Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
<th>Engineer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/1/02</td>
<td>First rev, based on 335</td>
<td>GP</td>
<td>1.0.0</td>
</tr>
<tr>
<td>9/5/02</td>
<td>Drawing corrections and jumper function updates</td>
<td>GP</td>
<td>1.1.0</td>
</tr>
<tr>
<td>7/5/02</td>
<td>Memory mapping corrections, New firmware memory mapping, CCS problems</td>
<td>E.P</td>
<td>2.0</td>
</tr>
<tr>
<td>11/05/02</td>
<td>Additional warning concerning DMA support</td>
<td>E.P</td>
<td>2.1</td>
</tr>
<tr>
<td>03/01/03</td>
<td>Addition of IIOF paragraph. Update of mapping table</td>
<td>E.P</td>
<td>2.2</td>
</tr>
<tr>
<td>30/01/03</td>
<td>New firmware 1.8</td>
<td>J.V.</td>
<td>2.3</td>
</tr>
<tr>
<td>13/08/03</td>
<td>Firmware version display and update via the SMT6001 utility. Comport notation updated and reference to support system added.</td>
<td>J.V.</td>
<td>2.5</td>
</tr>
<tr>
<td>26/08/03</td>
<td>Version updated at the top of each file</td>
<td>J.V.</td>
<td>2.6</td>
</tr>
<tr>
<td>26/09/03</td>
<td>SMT361A description added</td>
<td>J.V.</td>
<td>2.7</td>
</tr>
</tbody>
</table>

It is important that you use the correct version of the firmware; you should use the firmware provided with the latest SMT6001.

Sundance’s support forum http://support.sundance.com/
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision History</td>
<td>2</td>
</tr>
<tr>
<td>Contacting Sundance</td>
<td>4</td>
</tr>
<tr>
<td>Notational Conventions</td>
<td>5</td>
</tr>
<tr>
<td>SMT361</td>
<td>5</td>
</tr>
<tr>
<td>C64xx</td>
<td>5</td>
</tr>
<tr>
<td>Register Descriptions</td>
<td>5</td>
</tr>
<tr>
<td>Outline Description</td>
<td>6</td>
</tr>
<tr>
<td>Block Diagram</td>
<td>7</td>
</tr>
<tr>
<td>Architecture Description</td>
<td>8</td>
</tr>
<tr>
<td>TMS320C64xx</td>
<td>9</td>
</tr>
<tr>
<td>Boot Mode</td>
<td>9</td>
</tr>
<tr>
<td>EMIF Control Registers</td>
<td>10</td>
</tr>
<tr>
<td>SDRAM</td>
<td>10</td>
</tr>
<tr>
<td>FLASH</td>
<td>10</td>
</tr>
<tr>
<td>Version control</td>
<td>11</td>
</tr>
<tr>
<td>Reprogramming the firmware and boot code</td>
<td>11</td>
</tr>
<tr>
<td>Interrupts</td>
<td>11</td>
</tr>
<tr>
<td>Communication ports</td>
<td>11</td>
</tr>
<tr>
<td>SDB</td>
<td>12</td>
</tr>
<tr>
<td>SDB Clock selection</td>
<td>12</td>
</tr>
<tr>
<td>Global bus</td>
<td>12</td>
</tr>
<tr>
<td>LED Setting</td>
<td>13</td>
</tr>
<tr>
<td>LED Register</td>
<td>13</td>
</tr>
<tr>
<td>CONFIG & NMI</td>
<td>13</td>
</tr>
<tr>
<td>Timer</td>
<td>13</td>
</tr>
<tr>
<td>IIOF interrupt</td>
<td>13</td>
</tr>
<tr>
<td>Code Composer</td>
<td>14</td>
</tr>
<tr>
<td>Application Development</td>
<td>15</td>
</tr>
<tr>
<td>Operating Conditions</td>
<td>16</td>
</tr>
<tr>
<td>Safety</td>
<td>16</td>
</tr>
<tr>
<td>EMC</td>
<td>16</td>
</tr>
</tbody>
</table>
Contacting Sundance
You can contact Sundance for additional information log onto Sundance’s support forum http://support.sundance.com/
Notational Conventions

SMT361

Throughout this document the term SMT361 will usually be used to refer to all processor variant including the SMT361A. It should be clear from the context when a distinction is being drawn between the types of module.

