see Transfers).

If you use QDMA_NOWAIT you can explicitly test for completion using QDMA_Complete, which
returns a non-zero value if the previous QDMA transfer has completed. It returns O otherwise. For
example,

while (QDVA Conpl et e(Qdmal) ==0) {}

4. Findly, you can release al resources held by the QDMA channel (including the associated EDMA
channel) by calling QDMA_Release. This makes QDMA available for use by other threads. The interface
remains valid for further use.

For example:

QDVA_Rel ease(1);

The function can return two values:

QDMA_OK The release was successful.
QDMA_UNCLAIMED The QDMA channel had not been claimed.

If only one thread on a processor needs to use QDMA,, it may claim the channel once and never release it.

If you wish to change the termination action (from QDMA_POLL to QDMA_INTERRUPT, for example)
you must release the channel and then claim it again.

Transfers

QDMA transfers are based around the following structure:

typedef struct {
U NT32 Opt;
voi d *Src;
U NT32 Cnt;
voi d *Dst ;
U NT32 1dx;
} QDVA REGS;

Object of thistype are used to hold the parameters for a QDMA operation. The details of the fields and their use
arefully described in the TI QDMA and EDMA documentation (SPRU190).

Transfers are usualy started using the following function:

QDVA_STATUS QDMA_Per f or n{ SC6xQDVA *1, QDMA_REGS *R)

The values in the QDMA_REGS structure, R, are assigned to the corresponding QDMA parameter registers.
The Opt value is assigned last using a pseudo register to initiate the transfer. Depending on the way the QDMA
channel had been claimed, this call will either wait for the transfer to complete (QDMA_INTERRUPT or

236

QDMA

QDMA_POLL) or return immediately (QDMA_NOWAIT).

The value specified for Opt will be modified before assignment as follows:

1. TheTCC (Transfer complete code) field will be set to the value of the termination event specified when the
channel was claimed.

2. TheTCCM field will be set to 0.

3. TheTCINT (Transfer complete interrupt) bit will be set to allow CIPR to be used to indicate completion of
the transfer.

This modification of Opt cannot be done if you write to the Opt register explicitly. In this case it is your
responsibility to ensure that the value written has the correct valuesin the TCC, TCCM, and TCINT fields.

The function can return two values:

QDMA_OK The call was successful.
QDMA_UNCLAIMED The QDMA channel had not been claimed.

Starting a QDMA transfer while another isin progress will lead to unpredictable behaviour.

QDMA Registers

The hardware’'s QDMA registers may be accessed using the macro QDMA_REGISTERS that is defined by
<QDVA. H> . Note that the QDMA registers may only be written; any values returned by reading them are
undefined. The fields correspond to the QDMA registers described in the Tl documentation. Explicitly changing
Opt requires you to ensure that the value has the TCC, TCCM and TCINT fields set as for QDMA_Perform.
Thiswill be done for you if you set Opt using QDMA_Restart (see below).

A transfer can be started by assigning the final or only changed value to a pseudo register using the macro
QDMA _Restart. You should not touch the QDMA pseudo registers explicitly; these are managed for you by
Diamond.

The macro takes three parameters: QDMA_Restart(l, R, V):

I The QDMA Interface
R The register to be modified
\% The value to assign to the register

For example, assuming a previous transfer had been carried out using QDMA_Perform:

Q@DOVA_REGS *Q = QDMA_REJ STERS;
Q >Src = & nput_buffer;
QDVA Restart(Qnal, Q >Dst, &output buffer);

This starts the transfer by assigning Q->Dst and then waits for completion in the same way as QDMA_Perform.
It uses the same return values.

A QDMA Example

/1 This exanple is intended to give a flavour of howto
/1 use QDMA. It does not attenpt to do any error
/1 detection.

237

QDMA

/1 A conplete exanple is in the installation package.
#i ncl ude <QDMA. h>
#define SIZE 1024

typedef struct {

float real;
fl oat imag;
} COWVPLEX;

/1 Build a conplex structure fromtwo array of fl oat
/1 The values in the arrays Real and Imag are

/1 interlaced into the array C

}/oid Conbi ne(float *Real, float *Img, COVPLEX *C)

SC6xQDVA *Qdmal = QDMVA I nterface();

Q@DVA REGS R

Q@DVA REGS *Q = QDMA REQ STERS;

QOVA d ai m(dmal, 15, QDMA | NTERRUPT); // use TCC 15

/1 nmove in the real parts
R Src = Real;
R Dst = &C >real;
R Cnt = (SIZE<<16) | 4; /1 size * 4 bytes
R Idx = 8; /'l every other word
R Opt = EDVA \ SUM 1)

| EDVA _DUM 3)

EDMA PRI (1);

QDVA Perforn{Qmal, &R);

/1 nmove in the i magi nary parts

Q>Src = I mag
DVA Rest art (QDmaI Q >Dst, &C >l nmag);
QDVA Rel ease(dmal) ; /1 done

238

Chapter 16. Troubleshooting

This chapter is designed to help those who are debugging Diamond applications, and is designed to be used in
conjunction with the Index at the end of this User Guide. It lists a number of symptoms, together with likely
causes and possible remedial actions. Each of the listed symptoms may be found under the symptoms of
problems entry in the Index; the heading of each possible cause may found under causes of problems. By
looking up these entries, you can find references to pages of the manual where more details may be found.

In addition, the following sections of the manual deal with the error messages generated by some of the utilities.

* The configurer, config.
e Theserver, WS3L.

My application does not run

Thisisaninitial checklist to follow if you are unable to get the server to run your application.

* You should start by running any utilities provided by your DSP vendor to check that the hardware and
associated device drivers have been installed correctly and are functioning.

e Can you run the hello word example from the Diamond examples folder? If you can, the problem lies in
your application. If you can't, there is likely to be some problem with your DSP hardware. Check the
following points for further suggestions.

» Have you changed the server’s Standard 1/0 options? Redirecting all output to a file rather than the screen
can make an application appear not to run, for example. If in doubt, reset the options to the safe default state
by selecting View/Options and pressing Reset to Default Options.

» Does your hardware appear to be working? Many DSP boards have indicators (LEDS) that display some
processor state. Check with your board documentation that these are showing the expected state.

* Isthe board’s power supply correct? Some DSP modules need to be screwed down to the carrier board to
receive correct powe.

e Does vyour application load? You <can check this from the server by selecting
View/Options/Monitoring/General Monitoring and trying to run your application. You should see three
monitoring messages:

MON: Resetting DSP nodul es

MON: Loadi ng your application

MON: Loadi ng conpl et ed

If these messages do not all appear, check the following:
» Hasyour application been built properly?

* Have you used the Diamond command 3L? Tasks built using the recipesin TI’s manuals will not work
under Diamond.

» Didyou build your application for the correct processors? Applications compiled for the 62xx processors
(3L ¢, 3L t) will work on both C62xx and C67xx processors. Applications built for c67xx processors (3L
€67, 3L t67) will not execute on c62xx processors.

« Werethere any error messages from the configurer when you built the .app file? Y ou should correct any
problems here first.

» Do the processor typesin your configuration file match the processorsin your DSP system?

e Isyour DSP network connected properly?

239

Troubleshooting

e Does the number of processors in your hardware system correspond to the nhumber of PROCESSOR

statements in the configuration file used to build the application?

« Are the processors connected in the way described by the WIRE statements in your configuration file?

External cables, pre-defined links, or programmable links can connect processors. Check that all
necessary connections have been made correctly.

* Some PC boards have a distinction between a "root" board, which has a link to the PC, and "non-root"
boards, which have no such connection. Check that any necessary switches on the boards are set in the
appropriate ways. Also, note that some boards give you access to the link used to communicate with the

host. Make sure that you have not connected this link on the root processor’ s board to any other link.

* Canthe server see al the DSP boards you expect? Check using Board/Sel ect.

< |If you have more than one DSP board in your system, have you selected the correct one? The server

shows the selected board at the bottom right of its window.

» Have you given enough memory to your tasks? Check the TASK statementsin your configuration file.

» Have you used the appropriate #include files in your source programs? A common mistake is to forget to

include <st di 0. h> . Also, check that you are getting the Diamond include files and not TI’s.

» |Is some other application using the same DSP system? This could be ancther instance of the server or a
board maintenance application from your board vendor. Under certain rare circumstances, it is possible to
kill the server’s user interface without shutting down the server properly. Stop the server and check using the
Task Manager (Processes) that there aren’t any instances of WS3L .exe running. Y ou can safely stop any you

find (End Process).

» Have you been using Code Composer and left any of the DSP processors halted? If you have been using
Code Composer, start it again, and for each processor: halt it if necessary, and then select "Run Free". Try

running your application again.

e Check that your application is starting to run by putting a printf at the start of main in one of the tasks on the

root processor. If this generates output, the problem lies further on in your code. Some common errors are:
« Using semaphores before they have been initialised with sema_init.
« Using events before they have been initialised with event_reset.

« Using alocal channel before it has been initialised with chan_init. Note that you must not initialise the

channels passed in as parameters to main.
» Forgetting to use the appropriate header files, notably <st di 0. h> , and <t hr ead. h> .

Compilation, Linking, Configuration

compiler cannot be found

sear ch path not set correctly

The PATH environment variable must include the folder where Diamond has been installed.

compiler cannot find header files

compiler invoked without Diamond header s

Applications must be compiled using the header files supplied with Diamond. The most likely
cause for thisis not using the Diamond command (3L) but using the compiler directly (cl6x) and
not specifying that the Diamond installation folder be searched first
(-1"C:\3L\Diamond\bin\c6000\Sundance\include”).

240

Troubleshooting

relocation errors
configurer producesrelocation errors

The TI compiler can generate references to external objects in two ways. using one instruction or
using two. References using single instructions are faster than those using two instructions but
they have limited addressing capabilities: objects that are too far away or are too large may not be
reachable. References using two instructions can reach anywhere in the processor's address space.
"Relocation errors' indicate that the configurer has discovered a single-instruction reference that
cannot reach its target. To ensure the compiler generates the longer instruction sequences when
necessary, you should ensure that your source declares the objects as "far". For example

extern far int Counter;
extern far void Special Processi ng(void);

This usually only happens when you explicitly put data or functions in separate sections and not
inthe usual ".data" or ".text" sections.

linker complains about relocations

The T1 compiler and linker must agree on the format and content of object files. On a number of
occasions, Tl has updated the code generation tools in a way that leaves them incompatible with
older versions. Usually the problem is limited to older versions not accepting output generated by
the newer versions. This problem can appear if you are using a version of the Diamond libraries
built with aversion of the tools that is newer than the tools you have installed. There are only two
solutions:

1. upgradeto the new version of the T tools;

2. revert to an older version of Diamond

wrong version of software executed
sear ch path not set correctly

Check that your PATH variable includes the Diamond installation folder, and that it comes before
any other folder containing any program with the same name as a Diamond command.

Complete Failure at Run Time

application hangs or runs wild

Wrong processor type given in configuration file

When you run an application, the hardware used must match the trouble in the configuration file.
In particular, the TYPE information on the PROCESSOR statements must correctly identify each
processor. If you have used the default processor type, check using the ProcType command that
would have selected the correct processor type.

channel message hasincompatible lengths

When you are sending a message through a channel, whether or not thisis routed through alink to

241

Troubleshooting

another processor, the sending and receiving sides must agree on the length of the message.

channel transfer on uninitialised channel

Before an internal channel is used, it must be initialised using the chan _init function.

wrong header files used

Diamond has its own set of header files. These are, in general, incompatible with those supplied
with the Texas Instruments C compiler. To make sure the compiler picks up the correct header
files, you should use the Diamond command (3L ¢) to compile programs.

function prototypes necessary

You must supply a prototype for any function to which you wish to make externa or forward
references. If you do not do this, the compiler may generate the wrong code for the function call,
but even so it will not report an error. This is particularly serious if the function has a variable
number of parameters (printf, for example). You should always include header files for library
functions.

ill-advised alterationsto CPU registers

Y ou should only change any of the CPU registersif you are certain about what you are doing. It is
possible to disrupt the microkernel in thisway.

multiple use of run-timelibrary

Severd parts of the run-time library cannot be used by more than one thread from the same task at
atime. In a multi-threaded task, you should wait for the semaphore par_sema before using the
run-time library, or use the special protected versions of certain functions, which are defined in
<par. h> . You do not need to protect calls from different tasksin this way.

multiple use of shared abject

If two or more threads are using the same data area, link, etc, it should be protected by a
semaphore or by some other technique, to ensure that anomalies do not occur.

no memory assigned to STACK or HEAP

If you assign a size to either the HEAP or STACK logical areain a TASK statement in your
configuration, but do not assign a size to the other, the other will in fact be given no memory.
Nearly al tasks will fail under these conditions. Either assign values to both or use the DATA
logical area, which is shared by the two of them. One task on each processor may have no data
assignments; this task will be given all the available remaining memory for its DATA logical
area

not enough memory assigned to logical area

If the stack or heap overflows its assigned memory area, the task will usually fail.

242

Troubleshooting

par_sema already claimed when thread_new used

The thread new function gets space from the heap using par_malloc, which waits for the
par_sema semaphore. If the thread that calls thread new has already claimed par_sema,
par_malloc will wait forever to claim par_sema, although the thread has aready got it, and as a
result thread_new will never return.

tried to turn interrupts off

Diamond applications usually run with the processor interrupts turned on. Turning interrupts off
at the wrong time will often prevent your application from running.

two threads waiting on one channel

If athread tries to do aread on a channel, the thread will wait until another thread does a write on
it; at that moment, the transfer will take place. If, during the time the thread is waiting for the
transfer to take place, a third thread tries to do a read on the same channel, the effects are
unpredictable.

