
3L Diamond3L Diamond

Multiprocessor DSP
RTOS

What is 3L Diamond?What is 3L Diamond?

Diamond is an operating system designed for
multiprocessor DSP applications.

With Diamond you develop efficient
applications that use networks of DSPs
connected by point-to-point links.

Your system can have any number of
processors.

What is 3L Diamond?What is 3L Diamond?

Diamond uses a very simple but powerful
API to give you efficient:

multi-tasking
multi-threading
link communication
host communication
semaphores
timer control
… and much more

What do I get?What do I get?

Diamond includes:

microkernels for selected DSP boards;
a host server program for I/O and control;
a full ANSI C library;
utilities for building applications.

The DSP manufacturer’s compiler is used

What’s the microkernel?What’s the microkernel?

The microkernel is a small piece of code that
is placed on each processor to support:

tasks
threads
priority-based pre-emptive scheduling
interrupt handling
semaphores & events
timers
… and much more

What’s the overhead?What’s the overhead?

Very little. For example, on the C6000:
microkernel code: < 12KB
microkernel data: < 3KB

context switch times (thread_deschedule):
SMT374 (225MHz C6713) ~470ns.
SMT361 (400MHz C6415) ~250ns
SMT395 (1GHz C6416T) ~100ns

If you don’t call the kernel it doesn’t use any CPU
cycles

How does it all work?How does it all work?

You write complete C or assembler programs that
take in data, do some processing, and send data out.
These programs are known as TASKS.

You build your application by joining tasks together
so that they can communicate.

Processors are loaded with only the code they need.

How do I use 3L Diamond?How do I use 3L Diamond?
Start with your block diagram, ...

Block diagram description
of your application

Don’t worry about
processors at this stage.

...code each block independently, ...

Code each block as a
complete C/asm program
Include references to
Diamond libraries and
application libraries

Sources

and build each task.

Tasks

Sources For each block:
Compile or Assemble
Link with Diamond run-
time libraries (and other
libraries) to create a
relocatable task.

The tools run on your PC.

This is how you create each task:

DSP Compiler

DSP Linker

C sourceC source.C

ObjectObject.OBJ

.TSK

.LIB

DSP Assembler

C sourceC source.ASM

How do tasks communicate?How do tasks communicate?
They are connected by channels.

A channel lets you send data from one task to
another, wherever that task may be.

Each task when it starts is given a list of
channels providing input and a list of channels
accepting output.

These lists appear as arguments to the task’s
main function.

How do I join my tasks together?How do I join my tasks together?
You use the 3L configurer...

The configurer combines your tasks into a
single application file.

You control the configurer with data in a
textual configuration file.

The configuration file names the tasks,
shows how to connect them, and says where
to place them when you run the application.

What does the configurer do?What does the configurer do?

The configurer maps your channels onto the
links connecting processors where necessary.

It builds a single application file that contains
everything needed to load the DSP network
and get your application going when you
execute it later.

What about memory?What about memory?

Processor types give the configurer all the
information it needs about particular DSPs.

The configurer usually allocates memory
automatically.

If you really want to, you can control the
allocation of memory explicitly.

Configuration

Configure Application
Configuration file

Define software: tasks
and connections
Define hardware: DSPs
and links
Map software to
hardware

Generate an application
file ready for running.

configuration file

application file

Tasks

Sources

DSPDSPDSPDSP

DSP

DSP network

How do I run my application?How do I run my application?
You use the host server program: WS3L.

The server is a program that runs in the host
computer connected to your network of
DSPs.

It sends your application into the DSP
network and provides host input/output
services.

It communicates directly with one of the
DSPs: the ROOT processor.

Running applications

Root

DSP network

Server: WS3L.APP

File system

Host system

Load application

What about an example?What about an example?
Here’s a simple block diagram.

grab filter recog

image in

control

action out

That’s a pipeline. Is that all I can use?That’s a pipeline. Is that all I can use?
You can use any structure you wish.

Tasks may have as many input channels and
output channels as you like, for example:

You can use any structure you wish.

Diamond will automatically route messages
from one processor to any other along the
links.
The routing is guaranteed deadlock-free.

Back to the example ...

Take a simple application.
Describe it as a block diagram.

Each block will become a task.

grab filter recog

image in action out

control

Code each block (task), e.g., filter, ...

#include <chan.h> // Diamond communication functions
#include <imagelib.h> // your image processing functions
#define N 65536 // image size

static char bits[N]; // to hold the image

void main(int argc, char *argv[], char *envp[],
CHAN *in[], int ins,
CHAN *out[], int outs)

// in and out are the lists of channels that connect this task to
// other tasks
{

for(;;) {
chan_in_messagechan_in_message(N, bits, in[0]); // receive image
filter(x, N); // process image
chan_out_messagechan_out_message(N, bits, out[0]); // send new image

}
}

Build each task on your PC ...

C>C6xc grab
C>C6xTask grab
C>C6xc filter
C>C6xTask filter
C>C6xc recog
C>C6xTask recog
C>C6xc control
C>C6xTask control
C>REM makefiles are useful for this

Can I put all tasks on a single DSP?Can I put all tasks on a single DSP?
Yes. Write a configuration file that ...

recog

second

control

filtergrab

root

1 2

4 5

...names processors and gives their types ...

! Hardware description
processor root SMT361
processor second SMT361

second

root

...describes the link connections, ...