C64xx

The terms C64xx and TMS320C64xx will be used interchangeably throughout this document.

Register Descriptions

The format of registers is described using diagrams of the following form:

```
  31–24  23–16  15–8  7–0

```

<table>
<thead>
<tr>
<th>31–24</th>
<th>23–16</th>
<th>15–8</th>
<th>7–0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R,00000000</td>
<td>RW,10000000</td>
<td>R,00000000</td>
<td>R,10000000</td>
</tr>
</tbody>
</table>

The digits at the top of the diagram indicate bit positions within the register and the central section names bits or bit fields. The bottom row describes what may be done to the field and its value after reset. Shaded fields are reserved and should only ever be written with zeroes.

- **R**: Readable by the CPU
- **W**: Writeable by the CPU
- **RW**: Readable and writeable by the CPU

Binary digits indicate the value of the field after reset.
Outline Description

The SMT361 is a C64xx-based size 1 TIM offering the following features:

- SMT361: TMS320C64xx processor running at 600MHz
- Four 20MB/s communication ports (ComPorts)
- 32MB of SDRAM (150MHz)
- 2MByte Flash ROM for boot code and FPGA programming
- Global expansion connector
- High bandwidth data I/O via 2 Sundance Digital Buses (SDB).

- The SMT361A includes the same features with a TMS320C64xx processor running at 720MHz. All the external interface are running at 120MHz instead of 100MHz.
Block Diagram

- **J1 Top Primary TIM Connector**
 - Comm Port 0 & 3
 - 2x Comm Ports
 - 6 I/O pins

- **Timer & Control**
 - 15 I/O pins

- **Global Bus**
 - 74 I/O pins

- **FPGA Controller**
 - Virtex-II, FG456
 - 324 I/O Pins
 - 1.5V

- **JTAG Header**
 - 92 pins

- **Sundance Digital Bus**
 - 40-way ODU x2

- **J1 Top Primary TIM Connector**
 - Comm Port 0 & 3
 - 2x Comm Ports
 - 6 I/O pins

- **J1 Bottom Primary TIM Connector**
 - Comm Port 1 & 4
 - 2x Comm Ports
 - 6 I/O pins

- **FPGA Controller**
 - Virtex-II, FG456
 - 324 I/O Pins
 - 1.5V

- **Linear regulators**
 - 1.5V & 1.2V

- ** McBSP/ Utopia GPIO**
 - 4 LEDs & 4 I/O pins

- **J3 Global Expansion Connector**

- **J2 Bottom Primary TIM Connector**
 - Comm Port 1 & 4
 - 2x Comm Ports
 - 6 I/O pins

- ** McBSP0**

- **Oscillators**

- **32M bytes SDRAM (EMIFA)**
 - 4 x K4S641632 (4M x 16)

- **Flash (EMIFB CE1)**
 - Start-up mode selection

- **4 LEDs & 4 I/O pins**

- **J3 Global Expansion Connector**
 - 46 I/O Pins, 16-bit Data

- **J2 Bottom Primary TIM Connector**
 - Comm Port 1 & 4
 - 2x Comm Ports
 - 6 I/O pins

- **FPGA Controller**
 - Virtex-II, FG456
 - 324 I/O Pins
 - 1.5V

- ** McBSP/Utopia GPIO**
 - 4 LEDs & 4 I/O pins

- **J3 Global Expansion Connector**

- ** McBSP0**

- **Oscillators**

- **32M bytes SDRAM (EMIFA)**
 - 4 x K4S641632 (4M x 16)

