
An approach to the Zynq
architecture using VCS-1

Timoteo García Bertoa

August 30, 2019

To María del Carmen Meizoso López, who taught me the fundamentals of
VHDL, FPGA and CPLD architectures.

Special thanks to:
Emilie Wheatley, Pedro Machado and Flemming Christensen for your support.

Thank you Mateo Vázquez for your reviewing, and I hope you found this
book useful in your journey with FPGAs.

Contents

1 FPGAs. What is that? 1

2 Introduction to Zynq 6

3 Playing with a LED 9
3.1 Method 1: Using VHDL, programming the PL through JTAG 13
3.2 Method 2: Using VHDL, using IP Integrator, programming

the PL through JTAG . 26
3.3 Method 3: Creating an packaging an IP 34
3.4 Method 4: Using the PS to provide clocking, standalone,

using JTAG . 42
3.5 Method 5: Using C, programming the PS/PL, standalone,

using JTAG . 54
3.6 Method 6: Booting from SD card 69
3.7 Method 7: Using custom board files from Sundance, using a

board interface . 71
3.8 Method 8: Automating all the previous methods using scripts 78
3.9 Method 9: Creating a kernel out of the design, and using

Embedded Linux . 82
3.10 Method 10: Using C and Python running Ubuntu 94

4 What have I learnt? 100

List of Figures

1.1 Processing devices . 1
1.2 FPGA . 2
1.3 Basic logic gates . 2
1.4 CLB structure . 3
1.5 Our example . 4
1.6 I/Os of our system . 4

2.1 VHDL can be adorably painful 6
2.2 Xilinx tools . 7
2.3 Zynq 7 Series . 7
2.4 Zynq Ultrascale+ . 8

3.1 Create Project . 13
3.2 Project name . 14
3.3 Project type . 14
3.4 Part selection . 15
3.5 Add sources . 15
3.6 Creating .vhd file . 16
3.7 Source file created . 17
3.8 Synthesis . 21
3.9 Synthesis completed . 22
3.10 Constraints GUI . 22
3.11 Constraints file creation . 23
3.12 Xilinx USB II Platform cable 25
3.13 Top level source . 28
3.14 Top Level hieararchy . 28
3.15 Create block design . 29
3.16 Add module in IPI . 30
3.17 Module in IPI . 30
3.18 Access to generic variables . 31
3.19 Full system in IPI . 31

3.20 Generate wrapper . 32
3.21 Wrapper code, hierarchical design 33
3.22 Create IP . 35
3.23 Include all files . 35
3.24 Port interface . 36
3.25 Add group . 36
3.26 Add text . 37
3.27 Layout of the page . 37
3.28 Frequency parameters . 38
3.29 Generate archive of IP . 39
3.30 Custom IP Repository . 39
3.31 Search your IP . 40
3.32 IP configuration . 40
3.33 Overall project . 41
3.34 Repository in IP Catalog . 42
3.35 Zynq Ultrascale+ MPSoC IP 43
3.36 PS-PL Structure . 43
3.37 PS I/O Configuration . 45
3.38 PS Clock Configuration . 46
3.39 DDR Configuration (a) . 47
3.40 DDR Configuration (b) . 48
3.41 Block design with PS . 48
3.42 Export design . 49
3.43 FSBL Creation . 50
3.44 FSBL Creation . 51
3.45 SDK workspace . 51
3.46 SDK Program FPGA . 52
3.47 C/C++ Perspective . 53
3.48 FSBL launched . 53
3.49 Zynq and GPIO IPs . 55
3.50 AXI Interconnect . 55
3.51 Connect the AXI Interconnect 56
3.52 Configure the AXI Interconnect 57
3.53 Connect the clocks . 57
3.54 Connect the resets . 58
3.55 Add Processor System Reset 58
3.56 Add Processor System Reset 59
3.57 Output and Input configurations respectively 59
3.58 GPIO I/O port . 60
3.59 GPIO configuration . 60
3.60 GPIO output . 61

3.61 Design using AXI GPIO . 61
3.62 Address assignment . 62
3.63 Validate design . 62
3.64 Automate the connections . 63
3.65 Hello World project . 64
3.66 Standalone drivers . 65
3.67 AXI GPIO in hardware platform 66
3.68 Activate SD boot . 69
3.69 Create boot image . 70
3.70 Select board files . 75
3.71 Apply preset configuration to the Zynq IP 76
3.72 Automate the interface connection 76
3.73 Board files’ interfaces . 77
3.74 Tcl console . 78
3.75 Tcl commands in a text file 78
3.76 Levels of abstraction . 82
3.77 SD Card for standalone applications 84
3.78 SD Card for linux applications 85
3.79 Petalinux project configuration 86
3.80 Petalinux kernel configuration 87
3.81 Gparted, SD Card . 89
3.82 Gparted, BOOT partition . 90
3.83 Gparted, rootfs partition . 91
3.84 Gparted, SD Card set up . 91
3.85 Hierarchy of folders inside the SD card 92
3.86 Booting Embedded Linux . 93
3.87 Booting Ubuntu 18.04 LTS for ARM 96

An approach to the Zynq architecture using VCS-1
Chapter 1
Timoteo García Bertoa

1
CHAPTER

FPGAs. What is that?

Figure 1.1: Processing devices

I’ve been asked many times
out there: What is your job
in electronics?, FPGA, what
is that?. To be honest, I
wondered the same thing
in university when I heard
about Field Programmable
Gate Arrays for the first
time.

Most people have notions
of what a processor is,
although not everybody
would be able to define
differences between
a processor and a
microcontroller, but many
get lost when the question
is: What is an FPGA?

We are all familiar with
the concept of CPU or Central Processing Unit, an integrated circuit
which is capable of interpret instructions, and execute tasks using internal
hard-fixed elements as registers, arithmetic logic unit, etc. The concept
of processor was extrapolated to other similar architectures that target
different applications, for different needs or end-users. For example, a
DSP, or Digital Signal Processor, is a processor which has been optimised
to execute tasks related to digital signal processing. Likewise, a GPU or

Page 1

An approach to the Zynq architecture using VCS-1
Chapter 1
Timoteo García Bertoa

Graphics Processing Unit, will be optimised for image processing. Even, a
processor’s architecture can be used for a certain task, in a reduced form
factor, for a very low price, integrating in the same chip the necessary
I/Os, making things much easier, in a way that any child would be able
to interact with it, or what it’s commonly known as a microcontroller.

Figure 1.2: FPGA

So, where does an FPGA fit among
these other integrated circuits?
Just observing one, it doesn’t look
so much different.

In a very informal way, an FPGA is
a bunch of logic gates, in which you
define what the inputs and outputs
are for each one of them.

You don’t remember what logic
gates are? And flip-flops? If you
haven’t gone across these concepts,
it would be good if you pick up a
book that explains the basics of

digital design.

Figure 1.3: Basic logic gates

Nevertheless,
to understand
the architecture
of an FPGA,
is important
to know that
everything can
be reduced to
the minimum
expression of
digital design,
which is a logic
gate.

There are
different brands
of FPGAs out
there, and
everybody
uses their own

Page 2

An approach to the Zynq architecture using VCS-1
Chapter 1
Timoteo García Bertoa

terminology to refer to the different elements of their architecture. In the
case of Xilinx FPGAs, a CLB or Configurable Logic Block, is the most
basic structure, which is repeated along the die thousands of times.

Figure 1.4: CLB structure

A CLB is formed by
different elements: Look-Up
Tables (LUTs), which
are in essence what it’s
considered in digital design
as the truth table, and
are able to implement the
most basic logic gates;
Flip-Flops, which are the
smallest element capable
of holding information and
work synchronously with a
clock input; Carry-Chains,
which help with arithmetic
operations; Multiplexers,
which allow to output
data by selection of the
input; Distributed RAM,
which stores data, and Shift
Registers, which allow to shift data to ease the use of Flip-Flops for other
tasks.