! Hardware description
processor root SMT361
processor second SMT361
wire ? root[1] second[4]
wire ? root[2] second[5]

second

root

1 2

4 5

...describes your tasks, ...

! Hardware description
processor root SMT361
processor second SMT361
wire ? root[1] second[4]
wire ? root[2] second[5]

! Task declarations
task grab ins=1 outs=1 stack=2k
task filter ins=1 outs=1 stack=3k
task recog ins=1 outs=1 stack=3k
task control ins=1 outs=1 stack=2k

second

root

1 2

4 5

controlrecogfiltergrab

...connects the tasks together, ...

! Hardware description
processor root SMT361
processor second SMT361
wire ? root[1] second[4]
wire ? root[2] second[5]

! Task declarations
task grab ins=1 outs=1 stack=2k
task filter ins=1 outs=1 stack=3k
task recog ins=1 outs=1 stack=3k
task control ins=1 outs=1 stack=2k

! Set up the channels between the tasks.
connect ? grab[0] filter[0]
connect ? filter[0] recog[0]
connect ? recog[0] control[0]

second

root

2

4 5

controlrecogfiltergrab

1

...and places all your tasks on one processor.

! Hardware description
processor root SMT361
processor second SMT361
wire ? root[1] second[4]
wire ? root[2] second[5]

! Task declarations
task grab ins=1 outs=1 stack=2k
task filter ins=1 outs=1 stack=3k
task recog ins=1 outs=1 stack=3k
task control ins=1 outs=1 stack=2k

! Set up the channels between the tasks.
connect ? grab[0] filter[0]
connect ? filter[0] recog[0]
connect ? recog[0] control[0]

! Assign tasks to the available processors
place grab root
place filter root
place recog root
place control root

recog

second

control

filtergrab

root

1 2

4 5

How do I use the configuration file?How do I use the configuration file?
Easy, give a command like this:

.TSK.TSK .TSK

3L Configurer

...

.CFG

.APP

C> config example.cfg example.app

How can I use the second processor?How can I use the second processor?
Just change one placement and reconfigure...

! Hardware description
processor root SMT361
processor second SMT361
wire ? root[1] second[4]
wire ? root[2] second[5]

! Task declarations
task grab ins=1 outs=1 stack=2k
task filter ins=1 outs=1 stack=3k
task recog ins=1 outs=1 stack=3k
task control ins=1 outs=1 stack=2k

! Set up the channels between the tasks.
connect ? grab[0] filter[0]
connect ? filter[0] recog[0]
connect ? recog[0] control[0]

! Assign tasks to the available processors
place grab root
place filter root
place recog second
place control root

recog

second

control

filtergrab

root

1 2

4 5

Don’t I have to recompile or Don’t I have to recompile or relinkrelink??
No. Just run the configurer again.

Experimenting with moving tasks around the
network is easy: just change PLACE
statements in the configuration file,
reconfigure, and then run your modified
application.

Don’t worry about getting data from one task
to another, even when you move tasks.
Connect their channels and Diamond will
handle the communication wherever the
tasks are in the network.

But I need lowBut I need low--level access to the DSP...level access to the DSP...
You’ve got it.

Diamond makes very efficient use of the
DSP hardware: links, DMA channels,
interrupts,...

If you need to control the hardware directly
(e.g., use the advanced features of the DMA
engines or handle special interrupts) you can
use the Diamond low-level library functions,
or even write those components in
assembler.

How do I debug my application?How do I debug my application?
Use the standard debugger.

Diamond applications are compatible with
the DSP manufacturer’s debugger.

Remember, you can also put printf
statements into any task on any processor.

What’s coming next?What’s coming next?

Diamond is being ported to Power PCs
embedded in Xilinx FPGAs.
These processors with their Rocket I/O links
fit perfectly into the Diamond model.
You will be able to build heterogeneous
networks with FPGA PPCs and other DSPs
having Rocket I/O links.
The combination of FPGA logic with CPU
processing power will be formidable.

3L Diamond3L Diamond

Multiprocessor DSP
RTOS

	3L Diamond
	What is 3L Diamond?
	What is 3L Diamond?
	What do I get?
	What’s the microkernel?
	What’s the overhead?
	How does it all work?
	How do I use 3L Diamond?Start with your block diagram, ...
	...code each block independently, ...
	and build each task.
	This is how you create each task:
	How do tasks communicate?They are connected by channels.
	How do I join my tasks together?You use the 3L configurer...
	What does the configurer do?
	What about memory?
	Configuration
	How do I run my application?You use the host server program: WS3L.
	Running applications
	What about an example?Here’s a simple block diagram.
	That’s a pipeline. Is that all I can use?You can use any structure you wish.
	You can use any structure you wish.
	Back to the example ...
	Code each block (task), e.g., filter, ...
	Build each task on your PC ...
	Can I put all tasks on a single DSP?Yes. Write a configuration file that ...
	...names processors and gives their types ...
	...describes the link connections, ...
	...describes your tasks, ...
	...connects the tasks together, ...
	...and places all your tasks on one processor.
	How do I use the configuration file?Easy, give a command like this:
	How can I use the second processor?Just change one placement and reconfigure...
	Don’t I have to recompile or relink?No. Just run the configurer again.
	But I need low-level access to the DSP...You’ve got it.
	How do I debug my application?Use the standard debugger.
	What’s coming next?
	3L Diamond