- **Flash (EMIFB CE1)**
 - Start-up mode selection

- **J1 Top Primary TIM Connector**
 - Comm Port 0 & 3
 - 2x Comm Ports
 - 6 I/O pins

- **Linear regulators**
 - 1.5V & 1.2V

- ** McBSP/Utopia GPIO**
 - 4 LEDs & 4 I/O pins

- **J3 Global Expansion Connector**

- ** McBSP0**

- **Oscillators**

- **32M bytes SDRAM (EMIFA)**
 - 4 x K4S641632 (4M x 16)

- **Flash (EMIFB CE1)**
 - Start-up mode selection
Architecture Description

The SMT361 TIM consists of a Texas Instruments TMS320C64xx running at up to 600MHz whereas the SMT361A TIM consists of a Texas Instruments TMS320C64xx running at up to 720MHz. Modules are populated with 32MBytes of synchronous DRAM (SDRAM) which runs at 100 MHz for the SMT361 and 120MHz for the SMT361A.

A Field Programmable Gate Array (FPGA) is used to manage global bus accesses and implement four communication ports and two Sundance Digital Buses.
TMS320C64xx

The processor will run with zero wait states from internal SRAM. An on-board crystal oscillator provides the clock used for the DSP which then multiplies this by 12 internally.

The TIM configuration feature is fully implemented. This provides a single open-collector line that can be held low until software configuration has been completed.

Boot Mode

The SMT361 is configured to use the following boot sequence each time it is taken out of reset:

1. The processor copies a bootstrap program from the first part of the flash memory into internal program RAM starting at address 0.
2. Execution starts at address 0.

The standard bootstrap supplied with the SMT361 then performs the following operations:

1. All relevant DSP internal registers are set to default values;
2. The FPGA is configured from data held in flash memory and sets up the communication ports, the global bus and the Sundance Digital Buses. This step must have been completed before data can be sent to the ComPort from external sources such as the host or other TIMs;
3. A C4x-style boot loader is executed. This will continually examine the four communication ports until data appears on one of them. The bootstrap will then load a program in boot format from that port; the loader will not read data arriving on other ports. See “Application Development” for details of the boot loader format;
4. Finally, control is passed to the loaded program.

The delay between the release of the board reset and the FPGA configuration is around 1s for a SMT361 (400MHz clock).

A typical time to wait after releasing the board reset should be in excess of this delay, but no damage will result if any of the I/Os are used before they are fully configured. In fact, the ComPort will just produce a not ready signal when data is attempted to be transferred during this time.
EMIF Control Registers

The C64xx has two external memory interfaces (EMIFs). One of these is 64 bits wide, the other 8 bits.

The DSP contains several registers that control the external memory interfaces (EMIFs). A full description of these registers can be found in the *C6x Peripherals Reference Guide*[1].

The standard bootstrap will initialise these registers to use the following resources:

<table>
<thead>
<tr>
<th>Memory space (EMIFA)</th>
<th>Resource</th>
<th>Address range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internal program memory</td>
<td>0x00000000 - 0x000FFFFF</td>
</tr>
<tr>
<td></td>
<td>(1Mbyte)</td>
<td></td>
</tr>
<tr>
<td>CE0</td>
<td>SDRAM</td>
<td>0x80000000 - 0x81FFFFFF</td>
</tr>
<tr>
<td>CE1</td>
<td>Virtex</td>
<td>0x90000000 - 0x91FFFFFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory space (EMIFB)</th>
<th>Resource</th>
<th>Address range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE1</td>
<td>2Mbyte flash (1st half)</td>
<td>0x640000000 – 0x640FFFFF</td>
</tr>
<tr>
<td>CE2</td>
<td>2Mbyte flash (2nd half)</td>
<td>0x680000000 – 0x680FFFFF</td>
</tr>
</tbody>
</table>

SDRAM

Memory space CE0 is used to access 32MB of SDRAM over EMIFA. The SDRAM operates at EMIF clock speed. It is typically 100MHz for the SMT361 and 120MHz for the SMT361A.