The same applies if a thread tries to do a write on a channel, and is waiting for another thread to
read the data; if athird thread tries to write to the channel, the effects are unpredictable.

uninitialised semaphore

You must always initialise a semaphore, dynamically using the sema_i nit function or
statically using st ati c_semna_i ni t, before using any other function on it, or before attaching
it to an interrupt. Note that the run-time library initialises par_semafor you.

using channel in both directions at once

Two threads should not issue reads on a channel at the same time. The same applies to writes.

failing to claim a DMA (or EDMA) channel

Diamond can claim and release DMA channels dynamically. If you use a channel without first
claiming it, another part of your application may be given that same channel to use, leading to
undefined behaviour. Diamond itself will only ever use DMA channels corresponding to the four
external interrupt lines: INT4..INT7, but application codeis free to use any.

application will not load or start

hardwar e configur ation trouble incorrect

The hardware part of a configuration file, that is, the PROCESSOR and WIRE statements, must
be an accurate trouble of the network on which the application is going to run. In particular, the
TYPE of each processor in the configuration file must match the actual type of processor being
used.

task placed on processor of wrong type

If you are building a mixed-processor application, it is your responsibility to ensure that tasks are

243

Troubleshooting

placed on processors of the correct type. Obviously, atask placed on the wrong type of processor
will not run at al.

communication with host disrupted
connection to host closed

When the main function of atask linked against the full run-time library returns, the connection to
the host server is closed. Any threads created by that task will no longer be able to perform any
host 1/0, for example, printf. If you do have active 1/0O threads, the main function should not
return but terminate by calling thread_stop.

misuse of link.h functions

The link communication functions in <l i nk. h> should normally be used only on links
mentioned in DUMMY WIRE statements. Using these statements on the link to the host PC will
almost certainly interfere with the transmission protocol.

multiple use of run-timelibrary

Many parts of the run-time library cannot be used by more than one thread at a time. In a
multi-threaded task, you should wait for the semaphore par_sema before using the run-time
library, or use the special protected versions of certain functions, which are defined in <par . h>
. Thisis described here.

processor locks up

channel message has incompatible lengths

When you are sending a message through a channel, whether or not thisis routed through alink to
another processor, the sending and receiving sides must agree on the length of the message.

channel transfer on badly bound port

It is possible to pass a parameter to atask by binding one of its ports to an integer value, using the
configuration language BIND command. The task should not then try to do a channel transfer
through this port.

ill-advised alterationsto CPU registers

Y ou should only change any of the CPU registersif you are certain about what you are doing. It is
possible to disrupt the microkernel in thisway.

multiple use of run-timelibrary

Many parts of the run-time library cannot be used by more than one thread at a time. In a
multi-threaded task, you should wait for the semaphore par_sema before using the run-time
library; or use the special protected versions of certain functions, which are defined in <par . h>

244

Troubleshooting

multiple use of shared object

If two or more threads are using the same data area, link, etc, it should be protected by a
semaphore or by some other technique, to ensure that anomalies do not occur.

no memory assigned to STACK or HEAP

If you assign a size to either the HEAP or STACK logical area in a TASK statement in your
configuration, but do not assign a size to the other, the other will in fact be given no memory.
Nearly al tasks will fail under these conditions. Either assign values to both or use the DATA
logical area, which is shared by the two of them. One task on each processor may have no data
assignments; this task will be given all the available remaining memory for its DATA logical
area

not enough memory assigned to logical area

If the stack or heap overflows the assigned memory area, the task will usually fail.

two threads waiting on one channel

If athread tries to do aread on a channel, the thread will wait until another thread does a write on
it; at that moment, the transfer will take place. If, during the time the thread is waiting for the
transfer to take place, a third thread tries to do a read on the same channel, the effects are
unpredictable.

The same applies if a thread tries to do a write on a channel, and has to wait for another thread to
read the data; if athird thread tries to write to the channel, the effects are unpredictable.

using channel in both directions at once

Two threads should not issue reads on a channel at the same time. The same applies to writes.

server hangs or runs wild

host communication disrupted

Check that you have not used the <I i nk. h> functions on links that have been mentioned in the
configuration file.

multiple threads accessing the server

Check that no two functions marked Server in the list of functions can be executing in different
threads at the sametime. See <par . h> .

system started another Diamond application

The system function should not be used to start another Diamond application. Doing so will
overwrite the one that is running and disturb the server.

245

Troubleshooting

ANSI Functions

data in file seem to be corrupt
accessing binary fileviaredirection

The only kind of file which may be specified with the command line "<" and ">" redirection
operatorsisatext file.

EDOM set in errno

arguments of strtol or strtoul arewrong

See strtol (and following) for details of the arguments required.

mathematical function argument out of range

Severa mathematical functions do this

end of file corrupt or absent
application ends while 1/0O unfinished

When a task's main function exits, either by returning or calling exit, the task is stopped. If the
task uses C standard 1/O, the run-time library winds down the 1/0 system and closes any open
files. If there are other threads that have not finished their 1/O, the files they are using may be
incompl ete.

multiple use of run-timelibrary

Many parts of the run-time library cannot be used by more than one thread at a time. In a
multi-threaded task, you should wait for the semaphore par_sema before using the run-time
library; or use the special protected versions of certain functions, which are defined in <par . h>

task unilaterally stops application

In an multi-task application, any task can terminate the whole application by calling
_server_terminate_now. If other tasks have not completed their 1/0O, data may be lost and files
corrupted.

ERANGE set in errno

ASCII number out of range for double

If the string argument of the strtod function represents a number that is outside the range for a
double, ERANGE is set.

mathematical function result out of range

246

Troubleshooting

Severa mathematical functions do this

file position is wrong
file position functions cannot be used with text files

In the current version of Diamond, the fgetpos, fsetpos, ftell and fseek functions do not work on
text files, with certain exceptions that are detailed in the troubles of the functions. This is because
the operating system represents newline in afile by two characters (carriage return and line feed)
while C interprets this pair asasingle "\n" character.

I/O behaves unexpectedly

switching file directly from input to output

If you change directly from input to output on the same file, or vice versa, you are likely read or
write erroneous data. Y ou must insert acall to fseek between the two.

I/0O function returns negative value

printf and other printing functions return a negative value as an indication that an error has
occurred.

1/O function returns non-zero value

Certain functions, including fclose, ferror, fgetpos, remove and rename, indicate an error by
returning a non-zero value. See the documentation of the various functions for details.

/O function returns zero

The fread and fwrite functions return zero as an error indicator (fread uses zero to indicate
end-of-file aswell).

1/O function returns EOF

A number of functions, including fgetc, fflush, fputc, fscanf, getc, getchar, putchar, putc, and
scanf, return EOF as an error indicator. The input functions among them also return EOF to
indicate end-of-file. In addition:

ungetc cannot un-get a character

See the documentation of ungetc.

1/0O function returns NUL L

The functions gets, fgets, fopen, and freopen return NULL to indicate an error. The same value is
returned by gets and fgets to indicate an end-of-file.

247

Troubleshooting

NULL returned when allocating memory

heap hasrun out of memory

The functions calloc, malloc, realloc and memalign return NULL if they cannot allocate the space
which was requested from the heap. You may need to consider expanding the amount of space
assigned to the HEAP logical areain your TASK statement.

output does not appear or is corrupt

application endswhile 1/O unfinished

When atask's main function exits, the task is stopped. If the task uses C standard 1/0O, the run-time
library winds down the I/O system and closes any open files. If there are other threads that have
not finished their 1/0, the files they are using may be incomplete.

multiple use of run-timelibrary

Many parts of the run-time library cannot be used by more than one thread at a time. In a
multi-threaded task, you should wait for the semaphore par_sema before using the run-time
library; or use the special protected versions of certain functions, which are defined in <par . h>

task unilaterally stops application

In a multi-task application, any task can terminate the whole application by calling
_server_terminate_now. If other tasks have not completed their 1/0O, data may be lost and files
corrupted.

time function returns wrong time
TZ environment variable not defined

Under DOS, the TZ environment must be defined to specify your time zone. See the discussion of
the time function.

variable corrupt

arguments of memcpy overlap

If its arguments overlap, the behaviour of memcpy is undefined.

arguments of strcpy overlap

If its arguments overlap, the behaviour of strepy is undefined

Parallel and Other Functions

248

Troubleshooting

channel transfer fails
multiple use of shared object

If two or more threads are using the same data area, link, etc, it should be protected by a
semaphore or by some other technique, to ensure that anomalies do not occur. See: semaphores
and volatile.

two threads waiting on one channel

If athread triesto do aread on a channel, the thread will wait until another thread does a write on
it; at that moment, the transfer will take place. If, during the time the thread is waiting for the
transfer to take place, a third thread tries to do a read on the same channel, the effects are
unpredictable.

using channel in both directions at once

Two threads should not issue reads on a channel at the same time. The same applies to writes.

link functions do not work
link functions do not transfer any data

Some links do not have drivers built into the kernel. In order for the appropriate driver module to
be loaded, the configurer must know that one of these links will be used. It determines this by
observing the link being used in WIRE statements. If you do not mention the link, the driver will
not be loaded and the link functions will fail.

thread cannot see changes to shared data
shared variables may need to bevolatile

The compiler may arrange for a variable's value to be held in a register. If so, changes to that
variable would be invisible to another thread. If you declare the variable as volatile, the compiler
will keep the variable in memory.

Note that even if you use volatile you may still need to use semaphores as well to synchronise the
threads' accessto a shared variable.

thread hangs
calling <par . h> function when par_sema already claimed

If the thread that calls one of the <par. h> functions has aready claimed the par_sema
semaphore itself, the function will never return. This is because it waits forever in vain for
par_semato be signalled.

thread_new doesnot return

par_semaalready claimed when thread _new used

249

Troubleshooting

This is an example of the condition described in the previous entry. The thread new function in
fact calls par_malloc.

thread _new returns NULL

heap hasrun out of memory

Y ou should consider increasing the amount of space allocated to the HEAP logical area in your
TASK statement.

wor kspace too small

thread new will refuse to start a thread if it is being given a workspace smaller than
THREAD_MIN_STACK.

<ti mer.h> functions do not work
hardwar e clock stopped

The timer functions assume that the hardware time is running under the control of the kernel. User
modification of the timer registers can disrupt timer functions and scheduling behaviour.

hardwar e clock disabled

The processor’s clock can be disabled (stopped) by specifying CLOCK=0FF or CLOCK=0 as an
attribute of the PROCESSOR statement in your configuration file.

variable corrupt
multiple use of shared object

If two or more threads are using the same data area, link, etc, it should be protected by a
semaphore or by some other technique, to ensure that anomalies do not occur.

250

Part Ill. Sundance Reference

Sundance-specific Features

Table of Contents

I R 1PN 253
ST 1010 7= Y/ 253

L0001 11070 1 1T PP UPPT 253

RS =1 253

Link ConNeCtion RESLICHIONSiietiiii et e e 254

LinkK PerfOrmManCeoeue e 254
COoNNECEING TO DEVICESiiiiiiii e e e e e e e aens 255

ST 7= o 11 o (o 11 0 [256
L@ a1 256

SEATING LO DEDUG ..ottt 256

[N [0 =SSP 258

19. APPIICATON LOAINGceeeeiiieeii ettt ettt et e e et e et e e et e e et e eaaaees 259
[(01 0 7= o 1 o PN 259

(07 o I 01 =107 (1 0 260

ROM LOBOING ..ttt e e e et e e e e et e e e eebe e eeeees 262

20. SUNABNCE DIGItal BUSceceviieiiii ettt ettt e e et e et e e e enan s 263
TEMINOIOGY ... eeetieeteet ettt ettt e e et e et e et et e et e e e 263
160001110 017 1 (o] o TP 263

ACCESSING AN SDB ..ottt 263
PErfOrMEBNCE ISTUBS ... e e et e e eeb e e eee 264

AN SDB EXBMPIE ... 265

P I = T0 = 0 S o= PP 267
Accessing the Board Services INErface ..o 267

USING BOBIA SEIVICESeeiieii ettt ettt et e e et e e e ean e ees 268

=T 00 = SRR 268

Carrier-D0ard SRAM ..o 269

The High Speed Channelsooooiiiiii e 269

ACCESSING PCl REGISIEIS ...ttt 275

PCI A CCESS ...t et 275

THE GIODE BUS ...t e e e e e e e e e 275

PaCKaged SEIVICESuuiiiiiii et 276

Faster Standard /Oooeeueii e 276

L LR I =0 = 277

S 0 117= 1 = T 277

S [00 (=SS PP 277

22, SUNAANCE TIMS e ettt e e e e e e et e e e e e e e eaans 278
23 ROM Lottt e et aaan s 279
B N O | PP 280
L0015 1= £ 280

USING APP2COFT ettt 280

Loading the @ppliCationcouuiiiiiiiie et 281

APP2COFT EFTOr IMESSAgES ...eeneetnieeiie ettt e e e e et e et e et e e e e ean s 281

P2 I8 2 T= .o o o PR 283
ACCEPLEA NEIWOTKS .oviiiit et e e e e e e e e e e et e e e e e ean s 283

SEAtiNG thE WOIM ..ot et 283

ST (o S 283

WOIM QUEPUL ..ttt et e e e e e e e e e ena s 284

252

Chapter 17. Links

Sundance TIMs come with avariety of 1/0O devices, some of which may be used aslinks.

Summary

Link Connection

[O] comport O

[1] comport 1

[2] comport 2

[3] comport 3

[4] comport 4

[5] comport 5

[6] SDB O

[7] SDB 1

[8] SDB 2 (if present)
[9] SDB 3 (if present)

= Note

Diamond will aways alocate link numbers 0 to 5 for comports even though some processor
TIMs do not implement all six devices, ; similarly links 6..9 are allocated to SDBs regardless of
the number appearing on the TIM. Links associated with unimplemented devices should not be
used as their behaviour is not defined.

Comports

Comports provide the fundamental mechanism for interconnecting Sundance modules. Every processor TIM has
a number of comports that can be connected with external wires or with facilities built into carrier boards
holding multiple TIMs. Y ou should refer to the documentation for your particular types of TIM for details.

Diamond reserves links 0 to 5 for comports and these correspond directly to the six comports defined by the
TIM standard.

PROCESSOR root SMI361

PROCESSOR node SMT361
WRE ? root[1] node[4] I conports 1 and 4 are connected

Comports are documented to operate at a maximum speed of 20MB/s, but some implementations may be alittle
faster, particularly those operating between processors in a multi-processor TIM. This maximum performance is
usually only achieved for transfers of 1KB or more.

SDBs

Most TIMs provide two or more Sundance Digital Busses (SDBs), which appear as links 6 to 9. SDBs must be
connected using external cables.

Newer SDB links can transfer data at rates in excess of 300M B/s for blocksizes over about 4K B.

.Warning

253

Links

You should not attempt to mix using SDBs as links and driving them directly with the SDB
functions. Doing so will certainly cause your application to fail.

Link Connection Restrictions

1. You may only connect links of the same type: the configurer will complain if you attempt to connect a
comport link to an SDB link.

2. SDB links cannot participate in loading; any WIRE statements mentioning SDB link numbers will assume
the attribute NOBOOT.

Y ou should ensure that all of your processors are connected together with comports in addition to any SDB
links you may have. If you do not do this, the configurer will fail reporting an error.

