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ABSTRACT 
Manufacturers of real-time operating systems (RTOS) for 
DSP computers and multi-computers are mainly concerned 
on kernel size and performance. These RTOS rely on 
configuration tools that statically locate the application 
tasks across the available machines. This work describes 
IDSP, a distributed middle-ware for DSP multi-computers. 
It is not a new RTOS, but a framework upon one of them, 
currently Texas Instruments DSP/BIOS. IDSP proposes and 
researches process management and MPI-like message 
passing interfaces that make possible run-time creation of 
remote tasks and true location-transparent communication, 
These facilities are not yet present in commercial systems, 
but a they are a must for achieving more advanced 
capabilities such as process migration and fault tolerance. 
We describe the design of IDSP and give performance 
figures. 

1. INTRODUCTION AND GOALS 

DSP intensive applications such as speech engines or video 
processing are -and they always will be- strongly limited by 
its computational complexity. Distributed computing changes 
this scenery. Fortunately, most of algorithms and applications 
can be decoupled and distributed among two or more CPUs. 
Cooperative work between instances of signal processing 
algorithms is necessary in order to gain the scalability of pre-
sent and future DSP developments. The state of the art in 
DSP multi-computers is well represented by the develop-
ments of Motorola ([1]), Sundance ([2]) o Hunt Engineering 
([3]). These manufacturers rely on DSP real-time kernels 
such as DSP/BIOS, Virtuoso ([4]),  VxWorks ([5]), OSE ([6]) 
or 3L Diamond ([7]) to name but a few. The 3L Diamond 
case study will put our contribution in perspective because its 
distribution model closely follows our abstract model. Un-
der Diamond, a complete application is a collection of one 
or more concurrently executing tasks. A Diamond task is a 
separate multithreaded C program, with its own main func-
tion. Each task has a vector of input ports and a vector of 
output ports that are used to connect tasks together and that 
are passed to main. Each port is of type “pointer to channel” 
(CHAN *). Fig. 1 illustrates the Diamond message-passing 
interface over the ports.  

#include <chan.h> 
main(int   argc, char *argv[], char *envp[], 
        CHAN *in_ports[], int ins, CHAN *out_ports[], int outs) 
{ 
  int c; 
  for (;;) { 
    chan_in_word(&c, in_ports[0]); 
    if (c == EOF) break; 
    chan_out_word(toupper(c), out_ports[0]); 
  } 
} 

Figure 1: A Diamond task. 

A program called the configurer running in the PC host 
combines task image files to form the executable file. A 
user-supplied textual configuration file drives the config-
urer. It specifies the hardware –available processors and 
physical links connecting them, the software –tasks and 
connections between them, and how tasks are assigned to 
processors. Note that chan_out_word (toupper (c), out_ports [0]); 
sends the upper character to “the output port 0”. No dy-
namic addressing is involved, what eases programming and 
yet it makes tasks communication transparent to specific 
locations. We understand that static configuration solves 
most of current practical problems, but it fails to face techni-
cal challenges such as run-time reconfiguration, task migra-
tion or fault tolerance in the DSP world. A software layer 
usually known as a distributed framework should ease the 
cooperation between objects running in different processors. 
IDSP is our contribution in that address (Fig. 2). MPI is the 
standard API for parallel programming ([9]). The IDSP 
framework proposes and researches MPI-like message pass-
ing interfaces that make possible the dynamic creation of 
remote tasks and true location-transparent communication, 
facilities not explored enough in present commercial sys-
tems. 

 
 Figure 2: The IDSP framework. 

The rest of the paper is structured as follows. Section 2 pre-
sents the concepts underlying the IDSP application model 
and its addressing scheme. Section 3 and 4 studies the proc-
ess management and communication interfaces respectively, 

1365



while section 5 shows the internal architecture. Finally, sec-
tion 6 gives performance figures.  

2. DESIGN PRINCIPLES 

The key feature of IDSP is the assumption of a model of 
distributed application that consists of a graph of 
cooperating DSP algorithms running in one or more 
machines. A node in the graph represents an algorithm, 
served by a process that is known as an operator. Fig. 3 
shows an application of five operators. An arrow represents 
a data stream. 