FLASH

A 2MByte Flash ROM device is connected to the DSP EMIFB.

The ROM holds boot code for the DSP, configuration data for the FPGA, and optional user-defined code.

A software protection algorithm is in place to prevent programs accidentally altering the ROM’s contents. Please contact Sundance for further information about re-programming this device via the support forum.
Version control
Revision numbers for both the boot code and FPGA firmware are stored in the Flash ROM during programming as zero-terminated ASCII strings.

The SMT6001 utility is to be used to know the version of the boot code and the FPGA.

Reprogramming the firmware and boot code
The reprogramming is made using the SMT6001 utility. It comes with the latest firmware and boot code for the module and with a complete documentation on how to reprogram a module. It requires only the correct set-up for code composer (see code composer section).

To confirm that the programming has been successful you should use the Sundance Server to reset the board and execute the confidence test using SMTBoardInfo.

Interrupts
See general firmware description

Communication ports
The SMT361 provides 4 ComPorts. They are ComPorts 0, 1, 3 and 4.

ComPorts 2 and 5 are interconnected on the module to allow a bypass to the next module.

See general firmware description
SDB
The SMT361 provides two Sundance Digital Buses (SDB). They are numbered SDB0 for SDBA and SDB1 for SDBB. See general firmware description

SDB Clock selection

At any time you can change the speed of an SDB clock by altering SDBCLK.

<table>
<thead>
<tr>
<th>Module</th>
<th>SDBCLK</th>
<th>Clock Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMT361</td>
<td>0</td>
<td>50MHz</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100MHz</td>
</tr>
<tr>
<td>SMT361A</td>
<td>0</td>
<td>60MHz</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>120MHz</td>
</tr>
</tbody>
</table>

Global bus

The SMT361 provides one global bus interface. See general firmware description
LED Setting

The SMT361 has 9 LEDs.

LED D6 always displays the state of the FPGA DONE pin. This LED is off when the FPGA is configured (DONE=1) and on when it is not configured (DONE=0).

This LED should go on when the board is first powered up and go off when the FPGA has been successfully programmed. If the LED does not light at power-on, check that you have the mounting pillars and screws fitted properly. If it stays on, the DSP is not booting correctly.

Four of the remaining LEDs can be controlled with the LED register. Writing 1 will illuminate the LED; writing 0 will turn it off.

LED Register

<table>
<thead>
<tr>
<th></th>
<th>31–4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LED D10</td>
<td>LED D9</td>
<td>LED D8</td>
<td>LED D7</td>
<td></td>
</tr>
<tr>
<td>RW,0</td>
<td>RW,0</td>
<td>RW,0</td>
<td>RW,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The four remaining LEDs (D2-5) are connected to the DSP’s GPIO pins 12-15.

CONFIG & NMI

See general firmware description

Timer

See general firmware description

IIOF interrupt

The firmware can generate pulses on the external interrupt lines of the TIM.

See general firmware description
Code Composer

This module is fully compatible with the Code Composer Studio (CCS) debug environment. This extends to both the software and JTAG debugging hardware. You will require updating to version 2.2 or later.

The name of the C64xx CCS device driver is tixds6400.dvr for silicon revision 1.01 and tixds6400_11.dvr for silicon revision 1.1, and should be obtained from Texas Instruments. In case of difficulty please log onto Sundance’s support forum http://support.sundance.com/

- **WARNING:**

 From the silicon errata [sprz011g.pdf](http://support.sundance.com/) from Texas Instrument:

 Revision(s) Affected: 1.03 and earlier

 Details: The JTAG port does not work properly if non-C64x devices are in the scan chain with the C64x device.

 Workaround: Place all C64x devices in a separate scan chain.

