EM3V - Embedded Vision

Sundance Multiprocessor Technology, Ltd.

Pedro Machado <u>pedro.m@sundance.com</u> Fatima Kishwar <u>fatima.k@sundance.com</u> Flemming Christensen <u>flemming.c@sundance.com</u>

7/16/2018

OVERVIEW

2

- Company profile
- Introduction
- Technologies
- VCS-1 (EMC2) System
- Discussion
- Future Work

Ο

Ο

SERVICE AND EXCELLENCE!

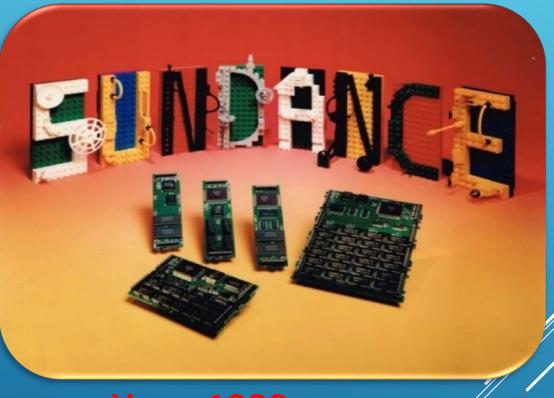
SUNDANCE

Established in 1989 by Flemming CHRISTENSEN

- Employee Owned and a 'Life-Style' company
- 10x people with 300+ years experince
 - 4x with accredited Xilinx FPGA training
- Always designed and built our own products
- BSI ISO9001-2015 certified, since 2003

Techology Focus

• Acceleration, Vision, Sensor & Robotics



7/16/2018

MODULAR, RECONFIGURABLE - LIKE LEGO®

SUNDANCE

- Reduced time-to-market
- Rapid Prototyping
- Reconfigurable
- Flexible
- Modular
- Scalable
- Reliable

Year 1989

7/16/2018

TURN-KEY SYSTEM SOLUTIONS FROM A-Z

Commercial-of-the-Shelves Systems (COTS)

- Flexible and Upgradeable
- Design for Excellence
- Maintenance with ease

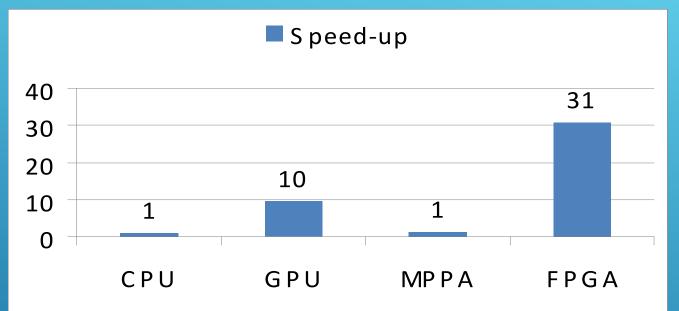
SUNDANCE

Custom Bespoke Systems

- Hazardous Environment
- Custom Integration Service
- Design of Enclosures

INTRODUCTION

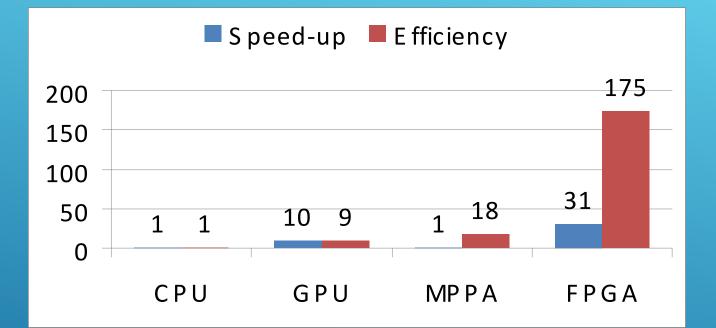
- Increasing demand for High Performance Computing
 - Everyone wants more compute-power
 - Finer time-steps; larger data-sets; better models
- Decreasing single-threaded performance
 - Emphasis on multi-core CPUs and parallelism
 - Do computational biologists need to learn PThreads?
- Increasing focus on power and space
 - Boxes are cheap: 16 node clusters are very affordable
 - Where do you put them? Who is paying for power?
- How can we use hardware acceleration to help?