Maybe these are too many concepts to swallow in at once, but it happened
to me that after learning all this, I still had a question in my mind. Right,
FPGAs, based on digital logic. Now, what’s the point? Are they better?
And if so, why?

When I explain very briefly that I work with FPGAs, and as I mentioned
before, that they are a bunch of logic gates, in which you define what the
inputs and outputs are for each one of them, people generally nod, looking
at me as in: Yeah, I know what you mean, but... what’s the difference then?
Why FPGAs?, so I always give them the same example:

Imagine that your system consists of a room, where there is a window,
a switch and a lamp. Your program has to be: close the window so that
there is no light from outside, go towards the switch, and turn it on so that
the lamp illuminates the room.

A processor/microcontroller, programmed in high level programming languages

Page 3

An approach to the Zynq architecture using VCS-1
Chapter 1
Timoteo García Bertoa

like C/C++, would be able to do that in a series of sequential instructions:

• Go towards the window, which might take 4 seconds

• Close the window, which might take 1 second

• Go towards the switch, which might take 4 seconds

• Turn on the switch, which might take 1 second

Figure 1.5: Our example

As a result, the room is
illuminated. (4 + 1 + 4 + 1 =
10 seconds).

An FPGA, programmed
using RTL design (Register
Transfer Level), would
be able to do that with
concurrent programming,
with languages like
VHDL/Verilog. The
program is not sequential,
instead, is an algorithm
treated simultaneously for
every input, to provide
the required output. In
fact, this program has
instructions that are not

exclusive. You can turn on the switch, and then close the window, and
the effect will be the same. But from an FPGA point of view, the system
would have 2 inputs and 1 output.

Figure 1.6: I/Os of our system

As long as both the window and
the switch are in their required
conditions (closed and turned on),
the room will be illuminated with
the lamp.

Before, it was assumed that going
towards the window and close it
takes 5 seconds, same with the
switch, and the whole sequential
process takes 10 seconds. An
FPGA would operate these 2 tasks at the same time, synchronously, and
provide the output (room illuminated) in 5 seconds.

Page 4

An approach to the Zynq architecture using VCS-1
Chapter 1
Timoteo García Bertoa

But what if your code in C/C++ is optimised to its maximum extent, and
you still want to reduce those 10 seconds with a CPU? Well, overclocking
is a practise that allows the processor to run at a higher clock rate. In
FPGAs, it’s quite simple to increase the frequency of a system, which can
be entirely synchronous.

Essentially, this is one of the reasons why FPGAs are very suitable for
environments where pre-processing is required. Another very important
reason, which won’t be covered in these chapters, is power consumption.
FPGAs are characterised by its low consumption, and are a clear advantage
for certain applications because of that.

Page 5

An approach to the Zynq architecture using VCS-1
Chapter 2
Timoteo García Bertoa

2
CHAPTER

Introduction to Zynq

Figure 2.1: VHDL can be adorably painful

FPGAs evolved with the
years, providing more and
more logic cells, with more
flip-flops, more block rams,
more dsp slices, more I/Os,
more of everything, for the
same size of the integrated
circuit. But there always
was one question in the
air: is this technology only
available for some elite of
engineers that learn how to
program VHDL/Verilog?
Well, the answer is yes,
for those devices that are
faithful to that architecture,
but also no: the more the software tools evolve, and companies work hard
to develop Intellectual Properties (IPs), the more your workload can be
reduced, and nowadays, many complex tasks can be done in the FPGA,
that years ago would have been a terrible nightmare (or dream for some!)
But still using IPs, basics of VHDL/Verilog are required.

Or are they not?

What if I told you that you can program an FPGA, using some bits of
VHDL (Vivado), but your most complex algorithms developed in C/C++,
and converted for you into VHDL/Verilog? Well, do you still cringe when
listening VHDL/Verilog? So, what about your full design in C/C++, implemented

Page 6

An approach to the Zynq architecture using VCS-1
Chapter 2
Timoteo García Bertoa

in the FPGA? (Vivado HLS).

Figure 2.2: Xilinx tools

It still feels like you have to know how
the architecture of the FPGA is for you
to optimise the C/C++ code effectively
implemented with Vivado HLS. So..

What if I told you, that there is an
architecture (Zynq), which provides hard
processor cores and an FPGA, altogether
within the integrated circuit? Basically,
you can develop your own program in
C/C++, and decide which functions you
want to accelerate in the FPGA, blindly
trusting that the software tool understands

the FPGA architecture for you (SDx).

Figure 2.3: Zynq 7 Series

Zynq 7000 by Xilinx,
was released in 2011,
and the architecture
is formed by a PS
(Processing System),
and PL (Programmable
Logic).

The PS provides a Dual
ARM Cortex A9, with
some built-in controllers
with classic interfaces
(SPI, I2C, UART,
CAN, etc.). The PL
follows a 7 series FPGA
architecture, including
PCIe Gen2 control.
The PS and the PL can
communicate with each
other, with a protocol
called AXI.

This architecture has
a lot of experience
and years on its back,
which provides a lot of

Page 7

An approach to the Zynq architecture using VCS-1
Chapter 2
Timoteo García Bertoa

resources and support.

Figure 2.4: Zynq Ultrascale+

Zynq 7000
evolved into Zynq
Ultrascale+ in
2016, with a
multiprocessor
system-on-chip
which provides,
again, a PS and a
PL.

The PS has a Quad
ARM Cortex A53,
GPU, Real-Time
Dual ARM R5, and
built-in controllers,
adding USB3, PCIe
Gen2, SATA 3.0.

The PL, moved
from PCIe Gen2
to Gen4, and added,
depending on the
package, additional
transceivers, or a

built-in video codec H.265/H.264.

Page 8

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

3
CHAPTER

Playing with a LED

Sundance Multiprocessor Technology LTD, has been manufacturing products
based on FPGAs for 30 years in the United Kingdom. The hardware kit
that is being used for this chapter, designed and produced by Sundance, is
VCS-1.

The VCS-1 (Vision, Control and Sensors) is a hardware kit intended to
perform vision applications in real time using ZYNQ (ARM + FPGA)
architectures using embedded LINUX.

Information about VCS-1 can be found here:
https://www.sundance.com/vcs-1/
https://www.slideshare.net/SundanceDotCom/sundance-vcs1-for-precision-robotics

• EMC2-DP, a carrier board, compatible with different SoMs.
https://www.sundance.technology/som-cariers/pc104-boards/
emc2-dp/

Currently, software support is given for the following SoMs:

– TE0715-30 (Zynq 7000 Z7030)
https://www.sundance.technology/som-cariers/pc104-boards/
emc2-z7030/

– TE0820-3EG(Zynq Ultrascale+ ZU3EG)
https://www.sundance.technology/som-cariers/pc104-boards/
emc2-zu3eg/

– TE0820-4EV (Zynq Ultrascale+ ZU4EV)
https://www.sundance.technology/som-cariers/pc104-boards/
emc2-zu4ev/

Page 9

https://www.sundance.com/vcs-1/
https://www.slideshare.net/SundanceDotCom/sundance-vcs1-for-precision-robotics
https://www.sundance.technology/som-cariers/pc104-boards/emc2-dp/
https://www.sundance.technology/som-cariers/pc104-boards/emc2-dp/
https://www.sundance.technology/som-cariers/pc104-boards/emc2-z7030/
https://www.sundance.technology/som-cariers/pc104-boards/emc2-z7030/
https://www.sundance.technology/som-cariers/pc104-boards/emc2-zu3eg/
https://www.sundance.technology/som-cariers/pc104-boards/emc2-zu3eg/
https://www.sundance.technology/som-cariers/pc104-boards/emc2-zu4ev/
https://www.sundance.technology/som-cariers/pc104-boards/emc2-zu4ev/

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

– TE0820-4CG (Zynq Ultrascale+ ZU4CG)
https://www.sundance.technology/som-cariers/pc104-boards/
emc2-zu4cg/

• FM191-RU V1, FMC module
https://www.sundance.technology/system-on-modules-som/
fmc-modules/adc-dac-fmc-modules/fm191/

For more information of how to set up the hardware and use the prebuilt
files, contact Sundance, a starter’s guide is provided to be followed step by
step.