- **FIRST TIME DOWNLOAD**

 When you open CCS and want to download an application, after power up, you might get the following error message:

 “Can’t set breakpoint: Cannot set/verify breakpoint at 0x8C40” (the address might be different)

 Workaround: Reset the board first with a server or you should infer a CPU Reset from Debug\reset CPU. Then you should run the processor.

 You can then stop the processor and load your application
Application Development

You can develop code for SMT361 modules in several ways. The simplest is to use the Sundance SMT6000 Server Loader and its associated libraries.

The Server Loader is an application that runs on a host PC under either Windows 98 or NT and allows you to run COFF-format applications. Modified forms of the TI RTS library support standard C I/O.

The Server Loader will read a .out file and convert it into C4x-style boot code which is then transmitted down a ComPorts to the SMT361.

The boot code is in the following format:

<table>
<thead>
<tr>
<th>6-word header</th>
<th>Word 1</th>
<th>0</th>
<th>reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Words 2, 3, 4</td>
<td>0, 0, 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Word 5</td>
<td>start address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Word 6</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load Block</th>
<th>Word 1</th>
<th>4*N: Length of load block (in bytes)²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Word 2</td>
<td>Destination address (external memory only)</td>
</tr>
<tr>
<td>Next N words</td>
<td>N data words</td>
<td></td>
</tr>
</tbody>
</table>

0 or more Load Blocks

| Terminator | Word 1 | 0³ |

¹ A word is 32 bits
² The length of each data block will be rounded up to a multiple of 4 bytes if necessary.
³ Effectively a zero-length Load Block
Operating Conditions

Safety
The module presents no hazard to the user.

EMC
The module is designed to operate within an enclosed host system that provides adequate EMC shielding. Operation within the EU EMC guidelines is only guaranteed when the module is installed within an appropriate host system.

The module is protected from damage by fast voltage transients introduced along output cables from outside the host system.

Short-circuiting any output to ground does not cause the host PC system to lock up or reboot.

General Requirements
The module must be fixed to a TIM40-compliant carrier board.

The SMT361 TIM is in a range of modules that must be supplied with a 3.3v power source. In addition to the 5v supply specified in the TIM specification, these new generation modules require an additional 3.3v supply to be presented on the two diagonally-opposite TIM mounting holes. The lack of this 3.3v power supply should not damage the module, although it will obviously be inoperable; prolonged operation under these circumstances is not recommended.

This module is not directly compatible with earlier generations of TIM motherboards, although the 3.3v supply can be provided from a separate source. It is, however, compatible with the latest generation of Sundance TIM carrier boards such as the SMT320V4 and subsequent versions (PCI), and SMT328 (VME), which present the 3.3v via conductive mounting pillars.

Use of the TIM on SMT327 (cPCI) motherboards may require a firmware upgrade. If LED D6 on the SMT361 remains illuminated once the TIM is plugged in and powered up, the SMT327 needs the upgrade. The latest firmware is supplied with all new boards shipped. Please contact Sundance directly if you have an older board and need the upgrade.

A SMT320V3 motherboard can be used providing a SMT361 TIM is not located in the first slot; putting one there prevents the SMT320V3 from coming out of reset. Any other type of TIM must be placed in the first slot of this motherboard to ensure correct operation.

The external ambient temperature must remain between 0°C and 40°C, and the relative humidity must not exceed 95% (non-condensing).
Power Consumption

The power consumption of this TIM is dependent on the operating conditions in terms of core activity and I/O activity. The maximum power consumption is 3W.