TYPES OF HARDWARE ACCELERATOR

- GPU : Graphics Processing Unit
 - Many-core 30 SIMD processors per device
 - High bandwidth, low complexity memory no caches
- MPPA : Massively Parallel Processor Array
 - Grid of simple processors 300 tiny RISC CPUs
 - Point-to-point connections on 2-D grid
- ► FPGA : Field Programmable Gate Array
 - Fine-grained grid of logic and small RAMs
 - Build whatever you want

HARDWARE ADVANTAGES: PERFORMANCE



- More parallelism more performance
- GPU: 30 cores, 16-way SIMD
- MPPA: 300 tiny RISC cores
- FPGA: hundreds of parallel functional units

A Comparison of CPUs, GPUs, FPGAs, and MPPAs for Random Number Generation, <u>D. Thomas, L. Howes, and W. Luk</u>, In Proc. of FPGA, pgs. 22-24, 2009

HARDWARE ADVANTAGES: POWER

- GPU: 1.2GHz same power as CPU
- MPPA: 300MHz Same performance as CPU, but 18x less power/
- FPGA: 300MHz faster and less power

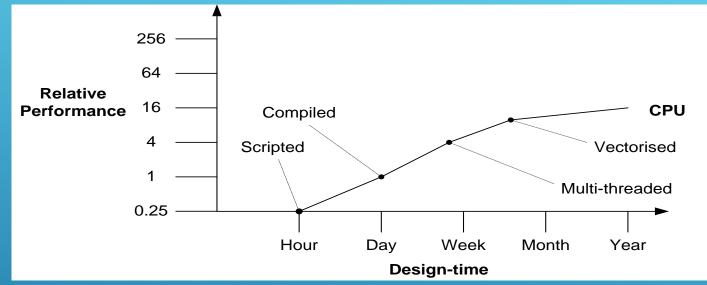
A Comparison of CPUs, GPUs, FPGAs, and MPPAs for Random Number Generation,

D. Thomas, L. Howes, and W. Luk, In Proc. of FPGA, pgs. 22-24, 2009

10

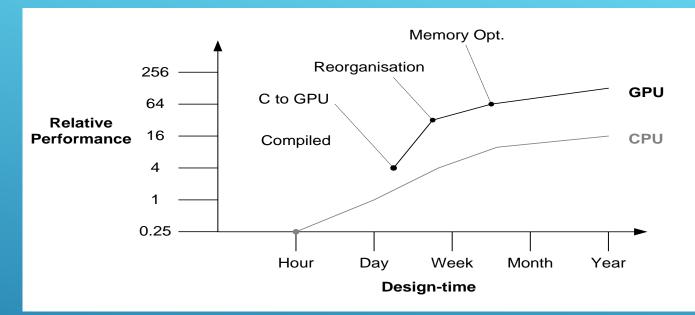
FPGA ACCELERATED APPLICATIONS

► Finance

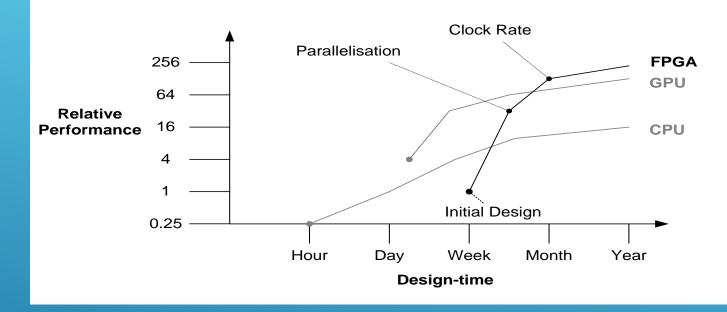

- ► 2006: Option pricing: 30x CPU
- 2007: Multivariate Value-at-Risk: 33x Quad CPU
- 2008: Credit-risk analysis: 60x Quad CPU
- Bioinformatics
 - 2007: Protein Graph Labelling: 100x Quad CPU
- Neural Networks
 - 2008: Spiking Neural Networks: 4x Quad CPU 1.1x GPU