  
Figure 3. The IDSP application model 

Conceived as a building block, a design principle of 
IDSP is keeping the operator a simple entity. Hence, it has a 
single thread of execution, currently a DSP/BIOS task. 
Typically, signal processing leads to an algorithm applied 
to data streams windows in an infinite loop. In our model, a 
loop iteration reads inputs in sequence, does the computing 
task, and writes to the output, going back for new input 
data. This activity pattern is suitable for a single thread. 
Notwithstanding, for the sake of regularity, IDSP also 
charges operators with non-DSP services. This is the case 
of the system servers, for instance.  

The addressing scheme is one of the key features of a 
distributed system. Each operator in the system has 
assigned an address that distinguishes it from the rest in a 
global scope. Operators are the end points of a 
communication. The IDSP address is transparent to the 
operator location. It consists on the pair [gix, oix] -the 
group index, and the operator index. There should not be 
two groups with the same gix. IDSP provides a service to 
obtain a unique gix. A random number must be employed 
otherwise.  The operator index, oix for short, identifies an 
operator inside a group, ranging from 0 up to the maximum 
number of operators in the group.  

A data stream is a sequence of messages, usually signal 
windows. Fig. 4 shows the format of the IDSP message. 
Four fields compose it. The source and destination address, 
followed by the number of bytes of the data field and the 
data field itself. Some messages, notwithstanding, do not 
carry the signal data, but methods identifiers of the IDSP 
system RPC servers, their parameters and results.  

 
Figure 4: The IDSP message format 

Note that both kinds of information are supported by the 
same message format. Method information or signal data is 
irrelevant for the IDSP kernel. Hence, from now on, we can 
refer to them just as the data field. 

3. THE PROCESS MANAGEMENT INTERFACES 

This research has been carried out on Texas Instruments 
TMS320C6000 processors with DSP/BIOS ([8]). DSP/BIOS 
is the 25Kbytes sized kernel that Texas Instruments supplies 
with its DSP systems and it has therefore became one of the 
better known and more widely used RTOS. Raw DSP/BIOS, 
however, is not aware of other CPUs in a distributed memory 
multi-computer environment; hence the purpose of building 
the new process management interfaces. They use 
DSP/BIOS for just basic concurrency support and extend it 
with a run-time process management facility.  

Each operator has a system-wide well-known integer 
name. Of course, all the instances of the same operator 
share the same name. The so named operator register is a 
module that keeps the features of the operators linked in 
memory, i.e., the operator name, the body function, the 
parameters size and the stack size. In some way, this 
register plays the role of a file system in a conventional 
computer, which keeps the executable files. The IDSP 
process management interface is simple: 

Int  init  (Void); 
Int  enrol  (Void); 
Void  leave  (Void); 
Int  create (Opr_t *oper, Addr_t addr, Int name, char *param); 
Void  destroy (Opr_t  oper);  
Int start  (Opr_t  oper);  
Int  kill (Opr_t  oper);  
Opr_t  self (Void);   

Init primitive initialises IDSP. Enrol allows a host RTOS task 
-a DSP/BIOS task, for instance, to become an IDSP operator 
and therefore invoke its interfaces. Leave has the contrary 
effect. Create creates a new operator, supplying it with its 
name and its global address. Destroy stops the operator and 
liberates its resources. Start schedules the new operator and, 
finally, Kill “disables” the operator, a state discovered by next 
or current kernel service and currently used to invoke leave. 

The OPR interface manages the distribution of operators 
by allowing an operator to create another in a given 
machine, as well as to destroy, start and kill it. OPR is 
implemented by an RPC system service that exhibits the 
following interface specification. Note how it fits the kernel 
interface. 