Connector Positions
Serial Ports & Other DSP I/O

The C64 contains various I/O ports. These signals are connected to a 0.1” pitch DIL pin header. The pin-out of this connector is shown here:

<table>
<thead>
<tr>
<th>POLARIZATION</th>
<th>DR0</th>
<th>FSR0</th>
<th>DX0</th>
<th>FSX0</th>
<th>CLKR0</th>
<th>CLKX0</th>
<th>CLKS0</th>
<th>CLKS1</th>
<th>CLKX1</th>
<th>CLKR1</th>
<th>URA3</th>
<th>URA4</th>
<th>URA0</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLARIZATION</td>
<td>DR2</td>
<td>FSR2</td>
<td>DX2</td>
<td>FSX2</td>
<td>CLKR2</td>
<td>CLKX2</td>
<td>CLKS2</td>
<td>GPIO8</td>
<td>DX1</td>
<td>FSR1</td>
<td>DR1</td>
<td>UXA1</td>
<td>UXA1</td>
</tr>
<tr>
<td>POLARIZATION</td>
<td>URD0</td>
<td>URD1</td>
<td>URD2</td>
<td>URD3</td>
<td>URD4</td>
<td>URD5</td>
<td>URD6</td>
<td>URD7</td>
<td>URCLK</td>
<td>URENB</td>
<td>URCLAV</td>
<td>URSOC</td>
<td></td>
</tr>
<tr>
<td>POLARIZATION</td>
<td>UXD0</td>
<td>UXD1</td>
<td>UXD2</td>
<td>UXD3</td>
<td>UXD4</td>
<td>UXD5</td>
<td>UXD6</td>
<td>UXD7</td>
<td>UXCLK</td>
<td>UXENB</td>
<td>UXCLAV</td>
<td>UXSOC</td>
<td></td>
</tr>
<tr>
<td>POLARIZATION</td>
<td>GPIO0</td>
<td>GPIO1</td>
<td>GPIO2</td>
<td>GPIO3</td>
<td>GPIO4</td>
<td>GPIO5</td>
<td>GPIO6</td>
<td>GPIO7</td>
<td>GND</td>
<td>GND</td>
<td>TTL0</td>
<td>TTL1</td>
<td></td>
</tr>
</tbody>
</table>

FPGA and CPLD JTAG

The following shows the pin-outs for JP2 (CPLD) and JP5 (FPGA) JTAG connectors:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>V33</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GND</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>TDO</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>TCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Virtex Memory Map

See general firmware description with i = 14

The memory mapping is as follows:

```c
#define CP0     (volatile unsigned int *)0x90000000
#define CP1     (volatile unsigned int *)0x90008000
#define CP2     (volatile unsigned int *)0x90010000
#define CP3     (volatile unsigned int *)0x90018000
#define CP4     (volatile unsigned int *)0x90020000
#define CP5     (volatile unsigned int *)0x90028000
#define CP0_STAT     (volatile unsigned int *)0x90004000
#define CP1_STAT     (volatile unsigned int *)0x9000C000
#define CP2_STAT     (volatile unsigned int *)0x90014000
#define CP3_STAT     (volatile unsigned int *)0x9001C000
#define CP4_STAT     (volatile unsigned int *)0x90024000
#define CP5_STAT     (volatile unsigned int *)0x9002C000
#define GBSTAT    (volatile unsigned int *)0x90034000
#define SDBSTAT    (volatile unsigned int *)0x90038000
#define STAT    (volatile unsigned int *)0x9003C000
#define SDBA    (volatile unsigned int *)0x90040000
#define SDBB     (volatile unsigned int *)0x90050000
#define SDBA_STAT    (volatile unsigned int *)0x90048000
#define SDBB_STAT    (volatile unsigned int *)0x90058000
#define SDBA_INPUTFLAG     (volatile unsigned int *)0x90044000
#define SDBB_INPUTFLAG    (volatile unsigned int *)0x90054000
#define SDBA_OUTPUTFLAG   (volatile unsigned int *)0x9004C000
#define SDBB_OUTPUTFLAG   (volatile unsigned int *)0x9005C000
#define GLOBAL_BUS   (volatile unsigned int *)0x900A0000
#define GLOBAL_BUS_CTRL   (volatile unsigned int *)0x90080000
#define GLOBAL_BUS_START  (volatile unsigned int *)0x90088000
#define GLOBAL_BUS_LENGTH  (volatile unsigned int *)0x90090000
#define TCLK       (volatile unsigned int *)0x900C0000
#define TIMCONFIG    (volatile unsigned int *)0x900C8000
#define LED     (volatile unsigned int *)0x900D0000
#define IIOF    (volatile unsigned int *)0x900D8000
#define INTCTRL4      (volatile unsigned int *)0x900E0000
#define SDBINTCTRL4      (volatile unsigned int *)0x900E4000
#define INTCTRL5      (volatile unsigned int *)0x900E8000
```
#define SDBINTCTRL5 (volatile unsigned int *)0x900EC000
#define INTCTRL6 (volatile unsigned int *)0x900F0000
#define SDBINTCTRL6 (volatile unsigned int *)0x900F4000
#define INTCTRL7 (volatile unsigned int *)0x900F8000
#define SDBINTCTRL7 (volatile unsigned int *)0x900FC000
SDB Pin-Out