All with less than a fifth of the power

7/16/2018


PROBLEM: DESIGN EFFORT

- Researchers love scripting languages: Matlab, Python, Perl
 - Simple to use and understand, lots of libraries
 - Easy to experiment and develop promising prototype
- Eventually prototype is ready: need to scale to large problems
 - Need to rewrite prototype to improve performance: e.g. Matlag/to
 - Simplicity of prototype is hidden by layers of optimisation

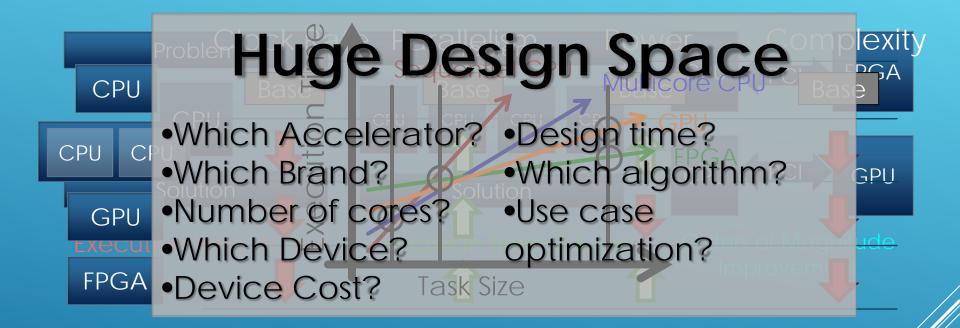

PROBLEMS: DESIGN EFFORT

- GPUs provide a somewhat gentle learning curve
 - CUDA and OpenCL almost allow compilation of ordinary C code
- User must understand GPU architecture to maximise speed-up
 - Code must be radically altered to maximise use of functional units
 - Memory structures and accesses must map onto physical RAM banks
- We are asking the user to learn about things they don't care about

PROBLEMS: DESIGN EFFORT

- FPGAs provide large speed-up and power savings at a price!
 - Days or weeks to get an initial version working
 - Multiple optimisation and verification cycles to get high performance
- Too risky and too specialised for most users
 - Months of retraining for an uncertain speed-up
- Currently only used in large projects, with dedicated FPGA engineer

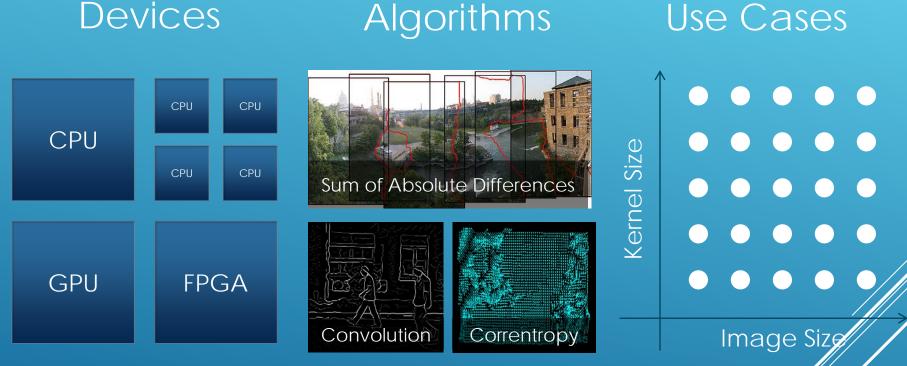
7/16/2018


GOAL: FPGAS FOR THE MASSES

- Accelerate niche applications with limited user-base
 - Don't have to wait for traditional "heroic" optimisation
- Single-source description
 - The prototype code is the final code
- Encourage experimentation
 - Give users freedom to tweak and modify
- Target platforms at multiple scales
 - Individual user; Research group; Enterprise
- Use domain specific knowledge about applications
 - Identify bottlenecks: optimise them
 - Identify design patterns: automate them
 - Don't try to do general purpose "C to hardware"

7/16/2018

WHICH TECHNOLOGY?