Link Performance

The performance figures quoted above are maxima; the actual rates achieved in practice depend on severa
things:

» The size of the transfer. There is a fixed overhead associated with managing any transfer. This overhead
becomes negligible when moving large amounts of data, but tends to dominate small transfers.

* Availability of DMA. When you start a transfer,the kernel will attempt to alocate a DMA channel to
manage moving the data. The number of DMA channels available is limited to three. There are only four
external interrupt lines and one needs to be used to synchronise each DMA transfer. One of these lines must
be reserved to act as a falback for transfers that cannot use DMA and must be managed with CPU
interrupts. If all available DMA channels are tied up with concurrent transfers or have been claimed for
other uses in the application, the transfer will have to use CPU interrupts and will achieve a considerably
reduced transfer rate.

» The alignment of the data. Because of the inability of the C6000 DMA to maintain choerency between the
cache and external memory, the Diamond kernel has to limit the use of DMA to transfers or sections of
transfers that are aligned on a cache-line boundary (addresses which are a multiple of 128) and of a size that
is a multiple of the cache-line size (128 bytes). Parts of a transfer that are mis-aligned or not a multiple of
128 bytes will be handled by CPU interrupts, and thisis considerably slower than using DMA.

The configurer will normally choose the links to be used to carry channels created by CONNECT statements. If
you need a connection to use a particular wire, to make sure it uses a fast SDB link or a slower comport link,
you should explicitly PLACE the connection on the wire.

For example:

processor root default
processor node default

Wre ? root[1] node[4]
wire sdb root[7] node[7] I the SDB link

task rtask data=80K i ns=1 outs=1
task ntask data=80K i ns=1 outs=1

connect cl1 rtask[0O] ntask[O] physical
connect c2 ntask[O0] rtask[O] physical

pl ace rtask root
pl ace ntask node

254

Links

pl ace cl sdb I use the fast link
pl ace c2 sdb

Connecting to Devices

Sometimes you may wish to communicate with a device (such as an ADC) or a processor that is not to be
considered part of the Diamond configuration. To do this you should give a WIRE statement that references a
built-in link specifier called DUMMY. This is most important when using SDB links. The WIRE statement
gives the kernd the information it needs in order to set the initial direction of an SDB to receiving or
transmitting. Also, the configurer uses references to SDB links as a request to load the kernel module that
handles SDBs; without this module you will be unable to mention SDB links in the | i nk. h functions. The
DUMMY processor reference does not specify any link number.

For example:

PROCESSOR r oot SMr361
W RE one root[6] DUMW !

initialise SDB link 6 as a transmtter
WRE two DUMW root[7] ! initialise SDB link 7

S a receiver

A]

255

Chapter 18. Debugging

Overview

In general, the best way to debug a multiprocessor application is to design it for debugging. While it is common
practice to debug a sequential program by observing its behaviour with a debugger, that technique is, at best,
tricky when two processors are involved. The asynchronous nature of multiprocessor systems makes the
technique become rapidly unworkable as the number of processors increases. A more structured method is
needed. One line of attack is to use tasks as a natural unit for debugging. They are independent of other tasksin
the system and so it is usually possible to design dummy modules to connect to the task and provide test inputs
and check outputs. It is then reasonable to use Texas Instruments Code Composer to debug individual Diamond
tasks.

Code Composer has been designed assuming that a processor can only be running a single program, but
Diamond applications are different:

They may have multiple tasks on each processor;

Tasks may spawn multiple threads;

Different tasks may use the same identifiers—for example, every Diamond task has a main function;
Thereisakernel executing on each processor;

The kernel will pass control from one task to another as the application executes.

This complicates the debugging process a little, but it is still straightforward. You need to be aware of a few
things first:

At any time, one task will be the focus of debugging;

Asyou debug it will be possible to see the source and identifiers for only the one task currently in focus;

Y ou can switch focus to another task at any time by loading its symbol table;

If control passes from the task in focus into a different task (or into the kernel), the debugger will switch into
assembly language mode;

» Breakpoints will be honoured irrespective of the current focus;

* A breakpoint set in athread will be honoured by any thread reaching that point.

Starting to Debug

Before starting to debug a Diamond application, ensure that Code Composer is installed and that you can
connect to and debug the target C6000. Some DSP boards have on-board emulators that let you debug them
directly, others need external hardware, such as TI’s XDS510. Note that before Code Composer is started for the
first time after each power-on, you may need to run a board-specific initialisation program. Refer to the board
vendor’ s documentation for details.

To debug a Diamond task using Code Composer:
1. Recompile al modules with debug information generation enabled. Thisis now done for you automatically
by the3L ¢ command and its variants. ™

You may wish to disable optimisation; to do this you will need to create a variant of the "c" function for
the 3L command.

2. Link eachtask as usual.

3. Configure the application with the -G option:

» 3L atest -G

T isin the process of moving over to a new format of debugging information in object files. For stability, the 3L ¢ command requests
that the information is produced in the older COFF format. Thiswill change in future versions of Diamond.

256

Debugging

10.

11.

12.

This instructs the configurer to emit a debug symbol table file for each task. The symbol table file will have
the name that appears in the TASK statement in your configuration file with . out appended. The
configurer will also generate debug files for the system components, mainly the kernel; these are usually of
little interest to most users. The following example will result in the creation of a symbol table file called
"first.out":

TASK first FlILE= "second. tsk"

Start Code Composer and connect to the target board or boards. If no Diamond application has been run
since the board was powered up, you may need to run a board-specific initialisation program first.

Go to the File menu and select Load Symbol to load the symbol table (.out) file for the first task of interest.
L et the processor run by selecting Run Free from the Debug menu.

Repeat steps 5 and 6 for every processor you wish to debug.

Start the server WS3L if it is not already running.

Select debug mode by clicking on View/Options, selecting the Parameters tab, and ticking the Debug
application box.

Select your application and start it running. If you have more than one DSP board in your PC you may
have to select the correct one before starting your application.

Wait for the Paused message to appear.

For each processor of interest:

a. Halt the processor from the Debug menu;

b. Select Go Main from the Debug menu;

c. Return to the server window and hit OK in the Paused window. Debugging can now start with Code
Composer.

.Warning

Always select Run Free from the Debug menu before leaving Code Composer. If you forget to
do this, your board may not respond. If this happens, go back into Code Composer and select
Run Freefor all the processors.

257

Debugging

Notes

1. Only ever run a Diamond application when all processors are in the "run free" state. If you do not do this,
Code Composer can get confused and become unable to access your board. If this happens you should shut
down Code Composer and reset your board and its JTAG connection. Some manufacturers provide a
program to do this (usualy accessible through the server: Board/Properties), but as a last resort,
power-cycling the board generally puts the JTAG back into a clean state. You may then restart Code
Composer.

2. You cannot restart an application using Code Composer’s restart facility; you must set the processors
running free, stop the application from the Server, and restart it from step 10 above.

3. When using the Code Composer Setup utility, the processors are listed in their order on the JTAG scan
chain. On some boards this is the reverse of the order in which processor numbers (or letters) are assigned
in the board vendor’ s documentation.

4. The server does not support the debug option when booting heterogeneous systems (for instance, mixed
C6000 and C4x systems). Applications for such systems must be configured with the -a option, which
suppresses C4x debugging.

258

Chapter 19. Application Loading

A Diamond application is loaded into the root processor, and then on to any other processors in the network, in
one of two ways:

1. downalink to the root processor from a host processor; or
2. fromaROM on the root processor.

Host Loading

A host processor (usually a PC) will write the whole of an application file to the host link. The bootloader on
each processor (initially the root processor) will receive data on its boot link and will respond as follows:

1. Thefirst word coming down the boot link is examined:

» If the first word has the value CCO00002_ _, the bootloader will read in the next word which will be
the type code for this processor as derived from the type given the configuration file. The bootloader
will compare this code against the actual type of its processor. A two-word response is then written to
the boot link:

« If the types are not compatible, the bootloader will send a failure response by writing the value
AA000000, followed by the processor's actual type code.

« |f the types are compatible, the bootloader sends a success response: the value AA0O00003 6
followed by the processor's actual type code. Both of the two input words are then discarded. The
processor is marked as CHECKING.

e If thefirst word has the value CC000004 the bootloader will read in the next word and discard both
input words. The processor is marked as NOT_CHECKING. 000004, is the value put in the
application file by the configurer when checking is enabled; it will be changed to CC000002 6 by the
host loader to activate checking. This is done to allow user-written host code to load applications
without having to worry about load checking.

« If the first word has neither value, the bootloader takes no specific action, and the first word is passed
on to the next step in loading. The processor is marked as NOT_CHECKING.

2. Most of the subsequent words make up the information the bootloader uses to load the code and data
needed by its processor. After loading this, control is passed to the Diamond kernel which then starts its
own loader.

3. The Diamond loader now interprets the rest of the incoming data as a sequence of commands, each with
optional data. Commands are either for this processor or are to be passed down alink to other processors.

There are three commands of particular interest here:

CMD_BOOT This command simply sends its data down a selected link, just like the host sent the
application file to the root. The receiving processor deals with it in exactly the same
way as the root processed the data it received. This boot data will not start with the
CC00000X, . values described above.

CMD_CHECK This command is used to check that a processor about to be loaded is present and
has the correct type. It will be ignored unless the processor is marked as
CHECKING. It sends a pair of words (described above) down the selected link and
observes the response. Loading continues if a success response is received. If an
error is detected (no response within a short time or a failure response), the rest of
the input from the boot link is absorbed and an appropriate failure response is
written to the boot link.

CMD_GO Thisis always the final command sent to a processor. |f the processor is marked as
CHECKING, a success response is written to the boot link. All of the tasks on the
processor are then started and the Diamond loader stops. Note that CMD_GO

259

Application Loading

commands will have been sent to all processors booted through the current one
before that processor receivesits own CMD_GO.

Load Checking

>The information needed to perform the checks mentioned in the previous section is added to the application
file by the configurer. The checks are designed to ensure that the network of DSPs being used matches the
network described in the configuration file closely enough to allow the application to be loaded. Note that only
the following things are checked:

» thetypesof the processors mentioned in the configuration file; processors that only differ in the provision of
external memory will be considered equivalent providing the actual processor has no less memory than the
processor declared in the configuration file.

» thelinksthat are used during the loading process; links that are not used during loading are not checked.

Requirement

Load checking is only supported by versions of the Sundance bootloaders dated 27 February 2004 or later. If
you attempt to load an application containing checking information to a TIM with an old bootloader, the system
will hang. Contact Sundance for information about updating your flash ROM with the latest bootloaders. Load
checking can be inhibited by using an OPTION statement in the configuration file.

Default state

The default state is for load checking to be enabled.

Loading Checks Performed

The server will attempt to send some words to the root processor describing the declared type of the root. If
these words are not read within a few milliseconds, the server will report that the root processor cannot be
accessed. Y ou should check that you have selected the correct DSP board and that the link connection between
the board and the host has been enabled.

Failed to load C:A3L\Diamond\Co000MExamples\EXAMPL -2Vhello. app @

6 The root processor is not accessible,

QK

The server now waits a few milliseconds for areply from the root. If thereis no reply, the server will report that
the root processor is not responding. You should check that there is a TIM in the carrier board dot that is
connected to the host link, and that a current version of the bootloader has been programmed into the flash
ROM.

260

Application Loading

Failed to load C:A3L\Diamond\Ce000MExamples\EXAMPL-2Vhello. app g|

@ The root processor did not respond.

QK

The response from the root will indicate whether or not its type is acceptable. If it is not, the server will report
that the root is of the wrong type. You should check that the type of the root processor specified in the
configuration file matches the actual type of the processor connected to the host link.

Failed to load hello. app S|

@ Root processor is the wrong tvpe,
SMT 36 1 was expected but SMT376_6711_ 256 was found.

..

Finally the server sends the application down to the root which will distribute it to the rest of the network. Once
everything has been sent, the server reads back a response from the root. A successful response means that the
application has loaded correctly and it will start to execute. There are two possible failure responses:

Failed to load Dual. app R|

@ Frocessor node, connected to link 5 of processor root, is not responding.

Ik

One of the processors in the network is not responding. This could be the result of an incorrect link connection
or the use of a TIM with an old bootloader. You should check that you have specified the correct WIRE
connection between the named processors and that the non-responding processor has a current bootl oader.

261

Application Loading

Failed to load Dual. app [Z|

@ Frocessor node, connected to link 1 of processor root, is the wrong type,
SMT374_6711 was expected but SMT374_6713 was found.

Ok

One of the processors in the network is not of the type expected. Y ou should check that you have specified the
correct WIRE connection between the named processors and that the actual processors connected in thisway are
of the correct types.

ROM Loading

The application will have been built as usua and then programmed into the Flash ROM by Sundance's
SMT6001 utility. Following reset, the root processor's bootloader will detect that it is to boot from the ROM and
will, in effect, construct a software comport link that will read the application data. L oading then proceeds as for
Host Loading. Note that no load checking will be performed when loading from ROM.

262

Chapter 20. Sundance Digital Bus

From version 3.0 of Diamond you can use the Sundance Digital Bus (SDB) as an interprocessor link, much like
acomport. Thisis the recommended way of using the SDB.

If you need more control, Diamond provides this alternative interface which supersedes the old SDB library that
was available for some Sundance TIMs.

.Warning

The SDB interface is not compatible with SDB links; you must choose one access method or the
other as the two cannot co-exist.

You do not need to worry about the type of TIM you are using; the configurer will automatically select the
correct SDB driver for you.

Terminology

Several Sundance TIMs have two SDBs, known as SDB-A and SDB-B. Newer modules can provide greater
numbers of these devices where letters become cumbersome, so this document will identify SDBs by number:
SDBO, SDB1, and so on.

Configuration

Before you can transfer data between two SDBs for the first time you need to set the connection into a
consistent state, with one end being a transmitter and the other a receiver. The choice of which end is the
transmitter is usually arbitrary; it does not depend on which end will actually send data first, as the SDBs will
automatically switch direction once they have been correctly initialised.

You set theinitial direction for the SDBs you are going to use with aqualifier on the PROCESSOR statement in
your configuration file. There are two qualifiers: SDBTX= defines the transmitters and SDBRX= defines the
receivers. The particular SDBs are specified by their index number. For example:

PROCESSOR A SMIr361 SDBTX=0 | SDBO as a transmtter
PROCESSOR B SMIr363 SDBRX=1, 2 | SDB1 and SDB2 as receivers
PROCESSOR C SMr335 SDBTX=1 SDBRX=0 ! SDBO receive, SDBl transmit

The configurer uses these attributes to select the device driver corresponding to your processor type and to
initialise and synchronise the devices appropriately. If you do not specify either SDBRX or SDBTX, an SDB
driver will not be loaded onto the processor.