This chapter intends to show how to use the Zynq architecture, explaining
very basic concepts to be able to make a simple LED blink. As I always
say: If you can turn on a LED, you can do anything.

Now we roughly know what an FPGA is, we know what the advantages
are, and we are ready to get to know the Zynq architecture. In order to
make a LED blink, there are many different paths. And I will try to consider
all of them, from the simplest one, to the most complex. All of them are
important, and all of them have their own advantages, strengths and weaknesses.
But knowing every single way of doing things around the tools, grant you
the power of being able to design, not only what you want to design, but
efficiently.

So, I will list off all the methods I will cover, and go one by one (the tools I
will be using are Vivado 18.3, SDK 18.3, Petalinux 18.3). Also, within each
method, I will list the concepts briefly covered:

• Method 1: Using VHDL, programming the PL through JTAG

– Vivado project creation

– Adding sources

– Brief introduction to VHDL’s structure

– Adding constraints (locations, I/O Standards)

– Building process

– Project’s files hierarchy

– JTAG programming

• Method 2: Using VHDL, using IP Integrator, programming the PL
through JTAG

Page 10

https://www.sundance.technology/som-cariers/pc104-boards/emc2-zu4cg/
https://www.sundance.technology/som-cariers/pc104-boards/emc2-zu4cg/
https://www.sundance.technology/system-on-modules-som/fmc-modules/adc-dac-fmc-modules/fm191/
https://www.sundance.technology/system-on-modules-som/fmc-modules/adc-dac-fmc-modules/fm191/

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

– Hierarchical design

– IP Integrator

– VHDL modules in IPI

• Method 3: Creating and packaging an IP

– Custom IP creation

• Method 4: Using the PS to provide clocking, standalone, using JTAG

– Using the PS in IPI

– SDK

– FSBL

• Method 5: Using C, programming the PS/PL, standalone, using
JTAG

– AXI Protocol

– Standalone drivers

– Debugging from SDK

• Method 6: Booting from SD card

– Booting methods

– SD card files generation

• Method 7: Using custom board files from Sundance, using a board
interface

– Adding board files

– How board files work, and their structure

– Using board interfaces in IPI

• Method 8: Automating all the previous methods using scripts

– Generating .bit and .hdf using tcl

– Generating SD boot files using SDK in batch mode

• Method 9: Creating a kernel out of the design, and using Embedded
Linux

– The need of an OS

Page 11

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

– Introduction to Linux

– Standalone vs Linux structure of a project

– Kernel generation using Petalinux

– Setting up OS-based SD card

– Accessing signal from Embedded Linux

• Method 10: Using C and Python running Ubuntu

– Setting up Ubuntu file system using cross-compiling

– Accessing signal using C from Ubuntu for ARM

– Accessing signal using Python

Page 12

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

3.1 Method 1: Using VHDL, programming the
PL through JTAG

Before I start with any method, I recommend avoiding spaces, in either
path names or file names.

If we open Vivado, and click on Create Project, a window appears. Click
on Next, and define a project name and location. Leave Create project
subdirectory ticked, and click Next.

Figure 3.1: Create Project

Select RTL Project, and leave Do not specify sources at this time ticked.

Page 13

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.2: Project name

Click on Next, and search in Parts the corresponding device:

• xc7z030sbg485-1 (TE0715-30 -Zynq 7000 Z7030-)

• xczu3eg-sfvc784-1-e (TE0820-3EG -Zynq Ultrascale+ ZU3EG-)

• xczu4ev-sfvc784-1-e (TE0820-4EV -Zynq Ultrascale+ ZU4EV-)

• xczu4cg-sfvc784-1-e (TE0820-4CG -Zynq Ultrascale+ ZU4CG-)

Click Next and Finish.

Figure 3.3: Project type

Page 14

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.4: Part selection

A project is now created. Right click on Design Sources in the window
Sources, and click on Add Sources. Select Add or create design sources, and
click Next. Click on Create file. Select VHDL File type, and give it a name.
Click on OK, and then Finish.

Figure 3.5: Add sources

Page 15

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.6: Creating .vhd file

A window will pop up, for you to define I/O Ports by default. Just leave it
as it is, and click OK, and Yes when it asks if you are sure.

Page 16

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.7: Source file created

Double click on your new design file, and it’s time to code!

After some years of coding in VHDL, I always define things in the same
way, and everybody has their own general rules. I believe I have to improve
a lot, but I will try to guide you through in a clear way.

First of all, it’s not relevant for the outcome of the implementation, but it’s
good to describe what this file is about.
--
-- Company: Sundance Multiprocessor Technology LTD
-- Engineer: Timoteo Garcia Bertoa
--
-- Design Name: LED_Test
-- Module Name: LED_Test
-- Project Name: Blinking LED: Method 1
-- Target Devices: xczu4ev-sfvc784-1-e
-- Tool Versions: Vivado 2017.4
--
-- Additional Comments:
--
--

This clarifies a lot what this file is, and what’s expected from it. Now,
every VHDL file requires libraries that contain the basic standard variable

Page 17

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

definitions, operators, etc. That’s all defined here:
--
--LIBRARIES
--
library IEEE;

USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;

library UNISIM;
USE UNISIM.VCOMPONENTS.ALL;

Every VHDL module has an entity, which defines what the inputs and
outputs are in our system. In this case, we just want to blink a LED, so,
we need obviously an output for it, and also, a clock that runs our system.

The problem here, is that generally, evaluation boards come with crystal
oscillators on-board, with a straight connection to the FPGA, for anybody
to use that clock as an input, or to derive other clocks with internal PLLs
in the FPGA.

For this combination of boards, EMC2-DP and TE0820-4EV, there is no
direct clock accessible in the PL. When I say there is not direct clock, I
mean that the EMC2-DP actually provides 4 clocks to the FPGA through
a clock synthesiser, but this one requires a previous configuration. As we
will see in further methods, we can just use a clock from the PS, which
would solve this issue straight away, but as I wanted to make this work
with just the PL, what we could do is using an external clock, from a signal
generator, and use the SMA connector J5 on the board, to inject this clock
in the FPGA.

Beware that we are working under 1.8V, so this external clock shouldn’t
have more amplitude than that.

The entity reflects an input (clk), and an output (led). A generic variable
called FREQ is there to define what frequency will be used in the signal
generator. For now, we can manually initialise that variable to 25MHz, and
assume that will be our clock.
--
--ENTITY
--
entity LED_Test is

generic(
FREQ : integer:=25000000

);
port(

clk : in std_logic;

Page 18

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

led : out std_logic
);

end LED_Test;

Having defined an entity of our system, with an input and an output, we
just need to say what it’s happening in between. That’s what is called the
architecture. This architecture is divided in two processes: Divider and
Blinking. Each process is synchronous to the clock input.

• Divider, basically counts up rising edges of the clock input, and asserts
a flag called toggle when it counts up to the frequency value in MHz.
This means that toggle will be asserted every second.

• Blinking, toggles an internal variable called iled, every time toggle is
1. Assigning iled to the output led, I think it’s pretty obvious what it
will happen: the led will toggle every second.