Clear architectural trend of parallelism and heterogeneity

- Heterogeneous devices have many tradeoffs
- Usage cases also affect best device choice
- Problem: huge design space

UKAS MANAGEMEN SYSTEMS 15

TYPICAL CV APPLICATIONS: SLIDING WINDOW

- Contribution: thorough analysis of devices and use cases for sliding window applications
- Sliding window used in many domains, including image processing and embedded

7/16/2018

16

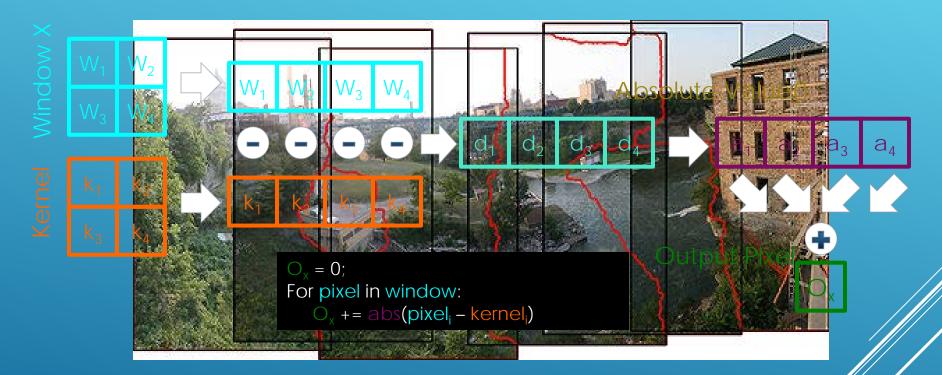
TYPICAL CV APPLICATIONS: SLIDING WINDOW APPLICATIONS

Input: image of size x×y, kernel of size n×m for (row=0; row < x-n; row++) { for (col=0; col < y-m; col++) { // get n*m pixels (i.e., windows // starting from current row and col) window=image[row:row+n-1][col:col+m-1] output[row][col]=**f(**window,kernel)

windows nt row and col) row+n-1][col:col+m-1] indow,kernel) Window W-1

Consider a 2D Sliding Window with 16-bit grayscale image inputs

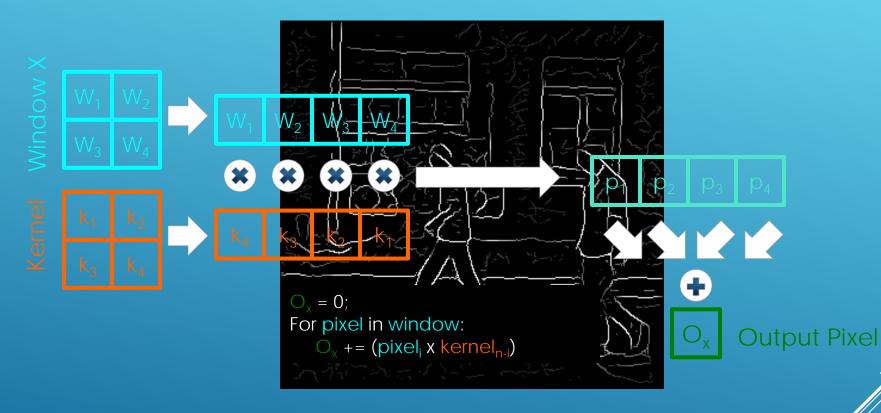
- Applies window function against a window from image and the kernel
- "Slides" the window to get the next input
- Repeats for every possible window


UKAS

45x45 kernel on 1080p 30-FPS video = 120 billion memory accesses/second 7/16/2018 17