Int  OPR_create (Addr_t addr, Int machine, Int code, char *param); 
Void OPR_destroy (Addr_t addr);  
Int  OPR_start (Addr_t addr);  
Int  OPR_kill (Addr_t addr);   

The GRP interface helps on process management by 
allowing operating on groups. A group is a set of related 
algorithms that cooperate in solving a task and it is known 
by a single identifier. Groups are created, started and 
destroyed by using its name. GRP is also implemented by 
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an RPC service, built upon the OPR interface. This is its 
interface specification: 

Int GRP_create (Int *gix, Int mode, Int *name, Void **parm, Int size); 
Int GRP_destroy (Int  gix); 
Int GRP_kill (Int  gix); 
Int GRP_start (Int  gix); 
Void GRP_leave (Void); 
Int GRP_self (Void); 
Int   GRP_channel  (Int  gix, Int *inCh, Int *outCh, Int size); 

GRP_create creates a group composed by the operators 
in name. Operators are assigned to processors following a 
load-balancing approach. This means, for instance, that 
group instance g can have the operator 4 running on the 
machine m, while the group g’ can have its operator 4 
running on the machine m’. When the mode parameter takes 
the GRP_GEXTGIX value, GRP_create just returns a system 
unique gix identifier. The GRP_GRAPH value creates a new 
group. Size is number of operator composing the group. 
GRP_destroy terminates the group by destroying its 
operators and liberating the group resources. GRP_kill  kill 
the composing operators as above explained. GRP_leave  
allows the invoking operator to abandon the group. The last 
one destroys the group. 

4. THE MESSAGE PASSING INTERFACES 

The kernel shows a simple but yet powerful interface to 
send and receive messages:  

Int  send (Int sync, char *buffer, Int count, Addr_t dst, Int tag,  
   Rqst_t *rqst, Uns timeout); 
Int  recv (Int sync, char *buffer, Int count, Addr_t src, Int tag,  
   Rqst_t *rqst, Status *status, Uns timeout); 
Int  waitany (Int count, Rqst_t *rqst, Int *index, Status  *status); 
Int  waital (Int count, Rqst_t *rqst, Status **status); 

The sync parameter determines if send and recv operate 
either in synchronous or asynchronous mode. Send 
primitive sends count bytes of buffer buffer to dst operator, 
labelled with the tag tag. The K_E_DISABLED error is 
returned when the invoking operator has been disabled. 
The K_E_TIMEOUT error is returned when the rendezvous 
times out. Recv  primitive is similar. The rqst 
communication object is returned when send and recv are 
invoked in asynchronous mode. Waitany and waitall suspend 
the operator until its communication request are satisfied. 
On other hand, upon these kernel primitives, IDSP build 
two higher level, user oriented communication libraries, 
group communication (GC) and remote procedure call 
(RPC). GC facility is quite similar to MPI. In fact, P4, a 
parallel library that supports MPI, has been ported to the 
C6000 architecture upon GC ([10]): 

Int  GC_send    (char *buffer, Int count, Int dst, Int tag, Uns timeout);   
Int  GC_asend  (char *buffer, Int count, Int dst, Int tag,  
  GC_Rqst_t *rqst,  Uns timeout);   
Int  GC_bcast   (char *buffer, Int count, Int root);  
Int  GC_recv (char *buffer, Int count, Int src, Int tag,  
  GC_Status *status, Uns timeout);  

Int  GC_arecv (char *buffer, Int count, Int src, Int tag,  
  GC_Rqst_t *rqst, Uns timeout);  
Int  GC_wait    (GC_Rqst_t  rqst,  GC_Status *status); 
Int  GC_waitall (Int count, GC_Rqst_t *rqst, GC_Status *status[]); 
Int  GC_waitany (Int count, GC_Rqst_t *rqst, Int *index,  
  GC_Status *status); 
Int  GC_test    (GC_Rqst_t  rqst, Int *flag,  GC_Status *status);   

One important difference between IDSP and DSP/BIOS 
objects is that the former ones can be in different machines. 
This fact poses the problem of remote invocation. Remote 
objects are often operated in distributed systems by using a 
technique known as RPC (Remote Procedure Call). The 
RPC system servers of IDSP also fit into its application 
model. They are implemented as the single instance of a 
single operator group. There are two main RPC system 
servers in IDSP: the group server and the operator server. 
Whilst there is one operator server per machine, there is a 
single group server in the whole system. The machine 
hosting the group server is called the root machine. RPC 
syntax and semantics have been inspired in the Amoeba 
operating system ([11]). Operators use RPC for accessing 
user or system services such as create groups or operators 
asking for CPU loads… OPR and GRP stubs and 
skeletons, for instance, use these primitives:  

