

The History of ROS
Believe it or not, ROS has been around since 2006 a9er it
was created by the Willow Garage*. This group was
loosely Ced to early Stanford aEempts at standardizing
roboCcs and matured through parCcipaCon in the DARPA
Grand Challenge (a self robot compeCCon).

Willow Garage is famously known for their development
of the PR2 robot, which has become a standard for
roboCcs research. The PR2 is the flagship robot used for
ROS. For example, 11 universiCes have this very robot in
order to aid in learning and develop hardware
standardizaCon. Willow Garage also developed the Point
Cloud Library (PCL) and maintained OpenCV** which has
is criCcal for 2D and 3D percepCon.

Willow Garaged eventually evolved into the Open Source
RoboCcs FoundaCon (2014 - present). They maintain and
release ROS and the Gazebo Simulator which is used by
companies and research labs across the globe as a
simulator for RoboCcs.

* hEps://en.wikipedia.org/wiki/Willow_Garage
* ** hEps://opencv.org/

https://en.wikipedia.org/wiki/Willow_Garage
https://opencv.org/

The basics of Robot
Operating System
If you’ve ever used a computer or mobile device, you’ve
used an operaCng system. TradiConal operaCng systems for
computers provide a lot of low level funcConality.

For example:
• file systems
• device drivers
• networking
• memory management
• etc

These are things you don't want to update or tweak each
and every Cme you want to bring a new applicaCon to
market.

This is why we have Opera9ng Systems (OS). The
opera9ng system does the work for you and lets you build
on top of it saving you a ton of 9me.

In addiCon to the operaCng system, there are standards
such as:
• Hardware: PCI bus, USB port, & FireWire
• So9ware: HTML, JPG, TCP/IP, & POSIX

The combinaCon of these standards and operaCng systems
are what help you write so9ware and applicaCons that will
run on your systems easily.

OK. Cool. What
about robots?
The idea of a robot, apart from immediately thinking
SkyNet by Cyberdyne Systems, is pretty complex.

Robots have:

• Sensors
• Actuators
• Computing Hardware
• And they might even communicate to other robots

Robots also don't all look the same and come in all
shapes and sizes.

The main categories of robots are:

• Drones
• Medical robots
• Self-driving cars
• Flying robots
• Manipulators
• Underwater robots
• Ground robots

So how does one provide low level
functionality to write applications?

PS: Basically if it has sensors,
actuators, and computing hardware,
you've got yourself a robot stew.

ROS, is like an operating system in that it provides a lot of the
lower level functionality that is needed to build applications on.

ROS may appear to be an OS, but it’s really a robot
middleware package. ROS is the plumbing that connects all
the different sensors and actuators on a robot and connects
different robots to each other.

ROS provides:

• Peer-to-peer communication between nodes (separate
processes)

• Hardware abstraction
• Sensor and actuator “drivers”

ROS also provides:

• VisualizaCon tools
• Robot simulators
• Data Cme synchronizaCon/logging/playback
• A TON of applicaCon level packages such as drivers, SLAM,

percepCon, planning, control, etc that are accessible to
users across the globe!

ROS is less of an opera,ng
system and more of an
ECOSYSTEM.

ROS is Middleware

Ok. How does ROS
work?
ROS is a peer-to-peer network using a master node
called roscore to provide a name service to directly
connect nodes. When a new node is run, it informs the
master (i.e. roscore) about the topics it publishes and/or
subscribes to. For example, this topic (/node1/data) could
be a sensor driver for a radar that’s getting data over
ethernet and publishing it over ROS for other ROS nodes
to consume.

Roscore now knows this node exists and the topic to
which it’s publishing its data

Subsequent nodes do the same, contacting the master
(roscore) to form required connections. Roscore
facilitates the name resolution. For example, if node3
says “I subscribe to node2’s data topic” then roscore will
connect the node2 to node 3

FYI. The messages themselves do NOT pass through
master. It only connects the the nodes to the network and
facilitates the transfer of information.

However there are all types of nodes that are highly
specialized. For example, a node can record data
messages time-synchronized to the same clock easily
with a node from the rosbag package - and play it back
later.

Furthermore, a rviz package can visualize by subscribing to
any number of data topics. This enables data visualization
through a plug-in (e.g. 3D Point Cloud visualization mapping).

Importantly, ROS can be set up as a distributed system
across multiple machines. This means you can have multiple
robots, ground stations, and servers located elsewhere. ROS
is a very flexible structure to build your applications on.

How Packages
facilitate code
sharing/ reuse

NODES MESSAGES SERVICES

• Executable processes

in C++/python (and

others like java)

• Subscribe to topics,

perform processing,

publish to other

topics

• Example: radar

“driver”

• Describe data format

for communicaCon

between nodes

• Language and OS

agnosCc

• Example: point cloud

message, laser scan

message, or radar

target array message

(like Ainstein does!)

• Blocking RPC

(request-response)

for simple acCons

• Example: camera

calibraCon rouCne.

Nodes communicate via messages (to note, nodes
and messages are the building blocks of packages)

Individual packages that share something in common
are called metapackages. These metapackages are
stored in the ROS index for all the users across the
globe to use, search for, document, and so on.

So in reallife, if you search though the metapackages
that are available on ros.org (1200+ available), it
would look something like this:

One of the core strengths of ROS is its community. In order to
facilitate sharing and reuse of codes, ROS relies on packages.
Think of packages as the building blocks of ROS systems
providing enough complexity to be useful but in a way that is
simple enough to repurpose in other applications.