For compatibility with older naming conventions, the configurer will also accept letters to identify each SDB
(A=0, B=1, and so on).

Accessing an SDB

SM T_SD B_CI a] m [Stand-alone]

#i ncl ude <SMr_SDB. h>
SMI_SDB *SMTI_SDB C ai n{ Ul NT32 whi ch);

Each SDB is controlled by an interface of type SMT_SDB that is managed by the Diamond kernel.
Before you can use an SDB you must call SMT_SDB_Claim to reserve it for your exclusive use and
obtain itsinterface pointer. This function returnsaNULL pointer if the SDB cannot be claimed.

263

Sundance Digital Bus

SM T_SD B_R el ease [Stand-alone]

#i ncl ude <SMr_SDB. h>
voi d SMI_SDB Rel ease(U NT32 whi ch);

You can cal this function to return an SDB to the kernel for use by other tasks. Most users should
never need this function, as they will claim the SDB during initialisation and use it for the duration of
the application. Following this call, interface pointers previously obtained using SMT_SDB_Claim
with the same value of whi ch may no longer be used.

SM T_SD B_R ead [Stand-alone]

#i ncl ude <SMT_SDB. h>
void SMI_SDB Read(SMI_SDB *Si, Ul NT32 Bytes, void *Buffer);

Read the given number of bytes from the SDB identified by interface Si to the given buffer. Byt es
must be a multiple of 4 and Buf f er must be aligned on a 4-byte boundary. Si must have been
claimed previously using SMI_SDB_Cl ai m This function will block (wait) until the data have been
received and read. It isanalogousto chan_i n_nessage.

SM T_SD B_W r | t e [Stand-alone]

#i ncl ude <SMT_SDB. h>
void SMI_SDB Wite(SMI_SDB *Si, U NT32 Bytes, void *Buffer);

Write the given number of bytes to the SDB identified by interface Si from the given buffer. Byt es
must be a multiple of 4 and Buf f er must be aligned on a 4-byte boundary. Si must have been
claimed previously using SMI_SDB_Cl ai m This function will block (wait) until the data have been
transmitted. It isanalogousto chan_out _nessage.

SMT_SDB_Control [Stand-alone]

#i ncl ude <SMT_SDB. h>
void SMI_SDB Control (SMI_SDB *Si, Ul NT32 Val ue);

This function sets the SDB Status register to the given Val ue. Theinitial setting of the status register
will select:

SDB_CLROF Clear outgoing FIFO
SDB_CLRIF Clean incoming FIFO
SDB_CLK Maximum clock speed
SDB_TRANS (if set as SDBTX in configfile)

The available control bits are briefly described in the header file, <SMI_SDB. h> .

Si must have been claimed previously using SMI_SDB_Cl ai m

Performance Issues

.Warning

One end of an SDB attempting to write can block the other end from also being able to write at

264

Sundance Digital Bus

the same time.

When possible, the drivers use DMA to transfer words between SDBs and memory. Unfortunately, the cache on
newer T| processors is unable to maintain coherency between CPU and DMA accesses to external memory. The
Diamond drivers work round this problem by a combination of flushing and invalidating the affected portions of
the cache on each transfer, reducing the throughput by a minimum of 6%. You can take responsibility for
addressing this potential problem yourself and stop the drivers from touching the cache by using the following
function:

SMT_SDB_ProtectCache [Stand-alone]

#i ncl ude <SMr_SDB. h>
void SMI_SDB ProtectCache (SMI_SDB * Si, Ul NT32 Enable);

This function controls the cache management behaviour of an SDB. Si must have been claimed
previously using SMI_SDB_Cl ai m Enable may be one of:

An SDB Example

/1 Sender.C

#i ncl ude <SMr_SDB. h>

#i ncl ude <stdio. h>

static int Values[8] ={1,3,5,7,9,8,6,2};

void main()

int i;

SMr_SDB *Sdb = SMI_SDB_Cl ai m(0);

i nt Changed] 8] ;

if (!Sdb)

} printf("Cannot claim SDBO\n"); return;

SMI_SDB Wite(Sdb, sizeof(Values), Values);
SMI_SDB Read (Sdb, sizeof (Changed), Changed);

for (i=0; i<8; i++)
if (Changed[i]+Value[i]) {
printf("Error: expected %l, received %\ n",
-Value[i], Changed[i]);
}

printf("Finished\n");
}

/!l Receiver.C
#i ncl ude <SMr_SDB. h>

void main()

int i;

SMI_SDB *Sdb = SMr_SsbB C ai n{0);

int Datal8];

if (!Sdb) return;

SMI_SDB Read (Sdb, sizeof(Data), Data);

for (i=0; i<8; i++) Data[i] = -Data[i];
} SMI_SDB Wite(Sdb, sizeof(Data), Data);

I Configuration file
PROCESSOR root SMI363 SDBTX=0
PROCESSOR node SMT363 SDBRX=0

265

Sundance Digital Bus

WRE ? root[1]

TASK Sender
TASK Recei ver

PLACE Sender
PLACE Recei ver

node[4]

dat a=30K
dat a=30K

r oot
node

266

Chapter 21. Board Services

The board services module is a component of the Diamond kernel that is loaded into an application on-demand
by the configurer. It provides an interface to services that are supported by Sundance carrier boards that use the
V3 PCl bridge chip:

Mailboxes

Access to carrier-board SRAM
The High-Speed Channel
Packaged Services

Faster Standard 1/O

File Transfers

Access to PCI registers
Access to PCl address space

These services can be used by tasks running on the processor that isin the first TIM dlot of the carrier. They are
supported on the host by the Sundance SMT6025 product. All of the functions here return an integer status code.
Most do not require the use of the Diamond server on the host.

Accessing the Board Services Interface

You must include the header file SMT_BSI.h to access the board services module. The configurer will
automatically arrange for the correct driver module to be added to the kernel on that processor.

#i ncl ude <SMr_BSI . h>

Having done this, you have access to two functions:

OpenBoar dServices [Stand-alone]

#i ncl ude <SMI_BSI . h>
i nt OpenBoar dServi ces(SC6xSnt 1 **|);

OpenBoardServices assigns an interface pointer to * | ; this is then used in functions communicating
with the board services module. The task that opens the board services module needs to have at least
350 bytesfree onitsheap. * | is set to be anull pointer if board services are not available or cannot be
opened.

For example,

#i ncl ude <SMI_BSI . h>

SCexSnt 1 *Bsl ;

int status = OpenBoardServices(&Bsl);

if (status !'= BS K)
printf("Cannot open board services (%)\n", status);
exit(1);

CloseBoar dSer vices [Stand-dlone]

#i ncl ude <SMr_BSI . h>
i nt C oseBoardServices(void);

Y ou call CloseBoardServices to close the interface once you have finished using it.

267

Board Services

Using Board Services

Mailboxes

The carrier board’ s hardware provides sixteen, byte-wide mailboxes. The board services modul e organises these
as two, bi-directional, 32-bit mailboxes, MBO and MB1. The host can write to a mailbox and interrupt the DSP,
which can then read the value. Similarly, the DSP can write to the host. Note that the High-Speed Channel
clams MB1.

ant_M bCI a] m [Stand-alone]

#i ncl ude <SMI_BSI . h>

int Snt_Md ai m(SC6xSnt | *Bsl ,
Ul NT32 Wi ch,
Ul NT32 Cients,
SC6xSmt Mb **1) ;

This function reserves a mailbox and sets *1 to be an interface pointer for use in subsegquent
references to the mailbox. Bs| isthe interface to the board services module that was set by the call on
OpenBoardServices. Wi ch selects the mailbox you wish to claim and must be 0 or 1.

d i ent s specifies how incoming values on the mailbox are handled. The most significant bits of the
value are interpreted as a client number in the range 0..Clients-1, and the whole value is used to satisfy
acall to Smt _MbRead with that client number. The number of bits used will be the smallest number
that can represent the number of clients: (int)ceil(log2 Clients). For example, if Clientsis 1, no bits
will be used and all values will satisfy aread; if Clientsis 6, 3 bitswill be used.

For example, assume that MB1 had been opened with the following call:
Snt_Mbd ai m(Bsl, 1, 8, &\Whl);

A call Smt_MbRead(Mb1, 1, &x) will wait until the host writes a value to the mailbox. The call will
be satisfied if the host writes avalue such as 23456789 _, because the most significant 3 bits (23=8)
have the value 1. The call will then set x to the value 23}&5678916. At the same time, another thread
could be waiting on a call: Smt_ MbRead(MB1, 4), but this call would not be satisfied by the host
write as the client number 4 does not match the most significant 3 bits of the value sent.

Smt_l\/l b R el ease [Stand-alone]

#i ncl ude <SMr_BSI . h>
int Snt_MoRel ease(SC6xSnt| *Bsl,
Ul NT32 Whi ch) ;

Release a claimed mailbox and make it available for use elsewhere. Following this call, the interface
pointer returned by the corresponding call to Snmt _ Mo ai misno longer valid.

Smt_M bRead [Stand-alone]

#i ncl ude <SMr_BSI . h>

int Snt_MoRead(SC6xSnt Mo * Mol ,
Ul NT32 dient,
Ul NT32 *Arg);

Wait for the host to write a suitable value to the mailbox, then read that value into * Ar g. If the value
had aready been written before this function is called, the function will not wait but will store the
value in * Arg immediately. The function will only accept values where Cl i ent matches the bottom
bits of the value, as determined by the parameter Cl i ent s in the call to Smt_MbClaim. C i ent

268

Board Services

must be in the range 0..Clients-1. Note that Client=0 when Clients was 1 will match all values sent

from the host.
You must not have more than one cal of Smt_MbRead with the same value of Client active at any
time.

Smt_l\/l bWr |te [Stand-alone]

#i ncl ude <SMI_BSI . h>
int Snt_MWite(SC6xSnt Mo *Ml,
Ul NT32 Val ue) ;

Write Val ue to the mailbox Mo. The call will not return until the value has been read from the
mailbox by the host.

Carrier-board SRAM

The carrier board includes IMB of SRAM that can be directly addressed from the host PC. The board services
module provides functions to transfer data between this SRAM and the root DSP's memory. You will usually
need to indicate when the transfer may be done (when data has been written to SRAM or SRAM has space
available for writing) by using another channel to the host, commonly the host comport or Mailboxes. Note that
the High-Speed Channel uses all of the SRAM to communicate address information.

In the following functions, Offset is a byte offset from the start of the SRAM, Bytes indicates how many bytes
of data are to be moved (must be a multiple of 4), and Buffer points to the first word of DSP memory that will
provide or receive the data.

Smt_SramRead [Stand-alone]

#i ncl ude <SMI_BSI . h>

int Snt_SranmRead(SC6xSnt| *Bsl,
Ul NT32 O fset,
Ul NT32 Byt es,
voi d *Buf fer);

Read from the SRAM into the given buffer.

Smt_Sr amW r |te [Stand-alone]

#i ncl ude <SMI_BSI . h>

int Smt_SranWite(SC6xSntl *Bsl,
Ul NT32 O fset,
Ul NT32 Byt es,
voi d *Buf fer);

Write the values in the given buffer to the SRAM.

The High Speed Channels

The High-Speed Channels (HSC) provide routes to the host that can be used to transfer data between the PC and
the DSP at rates that are considerably greater than can be achieved using the host comport link.

The HSC provides eight channels using a mechanism based on three features of Sundance carrier boards:

1. Mailboxes, which allow interrupt-driven communication of single 32-bit words between the host and the

269

Board Services

DSP.

2. SRAM, which is an area of shared memory that can be directly accessed by the PC and indirectly accessed
by the DSP; and

3. PCI access, which alows data transmission between the DSP memory and locked-down memory area on
the host. In order to do this, the DSP needs to have a definition of where the PC has locked the memory.
The PC provides this information as a Memory Descriptor List (MDL) that is written to part of the SRAM.
The MDL for achannel isinitialised on an OpenPci function call and will not be altered until the memory
isreleased by aCl osePci call. Between these calls, the DSP is free to cache information about the host's
memory.

= Note

References to a particular high-speed channel must be sequential. Y ou may not have one thread
reading from a channel while another thread is writing to the same channel. It is safe to access
different channels at the same time.

Mailbox Usage

The HSC claims mailbox 1. The DSP will send a mailbox value to the host to request some action; the Host
eventually sends a mailbox value back as areply to the DSP. Each 32-bit value is interpreted as follows:

typedef struct {

Ul NT32 Dat a : 25; /'l data val ue

Ul NT32 Fn D4 /1 function code

Ul NT32 Channel o 3; /'l channel sel ector
} HSC WORD;
#def i ne HscChannel (v) (*(HSC WORD *) &(v)) . Channel
#define HscFn(v) (*(HSC_WORD *)&(v)).Fn

#define HscDat a(v) (*(HSC_WORD *) &(v)). Data

Channel sdlectsone of the eight available channels.

Fn holds a function code that the DSP uses to inform the host what is to be done. The host may only set Fn to
the values 0 (OK) or 1 (Error).

Dat a holds a parameter value for the selected function.

SRAM

The SMT310Q's IMB of SRAM s used by the high-speed channels and cannot be used at the same time for
any other purpose. It is broken down into eight equal areas, one for each of the eight high speed channels,
allocated as follows:

270

Board Services

The SRAM can be accessed as bytes by the PC, but only as 32-bit words by the DSP.

Waord Offset

2000

8000

010000

0218000

020000

(28000

30000

(38000

(40000

SRAM

Channel 0

Channal 1

Channel 2

Channal 3

Channal 4

Channel 5

Channel 6

Channal 7

MDL

Parameiers

DSP Function Codes

Word Offset

O D000

L

OocEe}

fn Meaning Host interpretation

0 OK No operation

1 Error Error number (>0) in "data’. Error 0 is undefined.

2 OpenHandler User handler dil (hame in SRAM) on this channel

3 CloseHandler Close handler and revert to default handler

4 SramToHost Take "data" bytes'™ from SRAM parameter area

5 HostToSram Put up to "data" bytes' into the SRAM parameter area

6 OpenPci Claim and lock host memory. Data gives the size of the areain bytes'® .

271

Board Services

fn Meaning Host interpretation

7 ClosePci Release any locked memory

8 PciToHost Take "data" bytes'™ from PCI buffer (needs MDL)

9 HostToPci Put up to "data’ bytes'® into PCI buffer (needs MDL)
10..15 Handler-specific functions

@ All transfer and memory sizes are given in bytes, but they will be rounded this up and awhole number of words will be moved. User code
should ensure there is enough space for this to be done safely.