--
--ARCHITECTURE
--
architecture RTL of LED_Test is

signal iled : std_logic:='0';
signal toggle : std_logic :='0';
signal counter : integer:=0;

begin

Divider: process(clk)
begin

if rising_edge(clk) then
if(counter=FREQ-1) then

toggle <= '1';
counter <= 0;

else
toggle <= '0';
counter <= counter + 1;

end if;
end if;

end process Divider;

Blinking: process(clk)
begin

if rising_edge(clk) then
if(toggle='1') then

iled <= not(iled);
end if;

end if;

Page 19

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

end process Blinking;

led <= iled;

end RTL;

There are 2 things to do before we can implement this project into the
FPGA:

• Define the constraints

The constraints are needed to “tell” the tool, in this case Vivado,
what are your requirements previous to build the project. If you
think of it, the only things Vivado knows until now are:

– The user created a project, and is using xczu4ev-sfvc784-1-e as
the device target. This means that Vivado already knows how
many I/Os are available in the device, how the architecture of
the device is, etc.

– The user made a .vhd file, defining an input port, and an output
port, and some code in between both. That file is the top level
file.

But Vivado doesn’t know where your input goes, or where your output
goes. Vivado doesn’t know either if your I/Os are using 3.3V, or
2.5V, or 1.8V.

Again, that’s why constraints are needed, to “tell” Vivado those things.

• Build the project

When Vivado knows everything it needs to build your project, and
give you a file (in this case .bit file) for you to implement it in the
FPGA, there are 3 steps that the tool will follow in order to do so.

– Synthesis. This process essentially means to convert your VHDL
code into an RTL schematic, where all the connections are resources
available in the device you decided to target.

– Implementation. This process intends to apply the synthesised
design into the architecture of the device targeted, trying to
accomplish what the constraints say.

– Bitstream generation. All the information merged after implementation,
is loaded into a single .bit file.

Page 20

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

To define the constraints, there are two basic ways of doing it. One is creating
a constraints file, and defining them manually. Another way is synthesising
the design, and using the GUI to assign port locations, and save. That will
automatically create the constraints.

Further in other methods, I will show how to take advantage of board files
(which are not currently being used yet at this point), which assign constraints
to predefined ports in the board. But for now, we will create the constraints
manually.

If you consider synthesising, and using the GUI, just click on Run Synthesis,
and then OK :

Figure 3.8: Synthesis

Page 21

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.9: Synthesis completed

After synthesis, open the Synthesised design, and then go to the I/O Ports
tab at the bottom (the layout has to be I/O Planning, it can be changed in
Layout), where you can define clk as an input, with location in pin H7 (J5
SMA connector of the EMC2-DP) and led as an output located in pin B5
(LED on-bard, both at the edge and at the SEIC). Both signals should be
defined as LVCMOS18.

Figure 3.10: Constraints GUI

Clicking on the Save icon, it will ask you to create a constraints file, so just
give it a name.

Page 22

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.11: Constraints file creation

As I’ve shown before with the code in VHDL, with the constraints file is
the same, comments help to order the information, so I always want to
write my own constraints file. This is the code:
###

25MHz
create_clock -period 40 -name clk -waveform {0.000 20} [get_ports clk]

###

False route for J5 SMA
set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets clk_IBUF_inst/O]

###

LED
PIN LOCATION
set_property PACKAGE_PIN B5 [get_ports led]
I/O STANDARD
set_property IOSTANDARD LVCMOS18 [get_ports led]

CLOCK INPUT
PIN LOCATION
set_property PACKAGE_PIN H7 [get_ports clk]
I/O STANDARD
set_property IOSTANDARD LVCMOS18 [get_ports clk]

###

Page 23

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

On top, I declared a create_clock constraint, which tells Vivado that on
the input pin (clk) there will be a clock of around 25MHz. I also created a
false route for this pin, because is not a clock capable pin, and Vivado will
complain otherwise.

Below, I declared the pin locations and I/O Standards of both the input
and the output.

From this moment, just build the project, generating the bitstream. The
way the projects classify their files is very simple:

• Main folder

– <ProjectName>.srcs, where you will find:

∗ Source files

∗ Constraints files

– <ProjectName>.runs, where you will find:

∗ Generated files, like your bitstream

– <ProjectName>.sdk, where you will find:

∗ .hdf file generated when exporting the bitstream (Method 4)

∗ SDK local workspace (Method 4)

Page 24

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

In order to program the FPGA with the bitstream, it can be done through
JTAG, using a Xilinx USB II Platform cable. Click on Open Hardware
Manager, and then Open target → Open New Target...

Figure 3.12: Xilinx USB II Platform cable

A window pops up,
just click on Next.
At this point, in
Hardware Server
Settings, you can
choose a local server
or remote server.
In this case, Local
Server is what you
want. At this point,
your hardware
should be recognised
by the tools, and
you should be able
to just click on
Finish.

A chain should
be visible for you,
where you will see
the arm cores, and the FPGA, with a built-in XADC core. If you right
click on the FPGA, you can choose Program Device... and then browse
your .bit file. After programming the FPGA, the LED should blink as
expected.

Page 25

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

3.2 Method 2: Using VHDL, using IP Integrator,
programming the PL through JTAG

We covered the simplest way of making a LED blink using VCS-1 and
Vivado 17.4. But when I say simplest, I mean simplest conceptually, not
easiest. Vivado has grown during the years, easing the design process from
tools like ISE Design. As a second method, I just want to explain how to
use IP Integrator, without leaving VHDL completely.

If you know about hierarchical design with VHDL, you know that VHDL
designs tend to wrap modules on top of other modules, creating a hierarchy
where at the end, only one level exists at the top, where the I/Os of the
system are defined, and constraint.

In our case, we just have 1 input and 1 output, and creating 2 levels of
design would be a bit weird. When we get a defined module (when I say
defined, I mean that there is an entity and an architecture for it) and plug
it in another upper level, we call that instantiation. So, for example, to
instantiate our module (I called it LED_Test.vhd) into another module,
let’s call it Top_Level.vhd, it would be something like this:
--
-- Company: Sundance Multiprocessor Technology LTD
-- Engineer: Timoteo Garcia Bertoa
--
-- Design Name: LED_Test
-- Module Name: Top_Level
-- Project Name: Blinking LED: Method 2
-- Target Devices: xczu4ev-sfvc784-1-e
-- Tool Versions: Vivado 2017.4
--
-- Additional Comments:
--
--

--
--LIBRARIES
--
library IEEE;

USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;

library UNISIM;
USE UNISIM.VCOMPONENTS.ALL;

--
--ENTITY

Page 26

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

--
entity Top_Level is

port(
clk : in std_logic;
led : out std_logic

);
end Top_Level;

--
--ARCHITECTURE
--
architecture RTL of Top_Level is

component LED_Test
generic(

FREQ : integer:=25000000
);
port(

clk : in std_logic;
led : out std_logic

);
end component;

begin

inst_LED_Test: LED_Test
generic map(

FREQ => 25000000
)
port map(

clk => clk,
led => led

);

end RTL;

As you can see, there is a declaration of a component in the architecture,
and an assignment of the inputs/outputs of our block LED_Test to the
inputs/outputs of Top_Level.

The files look like this in the Sources window:

Page 27

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.13: Top level source

If we right click on Top_Level, and then Set as Top:

Figure 3.14: Top Level hieararchy

That’s what is called hierarchical design in VHDL. I just wanted to mention
this, before showing IP Integrator, because this concept is applied.

Top_Level.vhd won’t be necessary, it can be deleted.

Go to Settings → General → Target language and select VHDL. This will
create another implementation folder, where the bitstream and other files

Page 28

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

will be generated. The reason why we should do this, is for the files Vivado
will generate, as they can be in any language we target.

At the left side, under IP Integrator, click on Create Block Design, and
then OK.

Figure 3.15: Create block design

A blank diagram should appear, and from here, we can add any IP included
in IP Catalog. But, for now we will see how to take advantage of IP Integrator
using our LED_Test code. Right click on the blank diagram, and click on
Add Module... Select LED_Test.vhd, and OK.

Page 29

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.16: Add module in IPI

As you can see, the module has been integrated as a block in the diagram,
with one input called clk, and an output called led, as we defined in VHDL.