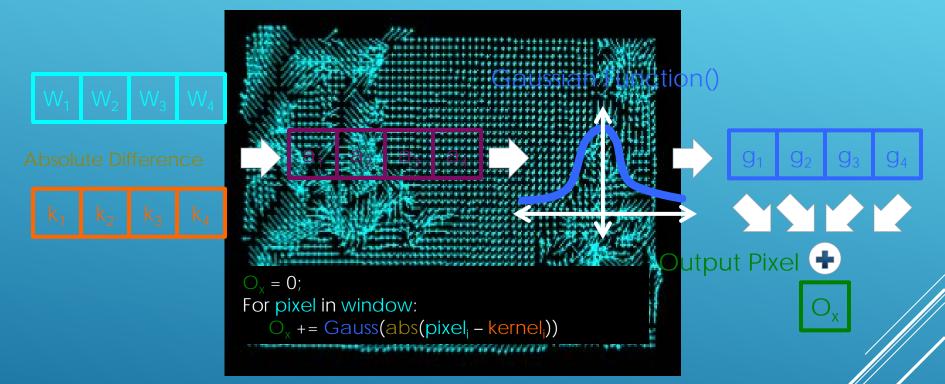
SUNDANCE

Window


APP 1: SUM OF ABSOLUTE DIFFERENCES (SAD)

- ► Used for: H.264 encoding, object identification
- Window function: point-wise absolute difference, followed by summation

APP 2: 2D CONVOLUTION

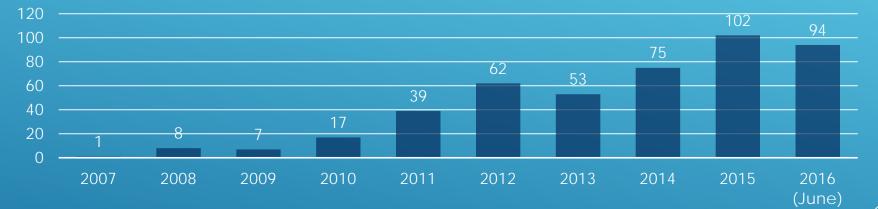


- ► **Used for:** filtering, edge detection
- Window function: point-wise product followed by summation

7/16/2018

APP 3: CORRENTROPY

- Used for: optical flow, obstacle avoidance
- Window function: Gaussian of point-wise absolute difference, followed by summation

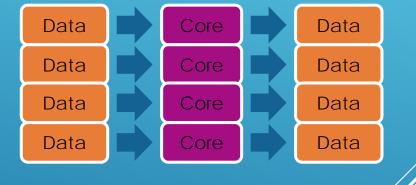


7/16/2018

HETEROGENEOUS COMPUTING SYSTEM IN TOP500 LIST

Heterogeneous computing system in Top500

 Reason: Significant performance/energy-efficiency boost from GPU/CPU

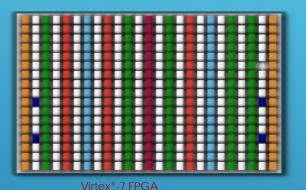

7/16/2018

GPU: SPECIALIZED ACCELERATOR FOR A SET OF APPLICATIONS

- Specialized accelerator for data-parallel applications
 - Optimized for processing massive data
- Give up unrelated goal and features
 - Give up optimizing latency for processing single data
 - Give up branch prediction, out-of-order execution
 - Give up large traditional cache hierarchy

More resource for parallel are processing

More cores, more ALU


SUNDANCE

22

7/16/2018

CREATING APPLICATION-SPECIFIC **ACCELERATOR WITH FPGA**

Hi-perf. Parallel I/O Connectivity

SUNDANCE

- Only provides primitive building blocks for computation
 - Register, addition/multiplication, memories, programmable Boolean operations and connections
- Build application-specific accelerator from primitives building blocks
 - Interconnection between primitive functional units
 - Timing of data movement between primitive functional units
- Opportunities for optimizations for a specific application!
 - Maximizing efficiency while throwing away redundancy