Host Replies
The host can only ever reply with fn=0 (OK) or fn=1 (ERROR).

If the reply has fn=1, Data holds a non-zero error code. If fn=0, the value of Data means:

Replyingto Data contains
0 OK 0
1 Error 0
2 OpenHandler 0
3 CloseHandler 0
4 SramToHost number of bytes taken from SRAM
5 HostToSram maximum number of bytes put in SRAM
6 OpenPci maximum transfer size in bytes
7 ClosePci 0
8 PciToHost number of bytes taken from PCI buffer
9 HostToPci maximum number of bytes put in PCI buffer
10..15 handler-specific
Protocol

All host transactions are of the following form:

Read mailbox control word from DSP;

Read any parameters from the parameter area;
Perform required actions;

Write any results to the parameter areg;

Write mailbox reply control word to DSP.

ghrwdpE

All DSP transactions are of the following form:

Write any parameters or data to the parameter area or PCI buffer;
Send mailbox control word to host;

Read mailbox reply control word;

Transfer any data out of PCI buffer or parameter area.

AwbhpE

DSP Functions

In the following functions, HSC is the type of the interface needed to access the High Speed Channel.

int Snt_HscControl (HSC *I, U NT32 Chan, U NT32 Fn, U NT32 Data);
int Snt_HscPci Read (HSC *I, U NT32 Chan, U NT32 Bytes, void *Buf);
int Snt_HscPciWite (HSC *I, U NT32 Chan, U NT32 Bytes, void *Buf);

272

Board Services

int Snt_HscReadArgs (HSC *1, U NT32 Chan, U NT32 Bytes, void *Buf);
int Snt_HscWiteArgs(HSC *1, U NT32 Chan, U NT32 Bytes, void *Buf);

int Snt_HscControl (HSC *1, U NT32 Channel, U NT32 Fn, U NT32 Data)
{

U NT32 V = 0;

HscChannel (V) = Channel ;
HscFn(V) = Fn;
HscDat a(V) = Dat a;
MooxWite(V);

V = MioxRead();
if (HscFn(V) !'= OK) return (V&Xx1FFFFFFF) | 0x80000000;
return HscData(V);

}

int Snt_HscPci Read(HSC *1, UI NT32 Channel, Ul NT32 Bytes, void *Buf)
{

int n =8Sm_HscControl (I, Channel, HostToPci, Bytes);
if (n>0)
n = MN(n Bytes);
MoveFr onHost (n, Buf); /1 from Host buffer to Buf
}
return n;
}
int Snt_HscPci Wite(HSC *I, U NT32 Channel, U NT32 Bytes, void *Buf)
int r = MoveToHost (Bytes, Buf); /1 fromBuf to Host buffer
if (r <0) return r; /1 error ?
return Snt_HscControl (I, Channel, HostToPci, n);
}
Smt_H S:R eadA r gS [Stand-alone]
#i ncl ude <SMTI_BSI . h>
int Snt_HscReadArgs(HSC *I, U NT32 Chan, U NT32 Bytes, void *Buf);
Move the given number of bytes from the parameter area for the given channel to the given buffer.
Smt_HscWr iteAr gs [Stand-alone]
#i ncl ude <SMr_BSI . h>
int Snt_HscWiteArgs(HSC *1, U NT32 Chan, U NT32 Bytes, void *Buf);
Move the given number of bytes to the parameter areafor the given channel from the given buffer.
Smt_Hsclnit
#i ncl ude <SMI_BSI . h>
int Snt_Hsclnit (SC6xSntl * Bsl);
This function makes the High-Speed Channel available for use. It attemptsto claim mailbox 1 (MB1),
which it will use to coordinate transfer requests with the host. Y ou need at least 2,500 bytes available
from the heap when this function is called.
DSP Example
#defi ne CHANNEL 5 /1 using channel 5

273

Board Services

#define OpenFile 11
#define CloseFile 12

i nt ReadFil e(char *nane)

int i, n,
struct {
i nt Code;
int Arg;

Max;

bR

P- >Code 0;
P- >Ar g 0;
st rcpy(P- >Nane,
HscPut Args(1,

if (n < 0)

P- >Code 1;
P->Ar g 0;
st rcpy(P- >Nane,
HscPut Args(I,

if (n>0)
for (i=0;

CHANNEL,
n = Snt_HscControl (I,
return n;

i <4;
n = HscRead(l,

char Nane[256] ;

nane) ;
CHANNEL,
n = Snt_HscControl (I,

i ++)

if (n==0) break;

Process(n,

}
St _HscControl (1,

}
Smt _HscControl (I
return n;

Buf fer);

si zeof (P),
CHANNEL, OpenFil e,

"HscFile.dll");
si zeof (P),
CHANNEL, OpenHandl er,

&P) ;

&P) ;

CHANNEL, 128, Buffer);

CHANNEL, d oseFil e,
CHANNEL, d oseHandl er,

~ I~
~ I~

/
/
/
/

/

~

~

4096);//

/

/

handl er - speci

fic
handl er - specific

unused
unused

handl er nane

no handl er

Open for
unused
Fi | enane

i nput

4KB buf fer
4 x 128 bytes?

d ose

Thiswould result in the following transactions on channel 5, assuming the file contains 70 words:

Host

OK

OK, Data=4096

OK, Data=128

OK, Data=128

OK, Data=24

OK, Data=0

OK

OK

DSP

<== OpenHandler

=_=><==

<== OpenFile, Data=4096

=_=><==

<== GivePci, Data=128

=_=><==

<== GivePci, Data=128

=_=><==

<== GivePci, Data=128

=_=><==

<== GivePci, Data=128

=_=><==

<== C(CloseFile

=_=><==

<== CloseHandler

=_=><==

274

Board Services

Accessing PCI Registers

Smt_PciRegRead

[Stand-alone]

#i ncl ude <SMI_BSI . h>

int Snt_Pci RegRead(SC6xSnt| *Bsl,
Ul NT32 Vof f set,
Ul NT32 *Val ue) ;

*Value is set to the contents of the PCI register located at the given word offset, Woffset, from the
PCI base. The board service module should be locked when you issue this call. See Smt_Claim.

Smt_PCI RegWr |te [Stand-alone]
#i ncl ude <SMI_BSI . h>
int Snt_Pci RegWite(SC6xSntl *Bsl,

Ul NT32 Wof f set

Ul NT32 Val ue) ;

Write Value to a PCI register located at the given word offset, Woffset, from the PCI base. The board
service module should be locked when you issue this call. See Smt_Claim.

PCI Access

The board services module provides functions to transfer data between memory in the PCI address space and the
root DSP's memory. Misuse of these functions can easily cause the host PC to crash.

In the following functions, PciAddr is an address in the PCI address space, Bytes indicates how many bytes of

data are to be moved (must be a multiple of 4), and Buffer points to the DSP memory that will provide or
receive the data.

Smt_PciRead

[Stand-alone]

#i ncl ude <SMI_BSI . h>

int Snt_Pci Read(SC6xSnt| *Bsl,
Ul NT32 Pci Addr,
Ul NT32 Byt es,
voi d *Buf fer);

Read the given number of bytes from the given PCI addressinto the DSP's buffer.

Smt_PciWrite

[Stand-alone]

#i ncl ude <SMr_BSI . h>

int Snt_Pci Wite(SC6xSntl *Bsl,
Ul NT32 Pci Addr,
Ul NT32 Byt es,
voi d *Buf fer);

Write the given number of bytes from the DSP's buffer to the given PCI address.

The Global Bus

The functions discussed above will be sufficient for most users. Occasionally it may be necessary to access
devices directly on the global bus. You can perform such accesses using Smt_GbRead and Smt_GbWrite. In

275

Board Services

these functions, GbAddr is the address issued to the global bus, while Bytes and Buffer define the memory to be
used in the DSP. Bytes must be a multiple of 4 and Buffer must be aligned on a 4 byte boundary. Control is the
value to be used in the global bus control register for the transfer. Details of this can be found in the User Guide
for your TIM.

Sm t_G b R ead [Stand-alone]

#i ncl ude <SMr_BSI . h>

int Snt_GoRead(SC6xSntl *Bsl,
Ul NT32 GbAddr,
Ul NT32 Byt es,
voi d *Buf fer);
Ul NT32 Control);

Read from the global bus.

Smt_G bW r | te [Stand-alone]

#i ncl ude <SMTI_BSI . h>

int Snt_GoRead(SC6xSntl *Bsl,
Ul NT32 GbAddr,
Ul NT32 Byt es,
voi d *Buf fer);
Ul NT32 Control);

Write to the global bus

Packaged Services
Faster Standard 1/O

At any time, a task on the root can make a single function call that will switch the host link away from the host
comport to the HSC. From then on, all host references will use the HSC. In particular, al the standard library
calls (fopen, fread, fwrite,...) will continue to work as before, but at a potentialy greater rate. Once the HSC has
been selected in this way it will not be possible to switch back to the host comport and you will not be able to
use the HSC for any other purpose. This service requires the Diamond server to be running on the host.

%I eCt_f aS_h O§_| 0 [Stand-alone]

#i ncl ude <SMI_FHI O h>
int select fast_host _io (void);

This function switches the host link from a comport to the high-speed channel. It should be called only
once from any host task. It is only worthwhile doing this if you transfer large amounts of data between
the host and the root processor.

The return value is zero for success. Failure is indicated by a non-zero return code, and is most
commonly the result of using old or inappropriate firmware.

Once the host link has been switched to the HSC it cannot be switched back to the comport.

For example:

/'l Exanpl es\ General \ Fhost |1 O. C
#i ncl ude <stdio. h>

#i ncl ude <SMI_FHI O. h>

276

Board Services

mai n()

int n;
char *where = "conport”;
for (n=0; n<200; n++)
printf("This goes across the %: %\ n", where, n);

if (n==99) {
int e = select_fast_host _io();
if (e==0) {
where = "HSC';
} else {

printf("Cannot switch to HSC. Error=%\n", e);

File Transfers

There is an HscFile library, available from Sundance, that implements file transfers across the HSC. Its
functionality is similar to fread and fwrite, but is sacrifices the flexibility of those functions in order to gain
increased performance.

Performance

Although the HSC can transfer data quickly, there is a considerable overhead in setting up and starting each
individual transfer. This is not significant when you are moving large volumes of data, but can dominate the
time taken to handle small transfers.

Status Codes

The following values are returned by the board services functions:

Macro Value Meaning

BS OK 0 Success

BS NOT_OPEN -1 Services not opened yet

BS DIRECTION -2 Simultaneous read and write

BS NO DMA -3 cannot find DMA interface

BS NO _EXTINT -4 cannot find external interrupt interface
-5

BS NO_ MEMORY -6 cannot claim working memory (heap)

BS NO _DATA -7 Host has given a zero length memory area

BS MBOX1 BUSY -8 Mailbox 1 aready claimed

BS BAD_FIRMWARE_CTR -9 Firmware error: Contact Sundance

BS BAD_FIRMWARE_ADDR -10 Firmware error: Contact Sundance

277

Chapter 22. Sundance TIMs

Sundance C6000 processors are build around a range of modules called TIMs. Each TIM uses an FPGA to
implement the Sundance peripherals such as comports and SDBs.

Most Diamond applications do not need to know anything about the FPGA, but occasionaly it may be
necessary to be able to accessit. The header file<snt _f pga. h> provides definitions of the standard registers
that are used to control FPGA resources. In particular, it contains afunction SMI_FpgaBase that computes the
base address used to access FPGA registers.

SM T_F pgaBase [Stand-alone]

#i ncl ude <snt _fpga. h>
unsi gned i nt SMI_FpgaBase(void);

This function returns the address of the start of the FPGA in the processor's address space. It isused in
conjunction with the register offsets also defined in <snt _f pga. h> for low-level access to
Sundance devices.

The base address will vary from TIM to TIM, so the header file normally only defines offsets that can be added
to the actual base address of the FPGA to generate the address of the registers.

For example, the LED register can be found as follows:

#i ncl ude <sm _fpga. h> /1 only defines offsets
unsi gned int *LED;
mai n()
LED = (unsigned int *)(SMI_FpgaBase() + LED OFFSET);

*LED = 7; [// turn on 3 LEDs
}

If your code does not need to be general and you know the FPGA address for the TIM on which it will always
run, you can condition the header file by defining Tl M to be that address. Now when you include
<snt _fpga. h> it will provide definitions for al the registers, as shown in the following example which is
identical to the one above except that it will only run on an SMT361.

#define __ TI M 0x90000000 // define base of FPGA for SMI361
/1 note the three underlines.
#i ncl ude <SMI_FPGA. h> /1 now defines LED for you
mai n()
*LED = 7; /1 turn on 3 LEDs
}

278

Chapter 23. ROM

Sundance TIMs have a Flash ROM into which you can place areas of data. The Flash appears as a read-only
area of addressable memory; you can only access it in units of 32 bits (words). The most common use of these
areas is to hold a program that is loaded and executed automatically whenever the TIM is reset. It is aso
possible to include blocks of data for use by any running applications. Sundance’'s documentation for the
SMT6001 gives details of the Flash ROMs, how they may be programmed, and the format of the data they can
hold.

= Note

No special[a]action is needed to allow stand-alone Diamond applications to be programmed into
the ROM.

" Previous versions of Diamond have required special options to be selected when configuring applications for ROM; this is now no longer
necessary.

SM T_Rom Ba% [Stand-alone]
unsi gned int *SMI_RonBase(void);

This function returns the address of the start of the flash ROM. It is normally only used in conjunction
with the Sundance Flash ROM library.

279

Chapter 24. APP2COFF

Constraints

1. Theapplication must be stand-alone, that is, it must not attempt to communicate with a host server;
2. All tasksin the application must be linked with the stand-alone library (usually using 3L ta);

3. The application must be built using the configurer's - a switch. Note that this will also prevent the
configurer from including load checking information.

4. There must be enough uninitialised memory available on the root processor for al the data of any non-root
processors used by the application. This memory can be subsequently re-used for data areas on the root
(specificaly, stack and heap space).