Int  RPC_trans (char *buffer, Int count, Int service); 
Int  RPC_send (char *buffer, Int count, Int dst); 
Int  RPC_recv  (char *buffer, Int count, Int src);   

At the highest level, DSP operators communicate 
through objects named channels. There are two kinds of 
channels, input channels, and output channels. Inside an 
operator, channels of the same sense are known by its order 
number 0, 1, 2, … Thus, channels complete the IDSP 
application model shown in Fig. 3. The programmer just 
sends data to output channel, say 2, and data arrives to the 
connected operators 3 and 4. The GRP_channel primitive 
supplies a just created group with two connection matrices, 
one for input channels and another for output channels. The 
operator creates, reads, writes and destroys the channels it 
uses by using the channel interface (CHN). Built on GC, 
CHN is a more flexible facility than the before mentioned 
static Diamond channels: 

Int   CHN_create  (CHN_t *ch, Uns   mode,   Uns  channelNr);  
Void CHN_destroy (CHN_t  ch);  
Int   CHN_send    (CHN_t  ch, char *buffer, Int  nbytes, Uns timeout); 
Int CHN_asend   (CHN_t  ch, char *buffer, Int  nbytes,  
    CHN_Rqst *rqst,  
                              Uns timeout); 
Int  CHN_recv    (CHN_t  ch, char *buffer, Int  nbytes, Uns timeout); 
Int CHN_arecv   (CHN_t  ch, char *buffer, Int  nbytes,  
   CHN_Rqst *rqst, Uns timeout); 
Int CHN_test     (CHN_Rqst *chRqst, Bool *flag);  
Int CHN_wait    (CHN_Rqst *chRqst, CHN_Status *st);  
Int  CHN_waitall (Int count, CHN_Rqst *chRqst, CHN_Status *st);  
Int CHN_waitany (Int count, CHN_Rqst *chRqst, Int *index, 
    CHN_Status *st); 

5. A MICROKERNEL SOFTWARE ARCHITECTURE 

IDSP rests upon two software engineering techniques that 
have proved to be a solid foundation for building robust 
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software: layering and objects. An object is a data structure 
plus a set of operations over such data, also known as 
member functions or methods. Methods promote the 
software reusability by applying the principle of 
information hiding. They hide to the user the internal 
implementation of the object, allowing that changes in the 
implementation of the object do not affect the client code. 
Objects are created, operated on and finally, destroyed. In 
IDSP, a group is an object an operator is an object and a 
channel is an object. Every entity in IDSP is an object. Fig. 
5 shows the microkernel architecture of IDSP. We can see 
how services as GRP and OPR have been segregated from 
the kernel and implemented as user servers that 
communicate through the kernel message-passing 
interface. 

 

Figure 8: The IDSP architecture 

6. MESSAGE-PASSING PERFORMANCE 

In spite of its rich semantics (practically the ones showed 
by the MPI standard) the IDSP message-passing interfaces 
show reasonable performance. 

  
Figure 9: Time to send synchronous messages versus 

message size 

Fig. 9 shows the time that sending a message takes to the 
synchronous primitives. A Sundance SMT310Q multi-
computer board with four TMSC6102 DSP processors has 
been our test environment. As a reference, we measured that 
it takes 17 microseconds the highly optimised DSP/BIOS 
MBX_post primitive to send a short message to a mailbox. 
Asynchronous primitives show similar performance, being 

the added cost of further wait invocations around the 20%. 
The good performance of the P4 port on IDSP ([10]) sup-
ports the idea that IDSP is not slow. 

7. CONCLUSIONS 

A distributed framework for DSP multicomputers has been 
proposed. IDSP has been implemented on Texas Instruments  
TMSC6000 processors, but its use of DSP/BIOS makes it 
quite portable to other architectures. IDSP interfaces have 
been modelled after the MPI standard, what makes them 
powerful and flexible, and yet keeping IDSP small (about 60 
K) and fast. In our view, its transparent location address 
scheme makes IDSP a tool for researching on distributed 
embedded systems. We are currently working on improving 
the IDSP interfaces and using them to support distributed 
speech recognition engines and build a MPI port. We plan 
future work on implementing and testing the MPI/RT speci-
fications on the DSP world. 
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