7/16/2018

THE CHALLENGES OF PROMOTING FPGAS AMONG SOFTWARE ENGINEERS

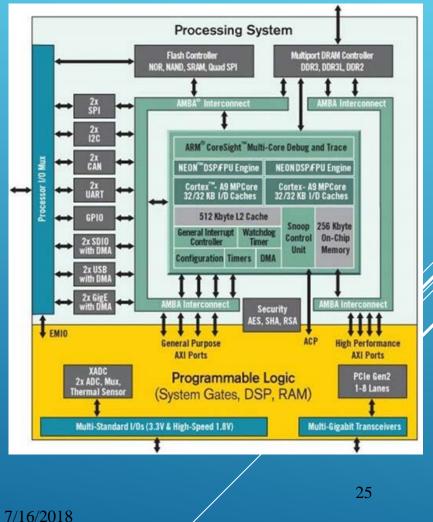
- Require tremendous efforts
- Extensive knowledge of digital circuit design

AXI Master Timing Closure Burst inference DSP48 Stable interface Loop rewind

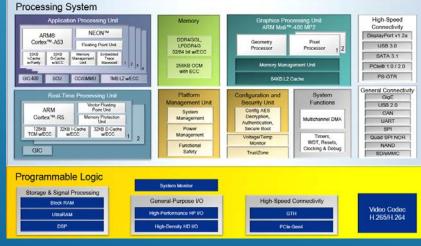
The potential of FPGAs is not easily accessible by common software engineers

24 7/16/2028

HYBRID ARQUITECTURE


SUNDANCE

- Zynq-7000 devices are equipped with dual-core ARM Cortex-A9 processors integrated with 28nm Artix-7 or Kintex®-7 based programmable logic for excellent performance-per-watt and maximum design flexibility.
- Sundance's EMC2 carrier board is Compatible with all the Zynq-7000 Series.


UKAS

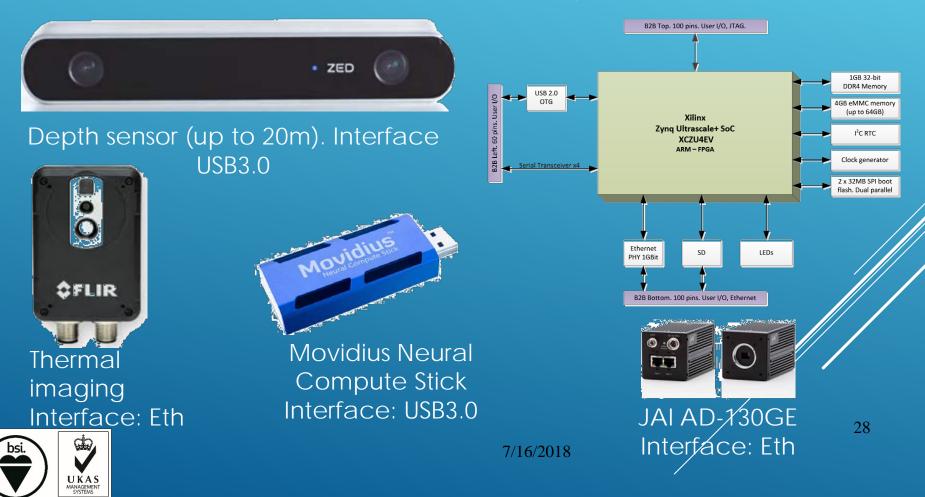
WHAT IS THE BEST SOLUTION?

- SUNDANCE
- Zynq[®] UltraScale+[™] MPSoC devices provide 64-bit processor scalability while combining real-time control with soft and hard engines for graphics, video, waveform, and packet processing.
- Sundance's EMC2 carrier board is compatible with all the Zynq[®] UltraScale+™ MPSoC. Our focus is now on the XCZU4EV device (automotive grade).

7/16/2018

VCS-1 (EMC2) HARDWARE FEATURES

Connectivity:


- ► FM191-R; FMC-LPC to:
 - ▶ 15x Digital I/Os [DB9]
 - 12x Analogue Inputs [DB9]
 - ► 8x Analogue Outputs [DB9]
 - ► 1x Expansion [SEIC]
- ► FM191-U; SEIC to:
 - ▶ 4x USB3.0 [USB-c]
 - > 28x GPIO [40-pin GPIO]
- ► FM191-A1; 40-pin GPIO
 - ▶ 28x GPIO [DB9]

VCS-1 (EMC2) SENSORS COMPATIBILITY

The ZU4EV MPSoC is compatible with a wide range of sensors.