5. SMT335 and SMT375 processors are not supported.

Using App2Coff

First, build your Diamond application in the usual way, making sure that all the tasks are linked against the
stand-alone library and that you use the - a switch when configuring. For example, assuming the configuration
filemypr og. cf g contains:

PROCESSOR root SMI376_6711_128
PROCESSOR node SMI376_6711_256

W RE ? root [1] node[4]
TASK main data=1M ins=1 outs=1
TASK ot her dat a=256K i ns=1 outs=1

CONNECT 72 mai n[0] ot her[0]
CONNECT 72 ot her[0] mai n[0]
PLACE main root

PLACE ot her node

Y ou can build an application like this:

3L ¢ mai n. ¢
3L ta nmmin

3L c other.c
3L ta other

3L a myprog -a

VVVYYVYY

Y ou then use App2Coff, giving the base name of the application file (the filename without the . app extension)
and the type of the root processor. This is the same as the processor type you give for the root processor in the
configuration file.

App2Coff file processor-type

Continuing the previous example, you could build the COFF file nypr og. out from the application

280

APP2COFF

nypr og. app with the command:

» App2Coff nyprog SMI376_6711_128

Loading the application

When loading a network with an application converted to COFF by App2Coff, you should follow the following
sequence:

1. Reset al of the processors in your network. This step would normally be done for you by the Diamond
server.

2. Sdlect Debug/Run Free for al of the processors. This is important as it allows the processors to initialise
their Sundance /O devices, such as the comports.

3. Loadthe. out fileinto theroot processor.

4. Lettheroot processor Run Free.

Note that al four of these steps will be needed if you wish to start the application running again. Y ou must not
use Debug/Restart.

App2Coff Error Messages

cannot access filename
The given file cannot be found.

cannot create filename

The output file cannot be created. Check that you have space on the output device and that the
output fileis neither in use nor write-protected.

cannot find memory for object.

App2Coff needs to locate memory areas to hold a small loader and data for the application
(mainly the information needed to load non-root processors). This error indicates that thereisn't a
contiguous lump of unallocated memory on the root processor large enough to hold the given
object.

corrupt application file filename

Thisis usually the result of specifying afile that is not a Diamond application or one that has been
corrupted in some way.

error reading filename

Thisisusually the result of specifying afile that is not a Diamond application or one that has been
corrupted in some way.

fileistoo largeto be processed
Thisisusually the result of specifying afilethat is not a Diamond application.

filename r efer ences unavailable memory on processor: nnn bytes at address.

281

APP2COFF

Your application (filename) has a reference to some memory that is not available on the given
processor. This is most commonly the result of specifying a processor type in the App2Coff
command that is different from the type given for the root in the configuration file.

internal error/nnn

This indicates that an internal consistency check has failed. Rebuild your application and try
again. If the error persists, please contact 3L.

uNKNOWN processor type XXx

You have given a processor type that does not correspond to any of the TIMs that App2Coff
supports. Check the spelling of the processor type.

282

Chapter 25. The Worm

The worm is a Diamond utility that you can use to explore certain DSP networks dynamically. It detects al the
processors that are in your network and determines the communication port connections amongst them. The
worm may also be used either to create the hardware portion of a configuration file (PROCESSOR and WIRE
statements) or to verify that a given configuration file accurately describes the hardware and connections you
actualy have.

Accepted Networks

The current worm can only operate on homogeneous networks: networks where al the processors are of
compatible type and are connected by communication ports. There are currently four worms available:

WORM3x5.APP Works on networks built from SMT335(E) and
SMT375(E) TIMs.

WORM361.APP Works on networks built from SMT361 TIMs

WORM363.APP Works on networks built from SMT363 TIMs

WORM376.APP Works on networks built from all flavours of SMT376
TIMs

Any links connected to devices that are not SMT TIMs of the appropriate type will be reported as being
unconnected. The worm is likely to hang or report the wrong structure if it is used on the wrong type of
network.

The rest of this chapter will assume a network built from STM3x5 processors.

Starting the Worm

The worm is a normal Diamond application and is started using the Diamond server, either using the Windows
interface or from the DOS command line:

WSE3L wor nkxX swit ches
For example:
» WB3l wornBx5 /c

The switches are a sequence of items used to control the operation of the worm. When the worm is started using
the Windows interface, the switches must be specified in the command line box.

Switches

The worm’s switches start with "/* or "-". They are not case-sensitive.

-C Configuration The worm determines the structure of your network and outputs
PROCESSOR and WIRE statements suitable for the hardware
description part of a configuration file. The processors will be named
ROOT, N1, N2, and so on. The output is sent to the standard output
stream. Note that the Worm is currently unable to distinguish
different processors from the same family (e.g., SMT376 6711 128
and SMT376_6711 256). It will give the processors a generic name
that you will need to change to match the actual TIMs you have.

283

The Worm

-h Help

-v filename Verify

Worm Output

As an example, consider the following network:

A brief description of the worm command line and its switches is
sent to the standard output stream.

The worm compares the actual structure of your network with the
structure described in the configuration file "filename". Only
PROCESSOR and WIRE statements in the configuration file are
interpreted. If the actual and described structures are equivalent, the
worm stops with a zero return code; otherwise it outputs a message
and stops with a non-zero return code. The structures are deemed
equivalent if the described structure in "filename" is a subset of the
actua structure found. In other words, the actual network may have
more processors and connections than the network described in
"filename".

When run with no switches on this network, the worm will generate the following output:

Processor |ink#0 |ink#1 |ink#2 |ink#3 |ink#4 |ink#5
ROOT:

: NL: 3 Fokokk K HOST *kokk ok N1: 2
NL: N2: 3 ROCT: 5 ROCT: 0 N2: 1 FrEA K
N2: ****:* ****:* Nlo ****:* Rwrl
Where:
N1:3 means link #3 of processor N1
HOST means the connection to the host PC
Forkk K means no connection to another processor
(blank) means there is no such comport link

When the "-c" switch is used, the worm will output part of a configuration file like this:

PROCESSOR ROOT SMI335
PROCESSOR N1 SMI335
PROCESSOR N2 SMT335

WRE ? ROOT[0] N1[3]

284

The Worm

—————
LONM -

2222

HmoN

-0 0 O

idididea
====

285

Part IV. Bibliography

Table of Contents

26. Bibliography

287

Chapter 26. Bibliography

[ANSI-C] .

American National Standard for Information Systems—Programming Language—C., 1990.
X3.159-1989.

[Hoare] .

Communicating Sequential Processes. Prentice-Hall, 1985. ISBN 0-131-53271-5.
[Lister] .

Fundamentals of Operating Systems. Macmillan Press, 1979. ISBN 0-333-27287-0.
[Tanenbaum] .

Operating Systems. Design and |mplementation. Prentice-Hall, 1987. ISBN 0-13-637331-3.
[Metalanguage] .

British Standard BS6154 : 1982: Method of Defining Syntactic Metalanguage, 1981. ISBN
0-580-12530-0.

[Scowen] .

An Introduction and Handbook for the Standard Syntactic Metalanguage. National Physical Laboratory
Report DITC 19/83, February 1983.

[SPRU509] .

Code Composer Studio Getting Started Guide
[C Compiler] .

TMS320C6x Optimizing C Compiler User's Guide., February 1998. SPRU187C.
[Assembler] .

TMS320C6x Assembly Language Tools User's Guide. Texas Instruments Inc., February 1998.
SPRU186C.

[Guide] .
TMS320C62x/67x Programmer's Guide. Texas Instruments Inc., February 1998. SPRU198B.
[CPU] .

TMS320C62xx CPU and Instruction Set Reference Guide. Texas Instruments Inc., July 1997.
SPRU189B.

288

Index

Symbols
3L command, ...73
<Diamond>, ...14

@

command function macro, ...75

A

allocating aligned memory, ...184
alt functions, ...61, ...142
limitations, ...142
App2Coff, ...280
application
building, ...41
command-line arguments, ...47
configuring, ...36
loading, ...259
not COFF, ...28
restarting, ...258
ROM, ...40
running, ...46
stand-alone, ...39
stopping, ...56
argc, ...47, ...120, ...136
argv, ...47, ...120, ...136
assembler
low-level interrupt handlers, ...215
assembly language, ...67
AVOID, ...83

B

big-endian, ...25
blocking communication, ...29
board services, ...267
accessing, ...267
functions
CloseBoardServices, ...267
OpenBoardServices, ...267
mailboxes, ...268
Smt_MbClaim, ...268
Smt_MbRead, ...268
Smt_MbRelease, ...268
Smt_MbWrite, ...269
SRAM, ...269
Smt_SramRead, ...269
Smt_SramWrite, ...269
byte order, ...25

C

C4x, .19, ...121
C64, ...20
C67,...19
cache
problemswith DMA & EDMA, ...81
CHAN, ..54
changing bits non-interruptibly, ...195
channel

blocking, ...29
definition, ...29
external, ...33
initialisation, ...144
internal, ...33
message routing, ...33
message size, ...55
physical, ...34, ...90
making default, ...59
restrictions, ...60
ready for input, ...35
throughput, ...35
virtual, ...34, ...58, ...90
short buffer size, ...91
size checking, ...60
throughput, ...59
unable to make, ...91
WIRE usage, ...60

clock

disabling, ...82
kernel, ...82

Code Composer

and debugging, ...256

COFF

converting to, ...280
loading, ...281

command

3L g ...46
3Lgc ..41
3Lt,..42
3L X, ...46
command.dat, ...74
different processors, ...73
functions, ...73
adding your own, ...74
example, ...75
macros, ...75
name, ...74
operations, ...75
target, ...74

command line information

not set, ...32
Setting, ...120

compiler, ...41

caling directly, ...41
linker switches, ...41
switches, ...41

comport link, ...253
comports

and links, ...23
missing, ...23

confidence test, ...26

falure, ...27

configuration language

?,..79

BIND statement, ...92

blank lines, ...80

CONNECT statement, ...90
connection type, ...90
naming connections, ...90
SHORT attribute, ...91

DEFAULT statement, ...93

fractiona values, ...78

289

Index

grouping attributes, ...77

host, ...81

identifiers, ...79

input files, ...78

numeric constants, ...78

OPTION statement, ...93
load check, ...93
no load check, ...94

PLACE statement, ...91

port specifier, ...90

PROCESSOR statement, ...81
AVOID attribute, ...83
BOOT attribute, ...83
BUFFERS attribute, ...84
CACHE attribute, ...81
CLOCK attribute, ...82
CLOCK=off, ...82
KERNEL attribute, ...83
LINKS attribute, ...82
TY PE attribute, ...81

PROCTY PE statement, ...85
dias, ...85
attributes, ...85
CLEARMEM attribute, ...87
kernel modules, ...85
MAP attribute, ...86
MEM attribute, ...86

scaling letter, ...78

Sstatements, ...80

string constant, ...78

syntax, ...76

TASK statement, ...87
DATA attribute, ...88
FILE attribute, ...88
HEAP attribute, ...88
INS attribute, ...87
logical area attributes, ...88
minimum memory specification, ...88
OPT attribute, ...89
OUTS attribute, ...87
PRIORITY attribute, ...89
rest of memory specification, ...88
STACK attribute, ...88
URGENT attribute, ...89

task types, ...81

TYPE=, ...81

UPR statement, ...93
BUFFERS attribute, ...93
MAX attribute, ...93

WIRE statement, ...84
availablelinks, ...84
NOBOOT attribute, ...84

configurer, ...45, ...95

address information, ...46

caling, ...46

check communication tables, ...96

configuration file, ...45, ...49
comments, ...50

WIRE vs CONNECT, ...58
creating connections, ...33
DATA=, .46
default to PHY SICAL, ...96
DEFAULT type, ...96
display address information, ...96
filetypes, ...96
filenames, ...51
generate symbol tables, ...96
identification, ...95
input files, ...96
invoking, ...95
logical aress, ...97
memory usg, ...97
output processor map, ...96
PLACE statement, ...46
processor map, ...60
PROCESSOR statement, ...45
processor type, ...96
ROM switch (obsolete), ...96
stand-alone applications, ...95
switches, ...95
TASK statement, ...46
verbose mode, ...96

D

debugging, ...256
preparation, ...256
run free, ...257
default
archiver: filename extensions, ...44
binary and text files, ...150
cache, ...82
clock speed, ...82
connection type, ...91
default connection type, ...93
include file search path, ...19
kernel modules, ...86
linker search path, ...44
load checking, ...94, ...260
number of links, ...82
processor type, ...81
processor type in examples, ...26
restoring server optionsto, ...124
stderr, ...151
stdin, ...150
stdout, ...150
UPR buffers, ...84, ...93
UPR packet size, ...93
VCR short buffer size, ...91
Diamond
vs CCS, ...28
disabling the clock, ...82
DLL,...18
DMA, ..222,..222
(seedso EDMA)
channel functions, ...224

SC6xDMA Channel_Awaitinterrupt, ...225

continuation, ...50
identifiers, ...50
locating tasks, ...51
memory allocation, ...52
ports, ...52

SC6xDMA Channel_Operation, ...225
SC6xDMAChannel_Release, ...224
SC6xDMA Channel_ResetEvent, ...224

functions, ...223, ...223

290

Index

SC6xDMA_ClaimAny, ...224
SC6xDMA_ClaimAnyWait, ...224
SC6xDMA_ClaimWait, ...223
problems with cache, ...81
DOSflag, ...141
DUMMY, ...255

E

EDMA, ...227, ...227
(see also QDMA)
cache, ...230
coherency problem, ...230
channel functions, ...232

Smt_Hsclnit, ...273
Smt_HscReadArgs, ...273
Smt_HscWriteArgs, ...273
protocol, ...272
host PC, ...30
host semaphores, ...129

installation, ...18
folder, ...14

interconnections
changing, ...36

interrupts, ...212

SC6xEDMA Channel_Awaitlnterrupt, ...232
SC6xEDMA Channel_KickWait, ...233
SC6XEDMA Channel_Release, ...232, ...232

CPU interrupt number, ...212
enabling, ...212
high-level handlers, ...212

SC6XEDMA Channel_Start, ...233
SCexEDMAChannel_StartWait, ...233
functions, ...229
EDMA_EVENT_PARAM, ...232
EDMA_LINK_OFFSET, ...231
EDMA_NULL_PARAM, ...232
SC6xEDMA_Claim, ...229
SC6XxEDMA_ClaimAny, ...230
SC6XxEDMA_ClaimAnyWait, ...230
SC6xEDMA_ClaimParam, ...231
SC6xEDMA_ClaimWait, ...229
SC6xEDMA_ReleaseParam, ...231
problems with cache, ...81
end of file, ...119
environment variables, ...19
C6X_C DIR,...19

disabling interrupts, ...214
enabling interrupts, ...215
execution context, ...212
i_event set,...213
i_sema signal, ...213
i_sema signal_n, ...213
kernel communication, ...213
misusing GIE, ...215
processing flow, ...215
use of voldtile, ...214
low-level handlers, ...215
al invoked, ...216
context, ...217
example, ...219

interrupt control block (ICB), ...