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Signal</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLK</td>
<td>GND</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>D0</td>
<td>GND</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>D1</td>
<td>GND</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>D2</td>
<td>GND</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>D3</td>
<td>GND</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>D4</td>
<td>GND</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>D5</td>
<td>GND</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>D6</td>
<td>GND</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>D7</td>
<td>GND</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>D8</td>
<td>GND</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>D9</td>
<td>GND</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>D10</td>
<td>GND</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>D11</td>
<td>GND</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>D12</td>
<td>GND</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>D13</td>
<td>GND</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>D14</td>
<td>GND</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>D15</td>
<td>GND</td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td>UD0</td>
<td>DIR</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>WEN</td>
<td>REQ</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>UD1</td>
<td>ACK</td>
<td>40</td>
</tr>
</tbody>
</table>
Bibliography

1. TMS320C64xx Peripherals Reference Guide (literature number SPRU190)
 http://www-s.ti.com/sc/psheets/spru190e/spru190e.pdf
 Describes common peripherals available on the TMS320C64xx digital signal processors. This book includes information on the internal data and program memories, the external memory interface (EMIF), the host port, multichannel-buffered serial ports, direct memory access (EDMA), clocking and phase-locked loop (PLL), and the power-down modes.

3. TIM-40 MODULE SPECIFICATION Including TMS320C44 Addendum

4. SDB Technical Specification

5. SHB Technical Specification

6. TMS320C4x User's Guide (literature number SPRU063)
 http://www-s.ti.com/sc/psheets/spru063c/spru063c.pdf
 Describes the C4x 32-bit floating-point processor, developed for digital signal processing as well as parallel processing applications. Covered are its architecture, internal register structure, instruction set, pipeline, specifications, and operation of its six DMA channels and six communication ports. Software and hardware applications are included.

7. Xilinx Virtex-II data sheet:
 http://www.xilinx.com/xilinx/xil_prodcat_landingpage.jsp?title=Platform+FPGAs

8. Texas Instruments TMS320C6416 data sheet:
 http://www-s.ti.com/sc/ds/tms320c6416.pdf
Index

Application Development...........15
 server-loader.......................15
Architecture Description.........8
Bibliography........................22
Block Diagram7
Board not working
 firmware revision..................2
 LED 6 illuminated...............13
 no 3.3v supply....................16
boot code format15
 Boot Mode..........................9
bootstrap program9
carrier boards16
Code Composer14
 config line..........................9
Contacting Sundance4
EMIF Control Registers10
 field values after reset.........5
Flash10
 protection algorithm10
FPGA8
 configuration9
LEDs13
 FPGA DONE pin13
 LED register.....................13
 memory space (CE0 to CE3).....10
 motherboards....................16
 NMI13
 Notational Conventions5
 Operating Conditions16
Power
 3.3v16
 power consumption................17
 register descriptions5
 revision numbers
 boot code11
 FPGA firmware................11
SDB12
 clock speed12
 pin-out21
SDRAM10
Serial Ports18
SMT3615
Sundance TIM carrier boards16
Timer13
TMS320C64xx9
Virtex
 memory map19