VCS-1 (EMC2) COMPATIBILITY

VCS-1 features:

- Raspberry PI and Arduino compatible;
- Compatible with most of the Arduino/RPI sensors and actuators;
- 4x USB3.0 ports for interfacing with a wide range of sensors;
- MQTT and OpenCV compatible
- ► ROS compatible
- ► ROS2 ready
- *HIPPEROS
- ► HIPPEROS ready

7/16/2018

OpenCV

DEEP LEARNING ON THE VCS-1 (EMC2)

The VCS-1 will be fully compatible with the Xilinx reVision stack.

- Includes support for the most popular neural networks including AlexNet, GoogLeNet, VGG, SSD, and FCN.
- Optimized implementations for CNN network layers, required to build custom neural networks (DNN/CNN)

SUNDANCE

VCS-1 (EMC2) OPEN SOURCE SOFTWARE AND FIRMWARE

Open Source Hardware/software and online documentation:

• Open Hardware Repository

https://www.ohwr.org/projects/emc2-dp

Microsoft Windows/Linux 64-bit SDK

https://github.com/SundanceMultiprocessorTechnology/V <u>CS-1_SDK</u>

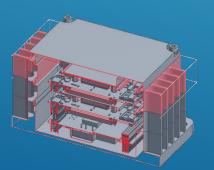
► FM191 ARM SDK

https://github.com/SundanceMultiprocessorTechnology/V CS-1_FM191_SDK

► FM191 Firmware

https://github.com/SundanceMultiprocessorTechnology/V CS-1_FM191_FW

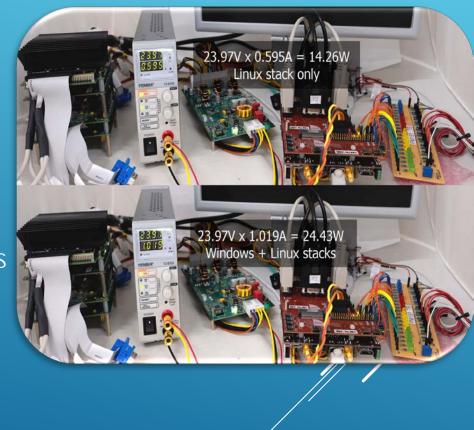
- ► EMC2 ROS
- https://github.com/SundanceMultiprocessorTechnology /VCS-1_emc2_ros


7/16/2018

VCS-1(EMC2) ENCLOSURE

SUNDANCE

A custom enclosure was specially designed for accommodating the VCS-1 system.



7/16/2018

DISCUSSION

The VCS-1 has the following characteristics:

- High performance (24V@0.595A)
- 2. Low power consumption
- 3. Highly compatible with a wide range of commercially available sensors and actuators
- 4. <u>Highly optimised</u> for computer vision applications
- 5. Fully reconfigurable

WHAT NEXT?

- Be part of our customers family by ordering our products or hiring our services.
- Sundance University Program (SUP)
 - Access to hardware prototypes
 - Advisory Board Members
 - BSC/MSc/PhD Internships
- Funding capture
 - ► H2020
 - ► InnovateUK
 - ► EPSRC

Know more about SUP and on-going projects

https://www.sundance.com/sundance-in-eu-projectsprograms/

SUNDANCE

7/16/2018

UNIVERSITY CLIENTS

INDUSTRIAL CLIENTS

0003

EM3V - Embedded Vision

QUESTIONS?

Sundance Multiprocessor Technology, Ltd.

Pedro Machado <u>pedro.m@sundance.com</u> Fatima Kishwar <u>fatima.k@sundance.com</u> Flemming Christensen <u>flemming.c@sundance.com</u> 7/16/2018