Figure 3.17: Module in IPI

But that’s not all. If you double click on it, you will see that the generic
variable FREQ we created, is accessible for us to change its value. This is

Page 30

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

the equivalent of the instantiation in VHDL, when you assign the value in
the generic map.

Figure 3.18: Access to generic variables

If we right click on clk, and Make External, an input port will be created,
and connected to clk. It automatically gets the name clk_0, but we can
modify it in the window External Port Properties after selecting the input
port. Essentially, clk_0 is the input port clk of Top_Level when we created
it. So, as you see, IP Integrator is basically a top wrapper that instantiates
every module you integrate in the diagram. I won’t cover much more about
IP Integrator at this point, but don’t think that there is only one level of
hierarchy, there can be as many as you please. Doing the same with led, we
have now again a system with one input and one output.

Figure 3.19: Full system in IPI

In order to build the bitstream, a Top_Level.vhd must exist. But we don’t

Page 31

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

have to create it, Vivado can do that for us. In the Sources window, right
click on design_1 (which is the diagram), and click on Create HDL Wrapper.
Then, Let Vivado manage wrapper and auto-update, and OK.

Figure 3.20: Generate wrapper

As you can see, a file called design_1_wrapper is created, in VHDL or
Verilog, depending on the setting selected in Settings → General → Target
language → VHDL. Opening this file, we can see that is almost exactly
how we had defined Top_Level previously.

Page 32

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.21: Wrapper code, hierarchical design

The constraints file doesn’t need any change, as we declared the top ports
with the same name. Clicking on Generate Bitstream, should generate a
bitstream, that should work like in Method 1.

Page 33

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

3.3 Method 3: Creating an packaging an IP

I just want you to think for a moment. In Method 1, we made a VHDL
code that makes a LED blink. We are just using the PL for now. Later,
we learnt how to create the same design using IP Integrator, which is an
intuitive way of seeing the design in a graphical way. But what happens if
our VHDL code has lots of inputs and outputs? In fact, what if we have
several modules with interfaces that share inputs and outputs all over the
place? In IP Integrator, if a VHDL module is imported, every single signal,
either inputs or outputs, will be represented as an input or output port of
the module.

Sometimes, it’s nicer if some signals are grouped in one bus. For example,
you would rather have an IP with an inout called I2C, which is a bus with
two signals, SDA and SCL, before having an IP with 2 inouts, both SDA
and SCL. It reduces space, it clarifies that those two signals belong to the
same interface, and it standardises interfaces between IPs.

For our case, it’s a bit pointless to create an IP, as the module we had can
do perfectly the job, and having just 1 input and 1 output won’t make any
difference. But it’s good to know that these tools are available to be used,
to create IPs, and create interfaces for the IPs.

Removing everything, just leaving LED_Test.vhd from Method 1, and
selecting the file, click on Tools, and Create and Package New IP.... Click
on Next, and then select Package your current project.

Page 34

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.22: Create IP

Next, and then Include IP generated files. Next, and Finish.

Figure 3.23: Include all files

In this new environment, we can define anything we want for our IP.

Go to Ports and Interfaces. In this case, clk has been detected as a clock
interface, so Vivado automatically applies a clock interface on that port.

Page 35

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.24: Port interface

Go to Customization GUI. Here we can see the generic variable FREQ.
Right click on Page 0, and Add group. Add a group called Parameters, and
put Freq inside it.

Figure 3.25: Add group

Right click again, and select Add Text. In Display name, write Input Frequency,
and in Text, write Determine the external clock’s frequency in Hz. Move it
above Freq.

Page 36

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.26: Add text

The layout should look like this:

Figure 3.27: Layout of the page

Select Freq, and right click on it, selecting Edit Parameter.... Tick Specify
range, change Type for List of values→ Range of integers. Put 0 in minimum,
and 25000000 in maximum.

Page 37

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.28: Frequency parameters

Page 38

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Go to Review and Package and click on Edit Packaging Settings. Tick
Create archive of IP, OK.

Figure 3.29: Generate archive of IP

Finally, Package IP.

The reason why Create archive of IP should be ticked, is because the IP
will be generated within the project files, to be available in IP Catalog.
But, in addition, the user has a compressed file with the IP, which can be
extracted in a repository folder where we can store all our IPs.

Creating a folder called Repo, and placing the extracted files, the folder
should look like Figure 3.30

Figure 3.30: Custom IP Repository

Now you have a customised IP, so create a new blank block diagram in IP
Integrator, as explained in Method 2. Right click, Add IP, and look for
your IP.

Page 39

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.31: Search your IP

If you double click on the IP, you will see that the layout configuration has
been applied. It shows the frequency range, and the description.

Figure 3.32: IP configuration

Make both ports external, and create an HDL wrapper.

Page 40

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.33: Overall project

Generate the bitstream, and again, this should work in the same way it
does for Methods 1 and 2.

Page 41

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

3.4 Method 4: Using the PS to provide clocking,
standalone, using JTAG

So far, we have been using the PL (Programmable Logic) to achieve our
goal. But the point of using a Zynq architecture is to take advantage of
both the PL and the PS (Processing System). In order to run our IP, we
were using an external clock from a signal generator, connected to an I/O
pin of the FPGA. This method number 4, is an introduction to method
number 5.

In this method, we will be using the same custom IP to toggle de LED, but
providing a clock from the PS. This will be useful to introduce the PS, and
buy time in next methods, to address different concepts.

As I said, to introduce the PS, we will just use it to provide the clock for
our IP. This means that the PS won’t be using any internal module or
external memory, as the LED will toggle according to what it’s implemented
in the PL through our VHDL code in our custom IP. The PS will just
provide the clock, and the PL resources used will be synchronous to it.

Create a new project, and before anything else, let’s add our custom IP. To
do so, click on IP Catalog, and right click anywhere in the list of folders.
Click on Add Repository..., and select the Repo folder previously created,
where LED_Test was placed.

Figure 3.34: Repository in IP Catalog

Create a new block design in IP Integrator, and add the Zynq Ultrascale+
MPSoC IP.

Page 42

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.35: Zynq Ultrascale+ MPSoC IP

Double click on it, and I will guide you to configure it tab by tab. In the
first one (PS Block Design), you can see how the PS is structured (beware
that the GPU -among other differences- is only present in TE0820-4EV,
whereas in TE0820-4CG or 3EG, it is not):

Figure 3.36: PS-PL Structure

In order to have a clock from the PS, it must boot, configuring the different

Page 43

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

devices according to what we want to do. Even though we don’t have any
specific requirement, as we just need a clock, still, we need to have UART
communication if we want to debug step by step from SDK. Keeping that
in mind, go to the second tab, I/O Configuration.

The MIO Voltage Standards, select LVCMOS18 for Bank0, Bank2 and
Bank3, and leave LVCMOS33 for Bank1. This sets the voltage I/O standards
for the different banks of the FPGA.

At Low Speed, find UART in I/O Peripherals, and tick UART 0, selecting
MIO 30 .. 31. This enables the UART interface, which is routed to the
microUSB connector in the EMC2-DP carrier board, and allows us to debug.

In Processing Unit, select the watchdog timers (SWDT) and time counters
(TTC). See Figure 34.

Page 44

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.37: PS I/O Configuration

At the Clock Configuration tab, the clock we will use appears in PL Fabric
Clocks, under Low Power Domain Clocks. Change it to 25MHz, as our
custom IP accepts up to 25MHz, because that’s the range we gave it.

Page 45

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.38: PS Clock Configuration

At DDR Configuration, just copy the parameters shown in Figures 3.39
and 3.40. This will configure the PS according to the external DDR memory
devices for this specific hardware.

Page 46

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.39: DDR Configuration (a)

Page 47

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.40: DDR Configuration (b)

Finally, click on OK, and add the custom IP, which should be available,
since the repository was added in IP Catalog. Connect the clock accordingly,
and make the led output external.