k event s, ...218

PATH, ...19 k_sema signa_n, ...218
event, ...147 kernel access, ...217
example kernel actions, ...216

multiplexor, ...61

upper case, ...49 J
external interrupt line
reserving, ...212 JTAG, ...30
external interrupts, ...221
claiming any line, ...221 K
claiming specific line, ...221 kerndl, ...37
releasing lines, ...221 activity, ...37
clock, ...82
F modules, ...85
far, ...241
file L
task image, ...42, ...88 libraries
locating, ...88 archive, ...43
flash ROM, ...279 rtl.lib, ...32
FPGA, ...278 sartl.lib, ...32
functions (see library functions) library functions
_Qet_hits, ...134
G _host_in, ...176
host_out, ...177
GFS, ..39 _kerndl, ...179
_psl_get bits, ...133
H _psl_get_double, ...134
header files, ...141 _psl_get_integer, ...133
Heap flag, ...141 _psl_get record, ...134
high-speed channel, ...269 _psl put_hits, ...134
functions _psl put_double, ...134

216

291

Index

_psl put_integer, ...133
_psl put_record, ...134
_put_hits, ...134
_server_terminate_now, ...194
abort, ...156

abs, ...156

acos, ...157

at_nowait, ...157
alt_nowait_vec, ...157
at_wait, ...158
alt_wait_vec, ...158

asin, ...158

assert, ...158

atan, ...159

atan2, ...159

atexit, ...159

atof, ...159

atoi, ...159

atal, ...160

bsearch, ...160
cbxint_attach fn, ...212
coxint_attach_handler, ...216
céxint_off, ...214
coxint_restore, ...214
caloc, ...160

ceil, ...160
chan_in_message, ...161
chan_in_word, ...161
chan_init, ...161
chan_out_message, ...161
chan_out_word, ...161
clearerr, ...162

clock, ...162
CloseBoardServices, ...267
Core::CloseLogFiles, ...137
Core::Dump, ...135
Core::FreeArgs, ...136
Core:G, ...138
Core::GetBootFile, ...136
Core::GetCommandLine, ...135

Core::GetCommandLineMakx, ...136

Core::GetRest, ...136
Core::GetResultCode, ...137
Core::GetVerb, ...136
Core::IsRunning, ...138
Core::Monitor, ...135
Core::NoReply, ...138
Core::OpenLogFiles, ...137
Core::Opt, ...138
Core::Output, ...137
Core::Quit, ...135
Core::ReadLine, ...137
Core;:SetCommandLine, ...135
Core::SetRest, ...136
Core::SetResultCode, ...137
Core::SetVerb, ...136
Core::StopRunning, ...137
Core::Version, ...135

cos, ...162

cosh, ...162
disconnect_server, ...163
div, ...162

EDMA_EVENT_PARAM, ...231

EDMA_LINK_OFFSET, ...231
EDMA_NULL_PARAM, ...232
EOF, ...163

errcode get, ...163
errcode_see, ...163
errcode_set, ...164
errno, ...164
EVENT, ...164
event_init, ...165
EVENT_NGO, ...165
event_pulse, ...165
event_set, ...165
event_wait, ...165
EVENT_YES, ...165
exit, ...166

exp, ...166

fabs, ...166

fclose, ...166

feof, ...166

ferror, ...167

fflush, ...167

fgetc, ...167

fgetpos, ...167

fgets, ...167

floor, ...168

fmod, ...168

fopen, ...168

fprintf, ...169

fputc, ...171

fputs, ...171

fread, ...171

freg, ...171

freopen, ...172
frexp, ...172

fscanf, ...172

fseek, ...174

fsetpos, ...175

ftell, ...175

fwrite, ...175

getc, ...175

getchar, ...176
getenv, ...176

gets, ...176
host_sema wait, ...177
i_event set,...213
i_sema signal, ...213
i_sema signal_n, ...213
INPUT_PORT, ...177
isalnum, ...178
isalpha, ...178
iscntrl, ...178

isdigit, ...178
isgraph, ...178
islower, ...179
isprint, ...179
ispunct, ...179
isspace, ...179
isupper, ...179
isxdigit, ...179
k_event_set, ...218
k_sema signa_n, ...218
labs, ...180

Idexp, ...180

292

Index

[div, ...180 SC6xEDMA_Claim, ...229
link_in, ...180 SC6XxEDMA_ClaimAny, ...229
link_in_word, ...181 SC6xEDMA_ClaimAnyWait, ...230
link_out, ...181 SC6xEDMA_ClaimParam, ...231
link_out_word, ...181 SC6XxEDMA_ClaimWait, ...229
localeconv, ...182 SC6XEDMA_FlushCache, ...230
log, ...182 SC6xEDMA_ReleaseParam, ...231
log10, ...182 SC6xEDMA Channel_Awaitinterrupt, ...232
longjmp, ...182 SC6xEDMA Channel_KickWait, ...233
malloc, ...182 SC6xEDMAChannel_Releasg, ...232
mblen, ...183 SC6XEDMA Channel_ResetEvent, ...232
mbstowcs, ...183 SC6XEDMA Channel_Start, ...233
mbtowc, ...183 SC6xEDMA Channel_StartWait, ...233
memalign, ...184 SCexExt_Int_Claim, ...221
memchr, ...184 SC6xExt_Int_Claim_Any, ...221
memcmp, ...184 SC6xExt_Int_Release, ...221
memcpy, ...184 SC6xKernel_L ocatelnterface, ...86
memmove, ...185 scanf, ...192

memsst, ...185 select fast host o, ...276

modf, ...185 sema init, ...192

NULL, ...185 sema signal, ...193

offsetof, ...185 sema signal_n, ...193
OpenBoardServices, ...267 sema_test wait, ...193
OUTPUT_PORT, ...186 sema_wait, ...193

par_fprintf, ...186 sema_wait_n, ...194

par_free, ...187 setbuf, ...194

par_malloc, ...187 SetClear, ...194

par_printf, ...187 setjmp, ...195

par_sema, ...187 setlocale, ...195

perror, ...188 setvbuf, ...195

pow, ...188 signal, ...196

Present::get_hits, ...129 sin, ...196

Present::get_double, ...128 sinh, ...196

Present::get_int, ...128 size t,...197

Present::.get_rec, ...128 sizeof, ...197

Present::push, ...130 SMT_FpgaBasg, ...278
Present::put_bits, ...129 Smt_GbRead, ...276
Present::put_double, ...129 Smt_GbWrite, ...276
Present::put_int, ...128 Smt_Hsclnit, ...273
Present::put_rec, ...128 Smt_HscReadArgs, ...273
Present::signal_host_mask, ...129 Smt_HscWriteArgs, ...273
Present::signa_host_sema, ...129 Smt_MbClaim, ...268

printf, ...188 Smt_MbRead, ...268

prompt, ...189 Smt_MbRelease, ...268

ptrdiff t, ...189 Smt_MbWrite, ...269

putc, ...189 Smt_PciRead, ...275

putchar, ...189 Smt_PciRegRead, ...275

puts, ...189 Smt_PciRegWrite, ...275

gsort, ...190 Smt_PciWrite, ...275

raise, ...191 SMT_RomBasg, ...279

rand, ...191 SMT_SDB_Claim, ...263

realloc, ...191 SMT_SDB_Contral, ...264
remove, ...191 SMT_SDB_ProtectCache, ...265
rename, ...192 SMT_SDB_Read, ...264

rewind, ...192 SMT_SDB_Releass, ...264
SC6xDMA_Claim, ...223 SMT_SDB_Write, ...264
SC6xDMA_ClaimAny, ...223 Smt_SramRead, ...269
SC6xDMA_ClaimAnyWait, ...224 Smt_SramWrite, ...269
SC6xDMA_ClaimWait, ...223 sprintf, ...197

SC6xDMA Channel_AwaitInterrupt, ...225 sart, ...197

SC6xDMA Channel_Operation, ...225 srand, ...197
SC6xDMAChannel_Releasg, ...224 sscanf, ...197
SC6xDMAChannel_ResetEvent, ...224 static_sema init, ...198

293

Index

streat, ...198 caling directly, ...44
strchr, ...198 comand files, ...43

stremp, ...198 locating files, ...44

streoll, ...198 MEMORY directive, ...43
strepy, -..199 required options, ...44
strespn, ...199 SECTIONS directive, ...43
strerror, ...199 little-endian, ...25

strlen, ...199 loading, ...259

strneat, ...199 checking, ...93

strncmp, ...199 fromlink, ...259

strncpy, ...200 from ROM, ...262

strpbrk, ...200 non-processor modules, ...83
strrchr, ...200 type checking, ...259
strspn, ...200 checks performed, ...260
strstr, ...201 default state, ...260
strtod, ...201 information, ...260
strtok, ...201 requirements, ...260
strtal, ...202

strtoul, ...202 M

strxfrm, ...202 .

system, ...203 main, ...31

tan. ..203 arguments, .32

tan’h, 203 returning & 1/0, ...66

thread deschedule, ...203
THREAD_HANDLE, ...204
thread _launch, ...204
THREAD_MIN_STACK, ...208
thread new, ...205
THREAD_NOTURG, ...209
thread_priority, ...205
thread set_priority, ...205
thread set_urgent, ...206
thread_stop, ...206
THREAD_URGENT, ...209
thread wait, ...206

terminating, ...66

mathematics, ...145
memory

allocation, ...36

dynamic alocation, ...152

Memory Attribute Register (MAR), ...82
optimising use, ...89

reserving, ...83

user-defined sections, ...89

using address 0, ...89

microkernel, ...37

time, ...206 N
timer_after, ...207 NOBOCOQT, ...84
timer_delay, ...207
timer_now, ...207 @)
timer_rate, ...207 : .
timer_wait, ...207 object file, ...41
tmpfile, ...208 octets, ...13
tmpnam, ...208 output
tolower, ...208 pausing, ...119
toupper, ...208
ungetc, ...209 P
va_arg, ...209 PCl access
va end, ...209 functions
va start, ...210 Smt_PciRead, ...275
vprintf, ...210 Smt_PciRegRead, ...275
vprintf, ...210 Smt_PciRegWrite, ...275
vsprintf, ...210 Smt_PciWrite, ...275
wchar_t, ...211 registers, ...275
wcstombs, ...211 performance

_ wctomb, ...211 comport, ...253

link, ...13, ...29 context switch, ...40

and comports, ...23
comport, ...253
DUMMY, ...255

physical processors

identifying, ...22

PLACE statement, ...46

misuse of, ...145 ports, ...32
performance, ...254 priority, ...56
_ SDB, ...253 problems
linker, ...42 accessing binary file viaredirection, ...246

294

Index

application ends while I/O unfinished, ...246, ...248
arguments of memcpy overlap, ...248
arguments of strcpy overlap, ...248
arguments of strtol or strtoul are wrong, ...246
ASCII number out of range for double, ...246
caling par.h function when par_sema aready
claimed, ...249
cannot access filename, ...281
cannot create filename, ...281
cannot find memory for object., ...281
channel message has incompatible lengths, ...241,
...244
channel transfer on badly bound port, ...244
channel transfer on uninitialised channe, ...242
Code Composer not running free, ...257
compiler invoked without Diamond headers, ...240
configurer produces relocation errors, ...241
connection to host closed, ...244
corrupt application file filename, ...281
EDMA

coherency, ...230
error reading filename, ...281
failing to claim aDMA (or EDMA) channel, ...243
failureto load

incorrect PROCESSOR type, ...81

incorrect WIRE statements, ...84
fileistoo large to be processed, ...281
file position functions cannot be used with text
files, ...247
filename references unavailable memory on
processor: nnn bytes at address,, ...281
function prototypes necessary, ...242
hardware clock disabled, ...250
hardware clock stopped, ...250
hardware configuration trouble incorrect, ...243
heap has run out of memory, ...248, ...250
host communication disrupted, ...245
[/O function returns EOF, ...247
I/O function returns negative value, ...247
I/O function returns non-zero value, ...247
I/O function returns NULL, ...247
1/O function returns zero, ...247
ill-advised alterations to CPU registers,
..244
internal error/nnn, ...282
link functions do not transfer any data, ...249
linker complains about relocations, ...241
mathematical function argument out of range,
...246
mathematical function result out of range, ...246
misuse of link.h functions, ...244
multiple threads accessing the server, ...245

..242,

multiple use of run-time library, ..242, ...244,
..244, ...246, ...248

multiple use of shared object, ...242, ...244, ...249,
...250

no memory assigned to STACK or HEAP, ...242,
...245

not enough memory assigned to logical area, ...242,

...245
obscure

header files, ...141
par_sema

initialising, ...147
par_sema aready claimed when thread_new used,
..242
protocol error, ...66
QDMA
multiple use of TCC, ...234
search path not set correctly, ...240, ...241
shared variables may need to be volatile, ...249
switching file directly from input to output, ...247
system started another Diamond application, ...245
task placed on processor of wrong type, ...243
task unilaterally stops application, ...246, ...248
thread new does not return, ...249
tried to turn interrupts off, ...243
two threads waiting on one channel, ...243, ...245,
...249
TZ environment variable not defined, ...248
ungetc cannot un-get a character, ...247
uninitialised semaphore, ...243
unknown processor type xxx, ...282
using channel in both directions at once,
..245, ...249
workspace too small, ...250
wrong header files used, ...242
wrong processor type given in configuration file,
..241
PROCESSOR statement, ...45
processor type
dias, ...85
available, ...21
DEFAULT, ...21
identifying, ...21
processors, ...29
locating, ...30
ProcType command, ...21

Q
QDMA, ...234
example, ...237
header, ...234
preparing to transfer, ...235
principles of operation, ...234
registers, ...237
return status, ...234
transfers, ...236

R

relocation errors, ...241
restore server options, ...124
ROM, ...279

building applicationsfor, ...279
root, ...30

S

sample code, ...16
scheduling, ...38, ...56
SDB, ...263
asalink, ...253
configuration, ...263
functions
SMT_SDB_Claim, ...263