These packages are released onto the internet for others to use. What you see above is the metapackage for our radar
sensor and then, within the metapackage subpackages for drivers, filters, messages, generic tools, gazebo plugins, etc.

TL;DR: This is how the world shares the cool stuff their working on with other engineers. :-)

Benefits of being a ROS member? The indexing has helped our organizaCon, Ainstein, be one of the top search results for
ROS radar!

So what about
package releases…
is there a process?
• Develop on GitHub
• Index on ros.org
• Release with bloom (release automation tool)
• Install from package manager (e.g no cloning or manual

building needed)

Naturally, you’re going to
need multiple packages
You’ll often be running nodes from different packages
simultaneously -some of which are interdependent. For
example, you might want to have a couple of radars on a
robot feed that information from the driver node into a
SLAM node which provides localization to mapping for
the robot which gets fed to a navigation node which plans
a path and sends control commands down to the motors.
← That’s how a bunch of different packages can be strung
together in order to accomplish something.

That whole process get organized by a catkin workspace.

Catkin workspaces:
Packages are organized into workspaces. The catkin
buildtool is a thin layer on top of seamake that traverses
packages and looks for configurations to build them in
order according to dependencies. You keep all of the
packages for your application in catkin so they can be
built simultaneously.

Launch files (i.e. scripts)
If you want to run nodes from different packages
simultaneously you’ll use the launch files. These are
written in XML format and can run multiple nodes in
sequential order. They also allow for simple topic
remapping and parameter loading. Launch filed are
essentially a high level interface for running multiple
nodes at the same time from different ROS packages.

This example is of a few metapackages with their own
packages and some other packages loosely tied together.
The combination of the catkin workspace and the use of
launch files helps make this operation much simpler to
execute.

Another very useful tool ROS provides is urdf (Unified
Robot Description Format) which is a language based in
XML format for describing the geometry of a robot. URDF
will describe how the different links of a robot are related
to each other through different joints. For example, you
could launch a sensor node if there’s a connection seen.
Through URDF, you can specify that it’s on node 4 and
the data then can be transformed over to any other link
frame. This removes the need to do an unnecessary 3D
geometry.

If you have a bunch of sensors on a robot, URDF is a
huge time savor if used properly.

Also, URDF is not just for robots! Imagine a camera on
a ceiling with a radar monitoring a robot on the floor doing
navigation. Using URDF, you can tie the information from
the robot, camera, and radar altogether.

Another example would be to use a URDF for an entire
building by tying different link frames to different rooms
describing where you have different cameras to visualize
the data. URDF is really just a way to manage distributed
sensors among different frames.

In Summary

Ainstein’s ROS-compa8ble
smart radar systems allow
you to take control for
streamlining integra8on of
our radar sensors into your
own custom applica8ons.

● Fast prototyping
● No need to worry about time synchronization, data

recording/playback, logging, etc. It’s all under the
hood.

● Easily define complex coordinate frame structures,
automatic frame conversions with tf package.

● Extensible debugging tools:
○ RViz for 3D visualization
○ RQt for error monitoring, logging, plotting
○ Dynamic parameter server for “live” tuning

● Native support for conversion to OpenCV, PCL, etc
full 2D and 3D sensor processing stacks.

About Ainstein
Our mission is to enable safer driving, flying, working and living through radar-based
technology. We are in the business of improving safety and protecCng valuable
assets through innovaCons in radar technology.

Ainstein makes radar systems smarter, more affordable and easier to deploy. We offer
complete soluCons for autonomous drones, advanced driver-assistance systems
(ADAS), autonomous vehicles and industrial sensing – incorporaCng a combinaCon of
millimeter wave (mmWave) radar, sensor fusion and arCficial intelligence (AI).

For years, cost, weight and performance constraints have hindered the wider
adopCon of radar. Ainstein makes radar systems accessible to everyone by
overcoming these constraints. One recent innovaCon: we’ve developed the world’s
first UAV collision avoidance radar with 3D detecCon.

Radar systems and the sensor data processing intelligence are they keys to our
autonomous future. We offer a deep scienCfic, mathemaCcal and engineering
experCse along with full spectrum porrolio (24GHz, 60GHZ, 76-81GHz) of hardware
and so9ware to support our customers in developing highly customized soluCons
with unmatched precision in unpredictable environments.

Our core team has more than a combined 100 years of experience I radar research
and development with deep knowledge gained through projects funded by NASA,
the U.S. NaConal Science FoundaCon (NSF), the European Space Agency and others.

Other radar companies are at least two to three years behind Ainstein. Startups have
been slow to market and are unable to produce at scale, while established companies
are slow to adopt the newest technological innovaCons.

Ainstein products can be fully customized to specific applicaCon requirements, have
unmatched precision in ALL weather condiCons and surface types, and are a fracCon
of the price of compeCCve products.

Visit our website (www.ainstein.ai) for more informaCon, or get in touch with Andrew
Boushie, Vice President for Strategy and Partnerships, at andrew.boushie@ainstein.ai
to arrange a phone call.

ADDRESS:
2029 Becker Drive
Lawrence, KS 66047 USA

EMAIL:
hi@ainstein.ai

PHONE: 785-856-0460