Figure 3.41: Block design with PS

For this method, there is no input clock, so the only required constraints
are the ones related to the output led. Create a constraints file, and use
this code:
###

LED
PIN LOCATION
set_property PACKAGE_PIN B5 [get_ports led]
I/O STANDARD

Page 48

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

set_property IOSTANDARD LVCMOS18 [get_ports led]

###

Create an HDL wrapper, and build the bitstream. When the process finishes,
click on File → Export → Export Hardware.... Select Include Bitstream
and OK.

Figure 3.42: Export design

Just to leave things clear before continuing. We’ve just created a project,
which uses the PS to generate the clock for our custom IP, which divides
down a 25MHz clock to toggle a LED. In order for the PS to generate the
clock, it has to be initialised. We will do that manually with Xilinx SDK.

Click File → Launch SDK, and this will launch the tool.

As you can see, the tool already generated a hardware platform. What
does this mean? As it was explained in Method 1, following the hierarchy
of the project files, at this point we’ve exported a design, which is summarised
in a file with hdf extension, within the <ProjectName>.sdk folder. This
file is enough for Xilinx SDK to generate a basic platform, which defines
the different components described. If you have more interest in this, read
the psu_init.c file within the platform. As you will see, there are a lot of
definitions, that are applied in the function psu_init(void), inclduing the
MIOs, peripherals, etc.

This platform is automatically generated, but if you want, it’s possible to
create it from scratch. To do so, go to File → New → Project.... Under
Xilinx, you can find Hardware Platform Specification. The only requirement
to build it, is to provide the .hdf file of your project.

Page 49

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

As we just need the PS to be initialised, the project we need is FSBL,
which stands for First Stage Boot Loader. In the same way as before, File
→ New, and from here, we can directly choose Application Project. Otherwise,
it can be found under Xilinx where the Hardware Platform Specification
project was.

Figure 3.43: FSBL Creation

Page 50

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Give the project a name, FSBL for example, and select Zynq MP FSBL
before clicking on Finish.

Figure 3.44: FSBL Creation

Now, in your workspace there should be an FSBL project along with the
Hardware Platform Specification.

Figure 3.45: SDK workspace

The project might build itself. Otherwise, right click on it, and click on
Build Project. You should see something like this in the console:

Page 51

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Finished building: FSBL.elf.size
16:07:12 Build Finished (took 4s.991ms)

It’s time to initialise the PS, and configure the FPGA. Assumming that
the hardware is connected through JTAG, go to Xilinx → Program FPGA,
and press Program.

Figure 3.46: SDK Program FPGA

Being the PL programmed, the only thing left, is initialise the PS. To do
so, right click on the FSBL project, and select Debug As → Launch on
Hardware (System Debugger). Xilinx SDK will ask you to change the perspective,
and you can say Yes to it.

Page 52

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.47: C/C++ Perspective

The program will launch, initialising the ARM core.

Figure 3.48: FSBL launched

You won’t even need to run the FSBL code, the internal PLL will generate
the clock we need as soon as the program is launched, and you will see the
LED blinking as expected.

Page 53

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

3.5 Method 5: Using C, programming the PS/PL,
standalone, using JTAG

We have covered some methods to blink a LED, from a low-level perspective.
I want to clarify that the reason why I used such methods was to set your
minds into some basic concepts, before actually getting to know how to,
with any piece of hardware based on Zynq, get a LED blinking in maybe
five or ten minutes. The methods above are nice for specific projects, specific
design, when addressing custom devices or developing around certain requirements,
especially when the PL is the main character, or even when you are using
an FPGA, with no hard or virtual processors.

However, in the Zynq architecture, we have one or more ARM cores available,
with a programmable logic with plenty of resources for us to use. How does
the communication between this two different environments work?

The protocol developed by ARM, used in this architecture, is AXI. I won’t
dig too deep into AXI, but there are some concepts that will help you out
from now on, if for any reason you see AXI, and wonder what it is, or if it
scares you.

The reason why AXI is important for us, is because it’s our channel to do
something very important in any embedded system: transfer information.
The concepts I want you to have very clear about AXI are these:

• AXI transactions happen in two different ways (in general)

– Memory mapped

– Stream

• AXI transactions happen between a master and a slave

• Assuming the two concepts above, it’s necessary to understand that,
sometimes, AXI transfers require a protocol conversion

In order to understand the concepts, let’s jump into Vivado, and work
through them, while learning the 5th method.

Following the same steps as in method 4, add a Zynq Ultrascale+ MPSoC
block, and configure it. You should have a similar design as in Figure 3.41,
although you don’t need the custom IP or the led port, just the Zynq IP
configured.

At this point, we will try to make the led blink, using the ARM core. The

Page 54

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

led is connected to an I/O pin of the PL or FPGA, so, how to do the link
between the ARM core and the I/O pin? With AXI.

The block we will use is called AXI_GPIO. Right click on the block design
window, Add IP, and select AXI_GPIO. At this point, you should have
something similar to this:

Figure 3.49: Zynq and GPIO IPs

I highlighted the ports related to AXI communication. The first thing
I thought the first time I used AXI was, why can’t I just connect them
straight away? Well, because there is not only one type of AXI transaction,
and the communication can be defined in many ways, not only depending
on if it is a memory mapped transaction or a stream of data, but also the
width of the bus, and the allocation of the data within the PS (use of cached
memory, etc). Because of this, every relationship between a master (Zynq)
and a slave (GPIO block) occurs through an IP called AXI_Interconnect.

Add an interconnect block to the design:

Figure 3.50: AXI Interconnect

What does adding an interconnect mean at this point? Well, instead of

Page 55

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

having a system where the Zynq PS is the master, and the AXI GPIO
block is the slave, now we have a system where the Zynq PS is the master,
an interconnect block is the slave, and also, this interconnect is a master,
and the GPIO block is the slave. Thus, indirectly, the Zynq PS is master
of the GPIO block.

Why is this an advantage?

• The PS is going to work under a clock domain, in this case a clock
generated by an internal PLL in the device, but, what if we wanted
to run our GPIO block with a different clock? The interconnect is
useful for separating these two clock domains, without introducing
meta-stability issues.

• The PS is not limited to be the master of one GPIO block. It can
master many slaves through the same interconnect block (up to 16
per interconnect). Likewise, the PS can be a slave, and be mastered
by other AXI blocks in the design.

Now you can try to connect the Zynq PS to the interconnect, and the interconnect
to the AXI GPIO block. You will see that it is possible.

Figure 3.51: Connect the AXI Interconnect

By default, the interconnect comes with a configuration of 1 slave port and
2 master ports. As the Zynq PS is master and the interconnect is a slave,
and also, the interconnect is a master, and the AXI GPIO is a slave, the
interconnect requires 1 master port and 1 slave port. Double click on it,
and configure it.

Page 56

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.52: Configure the AXI Interconnect

Now, it would make sense to connect all the clock pins together:

Figure 3.53: Connect the clocks

And the reset pins:

Page 57

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.54: Connect the resets

But, is this correct? It actually is, assuming you are happy with all your
blocks in the PL having an asynchronous reset connected to them. Vivado
will warn you about this if you don’t do anything about it, but the IP
Xilinx provides for the reset control is the Processor System Reset. Add
one to your design.

Figure 3.55: Add Processor System Reset

Now connect the Zynq PS reset to the external reset pin of the PSR block,
and the peripheral reset to the interconnect and GPIO blocks.

Page 58

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.56: Add Processor System Reset

The only thing left is the led port. Before, we were using an output port,
which corresponds to an output (std_logic in VHDL) from our code. For
the GPIO block, each GPIO interface defined can be either an input or an
output. If you are not familiar with tri-state buffers, it is basically a signal
that can be buffered out from one system to another, but also, the first
system is able to set the output buffer in high impedance mode (tri-state),
so that the same signal can be read back from the second system:

Figure 3.57: Output and Input configurations respectively

The signals in the GPIO port:

Page 59

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.58: GPIO I/O port

As you can see, there is an input (i), output (o) and tri-state signal (t), for
a bus of 32 signals. As we don’t have 32 leds, but just 1, and also, as we
don’t want to read back from a led, we can configure the AXI GPIO block
with just one output.