..243,

295

Index

SMT_SDB_Contral, ...264
SMT_SDB_ProtectCache, ...265
SMT_SDB_Read, ...264
SMT_SDB_Release, ...264
SMT_SDB_Write, ...264
terminology, ...263
semaphore, ...147
server, ...39, ...46, ...113
advanced options, ...122
extradelay after reset, ...123
inhibit reset, ...123
multiple server instances, ...123
restore default options, ...124
signal host semaphore, ...123
application
C4x, ..121
command line, ...120
debugging, ...120
reconnecting, ...117
run when clicked, ...120
run when selected, ...120
running, ...116
selection, ...116
stand aone, ...120
stopping, ...118
termination report, ...120
automatic
execution, ...116
termination, ...114
board
interface, ...113
properties, ...124
communicating with DSP, ...114
custom interface, ...115
DSP reset, ...116
errors, ...125
server error, ...126
software exception, ...125
hardware changed, ...115
help information, ...124
input, ...119
echoing to stdout, ...119
end of file, ...119
window heading, ...119
internal details, ...126
accessing clusters, ...133
application loading, ...126
building a cluster, ...131
call-back, ...130
cluster drivers, ...127
communication object, ...140
extending the server, ...130
link interface, ...130
locating clusters, ...130
operation, ...131
presentation interface, ...128
presentation layer, ...128
replacing the GUI, ...138
structure, ...127
link interface, ...114
multiple instances, ...114
output
clear screen, ...120

page mode, ...118

pausing, ...118
replacing, ...140
selecting the board, ...47
server module, ...113
shortcut keys, ...124
standard streams

redirecting, ...121
starting, ...46, ...113
synchronising references, ...66, ...146
tasks & synchronisation, ...67
user interface, ...113
version information, ...124

Server flag, ...141

shortcut keys, ...124
simultaneous input, ...35, ...61
software exception

code=00001102, ...60
code=00001202, ...60

Stand-aloneflag, ...141
standard 1/O, ...149

standard streams, ...150
stream 1/0, ...150
text and binary, ...150

Standard Syntactic Metalanguage, ...76
stderr, ...122

stdin, ...121

stdout, ...121

string handling, ...154

comparison, ...154
concatenation, ...154
copying, ...154
miscellaneous, ...154
searching, ...154

support, ...14
symptoms of problems

application hangs or runswild, ...241
application will not load or start, ...243
channel transfer fails, ...249
communication with host disrupted, ...244
compiler cannot be found, ...240

compiler cannot find header files, ...240
datain file seem to be corrupt, ...246
EDOM set in errno, ...246

end of file corrupt or absent, ...246
ERANGE set in errno, ...246

file position iswrong, ...247

1/0 behaves unexpectedly, ...247

link functions do not work, ...249

NULL returned when allocating memory, ...248
output does not appear or is corrupt, ...248
processor locks up, ...244

relocation errors, ...241

server hangs or runswild, ...245

thread cannot see changes to shared data, ...249
thread hangs, ...249

thread new returns NULL, ...250

time function returns wrong time, ...248
timer.h functions do not work, ...250
variable corrupt, ...248, ...250

wrong version of software executed, ...241

synchronisation

channel, ...64

296

Index

semaphore, ...63
server references, ...66

T
task, ...31
full, ...32
initial priority, ...89
initial thread, ...62
memory allocation, ...31
multi-threaded, ...35, ...62
scheduling, ...38
stand-alone, ...32
vsthread, ...67
TASK statement, ...46
thread, ...155
conditions for using, ...67
descheduling, ...38
IDLE, ...57
noturg, ...56
pre-emption, ...57
return code, ...155
shared data, ...62
suspending, ...56
synchronisation, ...62
termination, ...62
timedlicing, ...57
urgent, ...39, ...56
voldtile, ...62
vstask, ...67
waiting until finished, ...62
thread _new
problem passing pointer, ...64
timer, ...156
overhead, ...37
TIMERQ, ...82
TIMERY, ...82
TIMs, ...278
toals, ...18

U
UPR, ...39

\%

variable agruments, ...148
VCR, ...39

w

web site, ...14

WIRE statement, ...58
wires, ...13, ...29
word, ...13

worm, ...283
WS3L.exe, ...113

297

	Diamond User Guide
	Table of Contents
	Part I. Tutorial
	Chapter 1. Introduction
	Intended Audience
	Development Environments
	Further Reading
	Conventions
	Words, Bytes and Octets
	Links, Ports, and Wires
	DMA
	Typefaces

	Examples
	Specialised Information
	Installation Folder
	Support Services
	Sample Code
	Acknowledgements

	Chapter 2. Sundance Installation
	Prerequisites
	Installed Libraries
	Device Driver Software
	Code Composer Studio
	Code Composer Driver Software
	Environment Variables
	Other processors
	C4x Support
	C67 Support
	C64 Support

	Available Processor Types
	Multiple-processor TIMs
	Multi-Processor Systems
	Mixed-Processor Systems
	Reserved Hardware Resources
	Byte Order
	Confidence Testing

	Chapter 3. Getting Started
	Overview
	Abstract Model
	The Diamond Model
	Processors, Wires, and Links
	The Root Processor
	The Host
	Tasks
	Full Tasks
	Stand-Alone Tasks
	Ports
	Arguments to main

	Ports and Channels
	Multi-Processor Networks
	Virtual and Physical Channels
	Simultaneous Input
	Parallel Execution Threads
	Configuring an Application
	The Structure of an Application
	The Microkernel
	Scheduler
	Universal Packet Router (UPR)
	Global File Services (GFS)
	Virtual Channel Router (VCR)

	The Server
	Stand-Alone Applications

	Performance
	Context switching performance

	Chapter 4. Sequential Programs
	Overview
	Compiling
	Compiler Option Switches
	Calling the Compiler Directly
	FAR Data

	Linking
	Using Linker Command Files
	Libraries
	Calling the Linker Directly
	Locating files

	Configuring
	Calling the Configurer

	Running
	Command-Line Arguments

	Chapter 5. Parallel Programs
	One User Task
	Configuration
	Building the Application
	Linking
	Configuring

	More than One User Task
	Configuring for More than One Task
	Declaring Tasks
	Making Connections between Tasks
	Assigning Tasks to Processors
	Inter-Task Communication

	Building a Multi-Task Application
	Shutting Down Cleanly

	Scheduling
	Multi-Processor Applications
	Configuring Multi-Processor Applications
	Links and Channels
	Virtual Channels
	Physical Channels
	Physical Channel Restrictions
	WIRE Usage by Virtual Channels
	Error Detection on Virtual Channels
	Simultaneous Input

	Multi-Threaded Tasks
	Creating Threads
	Waiting for Threads to Finish
	Access to Shared Data
	Synchronisation Using Semaphores
	Synchronisation Using Channels
	Threads and Standard I/O
	Synchronising Server References
	Threads versus Tasks

	Using Assembly Language

	Part II. General Reference
	Chapter 6. Commands
	Command Syntax
	Functions
	Targets

	Adding Your Own Functions
	Command File
	Function Name
	Operations
	Macros
	Example

	Chapter 7. Configuration Language
	Standard Syntactic Metalanguage
	Configuration Language Syntax
	Low-Level Syntax
	Constants and Identifiers
	Numeric Constants
	String Constants
	Identifiers

	Statements
	PROCESSOR Statement
	TYPE Attribute
	CACHE Attribute
	LINKS Attribute
	CLOCK Attribute
	KERNEL Attribute
	BOOT Attribute
	AVOID Attribute
	BUFFERS Attribute

	WIRE Statement
	NOBOOT Attribute
	DUMMY link specifier

	PROCTYPE Statement
	Kernel Modules
	MAP= attribute
	External Memory Specification
	MEM Attribute
	CLEARMEM Attribute

	TASK Statement
	INS Attribute
	OUTS Attribute
	FILE Attribute
	Logical Area Attributes
	OPT Attribute
	PRIORITY Attribute
	URGENT Attribute
	Port Specifiers
	CONNECT Statement
	Connection Type Attribute
	SHORT Attribute

	PLACE Statement
	BIND Statement
	DEFAULT Statement
	UPR Statement
	MAX Attribute
	BUFFERS Attribute

	OPTION Statement
	LoadCheck option
	NoLoadCheck option

	Chapter 8. The Configurer
	Using the Configurer
	Invoking
	Switches
	Input Files
	Use of Files

	Processor Types
	Memory Use
	Memory Divisions
	Logical Memory Areas
	Physical memory Areas

	Memory Mapping
	The OPT Attribute
	Logical Area Sizes
	DATA attribute
	Separate Stack and Heap
	Explicit Placement of Logical Areas

	Building a Network
	Restrictions on Network Configuration
	Restrictions on Physical Channels

	Messages

	Chapter 9. The Server
	Overview
	The User Interface
	The Server
	The Board Interface

	Starting the server
	Selecting your DSP board
	Selecting an application
	Explicitly resetting the DSPs
	Running the application
	Reconnecting the server
	Stopping the application
	Pausing output
	Page mode
	Input
	Options
	View/Options/General Tab
	Command line
	Debug application
	Report application termination
	Clear screen on run
	Standalone application
	Run application when selected
	Run .app files
	C4x application

	View/Options/Standard I/O Tab
	stdin
	stdout
	stderr

	View/Options/Monitoring Tab
	View/Options/Advanced Tab
	ms extra delay after reset
	Do not issue a reset before running an application.
	Allow multiple instances of the server.
	Signal Host Semaphore
	Reset to Default Options

	Board properties
	Help information
	Shortcut keys
	Server version
	Error messages
	Internal Details
	Loading applications
	Server structure
	Cluster drivers
	Presentation-layer drivers

	The Presentation Interface (P)
	Link-interface drivers

	Extending the server
	Locating clusters
	Server Operation
	Building your own cluster
	Accessing your cluster from the DSP
	The Core Interface (C)
	Writing a board interface

	Replacing the Server GUI
	The Communication Object

	Replacing the Server

	Chapter 10. The Diamond Library
	Introduction
	Format of Synopses
	Flags

	Headers
	Errors <errno.h>
	Limits <float.h> and <limits.h>
	Common Definitions <stddef.h>
	Alt Package <alt.h>
	Diagnostics <assert.h>
	Channels <chan.h>
	Character Handling <ctype.h>
	Character Testing Functions
	Character Mapping Functions

	Links <link.h>
	Localisation <locale.h>
	Mathematics <math.h>
	Treatment of Error Conditions
	Trigonometric Functions
	Hyperbolic Functions
	Exponential and Logarithmic Functions
	Power Functions
	Nearest Integer, Absolute Value and Remainder Functions

	Synchronising Access to the Server <par.h>
	Semaphores <sema.h>
	Events <event.h>
	Nonlocal Jumps <setjmp.h>
	Signal Handling <signal.h>
	Variable Arguments <stdarg.h>
	Input/Output <stdio.h>
	Stream I/O
	Text and Binary
	Standard Streams
	Operations on Complete Files
	File Access Functions
	Formatted Input/Output Functions
	Character Input/Output Functions
	Direct Input/Output Functions
	File Positioning Functions
	Error Handling Functions
	Macros

	General Utilities <stdlib.h>
	String Conversion Functions
	Pseudo-Random Sequence Generation Functions
	Memory Management Functions
	Communication with the Environment
	Searching and Sorting Utilities
	Integer Arithmetic Functions
	Multibyte Character Functions
	Multibyte String Functions

	String Handling <string.h>
	Copying Functions
	Concatenation Functions
	Comparison Functions
	Search Functions
	Miscellaneous Functions

	Threads <thread.h>
	Thread return codes <errcode.h>
	Date and Time <time.h>
	Internal Timer <timer.h>

	List of Functions

	Chapter 11. Interrupt Handling
	Attaching High-level Interrupt Handlers
	Communicating with the Kernel
	Enabling and Disabling Global Interrupts
	Interrupt Processing Flow
	Low-level Interrupt Handlers
	Handler structure
	Attaching a low-level handler
	Taking interrupts
	Low-level handler context
	Accessing the kernel
	Low-level Interrupt Handler Example

	Chapter 12. External Interrupts
	Chapter 13. DMA
	SC6xDMA Functions
	SC6xDMAChannel Functions

	Chapter 14. EDMA
	EDMA Channel Availability
	EDMA events used by Diamond
	SC6xEDMA Functions
	SC6xEDMAChannel Functions

	Chapter 15. QDMA
	Introduction
	Principles of Operation
	Header File
	Status
	Preparing to Transfer
	Transfers
	QDMA Registers
	A QDMA Example

	Chapter 16. Troubleshooting
	My application does not run
	Compilation, Linking, Configuration
	compiler cannot be found
	compiler cannot find header files
	relocation errors
	wrong version of software executed

	Complete Failure at Run Time
	application hangs or runs wild
	application will not load or start
	communication with host disrupted
	processor locks up
	server hangs or runs wild

	ANSI Functions
	data in file seem to be corrupt
	EDOM set in errno
	end of file corrupt or absent
	ERANGE set in errno
	file position is wrong
	I/O behaves unexpectedly
	NULL returned when allocating memory
	output does not appear or is corrupt
	time function returns wrong time
	variable corrupt

	Parallel and Other Functions
	channel transfer fails
	link functions do not work
	thread cannot see changes to shared data
	thread hangs
	thread_new returns NULL
	<timer.h> functions do not work
	variable corrupt

	Part III. Sundance Reference
	Chapter 17. Links
	Summary
	Comports
	SDBs
	Link Connection Restrictions
	Link Performance
	Connecting to Devices

	Chapter 18. Debugging
	Overview
	Starting to Debug
	Notes

	Chapter 19. Application Loading
	Host Loading
	Load Checking
	Requirement
	Default state
	Loading Checks Performed

	ROM Loading

	Chapter 20. Sundance Digital Bus
	Terminology
	Configuration
	Accessing an SDB
	Performance Issues
	An SDB Example

	Chapter 21. Board Services
	Accessing the Board Services Interface
	Using Board Services
	Mailboxes
	Carrier-board SRAM
	The High Speed Channels
	Mailbox Usage
	SRAM
	DSP Function Codes
	Host Replies
	Protocol
	DSP Functions
	DSP Example

	Accessing PCI Registers
	PCI Access
	The Global Bus
	Packaged Services
	Faster Standard I/O
	File Transfers
	Performance

	Status Codes

	Chapter 22. Sundance TIMs
	Chapter 23. ROM
	Chapter 24. APP2COFF
	Constraints
	Using App2Coff
	Loading the application
	App2Coff Error Messages

	Chapter 25. The Worm
	Accepted Networks
	Starting the Worm
	Switches
	Worm Output

	Part IV. Bibliography
	Chapter 26. Bibliography

	Index