Figure 3.59: GPIO configuration

When you press OK, you will see that the GPIO has been configured accordingly,

Page 60

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

and there is only one output (o):

Figure 3.60: GPIO output

Making the port external, and changing its name to led, you should have
your design finished:

Figure 3.61: Design using AXI GPIO

Now, let’s imagine that the Zynq PS is master of 10 slaves through the
interconnect. How does the master know the rules to talk to one or another?
Each slave has an address range assigned in memory, to which the processor
can talk to. (this is a memory mapped interface). The interconnect is the
one in charge to send the information to the corresponding slave.

As a brief thought, although it’s not applicable in this example, there are
systems that transmit data (converters, video...) which is treated as a stream,
and therefore, it doesn’t require memory mapping. This type of interfaces
are AXI Stream interfaces, and, if for any reason you need to move that
stream of data into memory, a conversion between AXI and AXI Stream
must be done. Blocks like DMA (or VDMA for video stream data) can do
this for you.

Page 61

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Back to our example, we have to define the memory ranges. Go to Address
Editor (tab next to Diagram), and right click on Unmapped Slaves. Select
Auto Assign Address, and a memory range will be automatically given.

Figure 3.62: Address assignment

Go to Tools → Validate Design. You will see that there are not errors.

Figure 3.63: Validate design

Now, I want to show you something important. Delete the design in a way
you are back to the state in Figure 3.49. Why? Because all the steps we
have just followed, can be done automatically! Sometimes, it’s not wise
to do everything with the automation tools, but in this case, this design
can be done with a couple of clicks. Having added the Zynq Ultrascale+
MPSoC and AXI GPIO IPs (and configured the ZU+ IP), click on Run
Connection Automation. Select All Automation, and OK.

Page 62

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.64: Automate the connections

This will reproduce the exact design we did before, including the address
editor (maybe you will have to rename the GPIO output port). At this
point, the only thing to modify, is the constraints file. Because the GPIO
block can define its ports as inputs or outputs, they are defined as vectors.
For signals like ours (single signal), is a vector of 1 position (0 to 0). This
slightly changes our constraints file, which should be in this case:
###

LED
PIN LOCATION
set_property PACKAGE_PIN B5 [get_ports {led_tri_o[0]}]
I/O STANDARD
set_property IOSTANDARD LVCMOS18 [get_ports {led_tri_o[0]}]

###

Create an HDL wrapper, build the bitstream, and export the design. Launch
SDK.

Having SDK open, go to File → New → Application Project. Give it a
name, and Next. Select Hello World, and Finish.

Page 63

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.65: Hello World project

Having the project in the workspace, inside src, you will find helloworld.c,
whose code is as follows:
#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"

int main()
{

init_platform();

Page 64

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

print("Hello World\n\r");

cleanup_platform();
return 0;

}

From this moment, we are going to work in C/C++. But, how do we relate
what we have designed in Vivado with our code in C?

The simplest approach is using the Xilinx standalone drivers. You will see
that getting a led blinking is very straight forward, as long as you know
where to search things.

Along with the application project created, a .bsp (board support package)
project was created. Inside it, there is a file called system.mss. Double
click on it, and you will see that there is a list of components, some of
them accessible (the ones that have been added in Vivado), and some not
accessible (the ones that we didn’t add).

Figure 3.66: Standalone drivers

Also, inside the hardware platform project automatically created by SDK
(otherwise, it can be created manually), you can find system.hdf. If you
open it, and look up our AXI GPIO block, you can see that the addresses
set in Vivado can be verified here.

Page 65

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.67: AXI GPIO in hardware platform

Back to the standalone drivers in system.mss, click on Import Examples, at
the axi_gpio’s row. Select xgpio_tapp_example, and OK. This will import
an example project, from which we can take useful functions. In src, open
xgpio_tapp_example.c.

These are the pieces of code we will be interested in:

• #include "xparameters.h"

This file, you can find it at:

<ProjectName>.bsp/psu_cortexa53_0/include/xparameters.h

It contains all the information of all the peripherals involved in the
design. In fact, if you open it, and search (Control + F) AXI_GPIO_0,
you will find this piece of code:

/* Definitions for driver GPIO */
#define XPAR_XGPIO_NUM_INSTANCES 1

/* Definitions for peripheral AXI_GPIO_0 */
#define XPAR_AXI_GPIO_0_BASEADDR 0x80000000
#define XPAR_AXI_GPIO_0_HIGHADDR 0x80000FFF
#define XPAR_AXI_GPIO_0_DEVICE_ID 0

Page 66

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

#define XPAR_AXI_GPIO_0_INTERRUPT_PRESENT 0
#define XPAR_AXI_GPIO_0_IS_DUAL 0

Again, the base and high address values from Vivado appear here,
and, what we will need for all our functions, the device id: #define
XPAR_AXI_GPIO_0_DEVICE_ID 0

• #include "xgpio.h"

This file contains the definitions of the functions used later on in the
example project.

• XGpio_Initialize

This function initialises the GPIO driver, assigning the corresponding
device ID. If for example we had many AXI GPIO blocks in our design,
this is the function that determines that the ARM core is going to
talk to a specific one. Remember, the device ID is going to point to
the address range we defined!

• XGpio_SetDataDirection

Do you remember that the GPIO port could be an input or an output?
As we defined in Vivado to just use our port as an output, this step
is not really needed, but with this function we are able to set by
software if we want to read or write to the port.

• XGpio_DiscreteWrite

With this function, we will make the led blink!

So, open your application, and change your helloworld.c code (you can
change the file name too if you want) for this one:
#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"
#include "xparameters.h"
#include "xgpio.h"

/*
* The following are declared globally so they are zeroed and so they are
* easily accessible from a debugger
*/

XGpio GpioOutput; /* The driver instance for GPIO Device configured as O/P */

int main()
{

int Status;

Page 67

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

/*
* Initialize the GPIO driver so that it's ready to use,
* specify the device ID that is generated in xparameters.h
*/
Status = XGpio_Initialize(&GpioOutput, XPAR_AXI_GPIO_0_DEVICE_ID);
if (Status != XST_SUCCESS) {

return XST_FAILURE;
}

/* Set the direction for all signals to be outputs */
XGpio_SetDataDirection(&GpioOutput, 1, 0x0);

while(1){
/* Set the GPIO outputs to low */
XGpio_DiscreteWrite(&GpioOutput, 1, 0x0);
/* Wait a second */
sleep(1);
/* Set the GPIO Output to High */
XGpio_DiscreteWrite(&GpioOutput, 1, 0x1);
/* Wait a second */
sleep(1);

}

}

The code talks by itself, it is very simple. Save, which will build the project,
and then run it. The LED will blink as expected.

Page 68

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

3.6 Method 6: Booting from SD card

Until this moment, I have shown how to program the FPGA either using
Vivado or SDK, using JTAG. There are two other ways of booting the PS
and loading the bitstream into the PL. One of them is using QSPI, and the
other one is using SD card. In this method I will cover the SD card boot
methodology. Generating the files to boot from SD card is very simple, and
this knowledge can be applied to boot a linux kernel, or generate SD boot
files in SDSoC.

Having the project from method 4, you will need to activate the SD boot
in the ZynqMP IP. Also, put the PL clock we changed to 25MHz, back to
100MHz.

Figure 3.68: Activate SD boot

Generate the bitstream, export hardware, and launch SDK. If you had
SDK already open, it might react, as a new .hdf file has been generated. If
so, accept the changes. Otherwise, you might have to re-create the hardware
platform and application project.

Create an FSBL application project. After the FSBL is created and built,
select the standalone project that blinks the LED (LED_Test in my case),
and then go to Xilinx → Create Boot Image.

Page 69

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.69: Create boot image

As you can observe, Xilinx SDK automatically selects 3 files to merge into
one BOOT.bin file (you can always do this manually).

• The first step, is the First Stage Boot Loader. This .elf file will boot
the PS, mapping all the devices declared in our design in memory,
and initialising the device.

• The second step, as you might imagine already, is to program the PL
with the .bit file.

• Finally, the third step is to run the .elf file with our application, in
this case, the blinking LED.

These 3 steps will occur one after another when the SD card is plugged
into our hardware, containing this BOOT.bin file.

Click on Create Image and your files should be in the path specified in this
last window. Copy the BOOT.bin file into an SD card, plug it into the
carrier board, turn on, and the LED should start blinking after the devices
boots.

Page 70

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

3.7 Method 7: Using custom board files from
Sundance, using a board interface

I want to introduce an important feature, that will buy us a lot of time.
Until now, we were selecting a part for our project, and synthesise/implement
a design, based on that part’s architecture, defining certain constraints.

There is a way to avoid configuring everything manually for every project
you create, and that’s what the board files are for. In this book, I’m not
going to show how to create board files from scratch, but I will show how
the information “travels” throughout the tool, to give you a deeper understanding
of what the potential of using board files is.

Board files are stored at: <installationpath>/Xilinx/Vivado/2018.3/data/boards/board_files/
Any board files from different vendors can be allocated there, and will be
available to use in Vivado. Also if you create your own!

Board files from Sundance Multiprocessor Technology LTD can be found in
our GitHub repository.

https://github.com/SundanceMultiprocessorTechnology/VCS-1/tree/
master/Hardware/Xilinx/BoardFiles

Download the required board files, and place them in the path mentioned.
Before opening Vivado, let’s briefly cover how the board files are structured:

• board.xml file.

This is the file that declares (essentially) components and connections.

For example, the most important component defined in our board
files would be the Zynq device. It’s called part0, and as you can see,
it has a display name, description, etc. Inside part0, all its interfaces
are declared. In addition to the Zynq device, I added two more components:
ps8_fixedio and onboardleds, the PS and the LEDs on-board respectively.

Two interfaces have been created as part of the Zynq device (part0),
and their names are the same as the PS and LEDs components.

ps8_fixedio and onboardleds are the Zynq IP we instantiated in IP
Integrator in the last methods and the interface that allows you to
access the led we were using until now. (Beware that I modified the
indentation of the code so that some things fit in this document).

Page 71

https://github.com/SundanceMultiprocessorTechnology/VCS-1/tree/master/Hardware/Xilinx/BoardFiles
https://github.com/SundanceMultiprocessorTechnology/VCS-1/tree/master/Hardware/Xilinx/BoardFiles

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

<components>
<component
name="part0"
display_name="EMC2-DP + TE0820-4CG (ZYNQ-UltraScale+)"
type="fpga" part_name="xczu4cg-sfvc784-1-e"
pin_map_file="part0_pins.xml"
vendor="xilinx.com"
spec_url="www.xilinx.com">

<description>FPGA part on the board</description>

<interfaces>
<interface

mode="master"
name="ps8_fixedio"
type="xilinx.com:zynq_ultra_ps_e:fixedio_rtl:1.0"
of_component="ps8_fixedio"
preset_proc="zynq_ultra_ps_e_preset">
<preferred_ips>

<preferred_ip
vendor="xilinx.com"
library="ip"
name="zynq_ultra_ps_e"
order="0"/>

</preferred_ips>
</interface>

<interface
mode="master"
name="onboardleds"
type="xilinx.com:interface:gpio_rtl:1.0"
of_component="onboardleds"
preset_proc="leds_preset">

<preferred_ips>
<preferred_ip
vendor="xilinx.com"
library="ip"
name="axi_gpio"
order="0"/>

</preferred_ips>
<port_maps>

<port_map
logical_port="TRI_O"
physical_port="Onboard_LEDs_tri_o"
dir="out"
left="1"
right="0">

<pin_maps>
<pin_map port_index="0" component_pin="LED_1"/>
<pin_map port_index="1" component_pin="LED_2"/>

Page 72

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

</pin_maps>
</port_map>

</port_maps>
</interface>

...
<component
name="ps8_fixedio"
display_name="PS8 fixed IO"
type="chip"
sub_type="fixed_io"
major_group=""/>

<component
name="onboardleds"
display_name="On-board LEDs"
type="chip"
sub_type="led"
major_group="General Purpose Inputs or Outputs">

<description>LEDs available at the EMC2-DP, next to the Trenz module.
Same as the top 2 LEDs on the SEIC (extension board).
They will lit up when high active</description>

</component>
...

Interesting things to mention here? You can see that the preferred
IP for the onboardleds interface is axi_gpio. Also, that the port is
defined as an output of 2 signals (for two LEDs available on the board,
although we are playing with one only). Also, notice that onboardleds
points to leds_preset. We will see this later.

What about the connections? They are defined as follows:
...
<connection name="part0_onboardleds" component1="part0" component2="onboardleds">

<connection_map
name="part0_onboardleds_1"
typical_delay="5"
c1_st_index="2"
c1_end_index="3"
c2_st_index="0"
c2_end_index="1"/>

</connection>
...

This means that the LEDs (index number 0 and 1 of onboardleds)
have been mapped into index number 2 and 3 of part0. Remember
this for the next point.

• part0_pins.xml file.

Page 73

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

This is where the connections defined in board.xml are configured

For example, for the onboardleds interface declared within part0 in
board.xml
<part_info part_name="xczu4cg-sfvc784-1-e">
<pins>

<pin index="0" name ="PHY_LED_1" iostandard="LVCMOS18" loc="A2"/>
<pin index="1" name ="PHY_LED_2" iostandard="LVCMOS18" loc="A1"/>

<pin index="2" name ="LED_1" iostandard="LVCMOS18" loc="B5"/>
<pin index="3" name ="LED_2" iostandard="LVCMOS18" loc="B3"/>

<pin index="4" name ="LVTTL_0" iostandard="LVCMOS18" loc="T8"/>
<pin index="5" name ="LVTTL_1" iostandard="LVCMOS18" loc="R8"/>

...

Here you can verify, that the constraint we were using until now (LVCMOS18,
pin B5), corresponds to the index 2 of part0.

• preset.xml file.

This is a very useful file, where preset configurations are defined.

Do you remember when we used Run Connection Automation in
Method 5, to apply automatic connections? Similarly, this can be
done to apply default configurations. Those configurations are defined
in this file. Following the example, this is where the AXI GPIO preset
is defined. As I said before, onboardleds points to leds_preset in board.xml.
...
<ip_preset preset_proc_name="leds_preset">

<ip vendor="xilinx.com" library="ip" name="axi_gpio" ip_interface="GPIO">
<user_parameters>

<user_parameter name="CONFIG.C_GPIO_WIDTH" value="2"/>
<user_parameter name="CONFIG.C_ALL_OUTPUTS" value="1"/>

<user_parameter name="CONFIG.C_ALL_INPUTS" value="0"/>
</user_parameters>

</ip>
...

As you can see, the interface is pre-defined with an AXI GPIO block,
with 2 signals specified as outputs.

Open Vivado, and create a new project, but this time, select the corresponding
board files.

Page 74

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.70: Select board files

Create a block design, and add a Zynq Ultrascale+ MPSoC IP. Click on
Run Block Automation, and OK.

Page 75

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.71: Apply preset configuration to the Zynq IP

Add an AXI GPIO block, and click on Run Connection Automation. Selecting
GPIO, choose onboardleds as the interface.

Figure 3.72: Automate the interface connection

Click OK, and change the port name from onboardleds to just leds.

With this, we have just created a project that we can build. No constraints
file required. No more steps. Before moving on, I wanted to show another

Page 76

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

way of doing this. Going to the tab Board, you will see that the On-board
LEDs interface has been used, and you have many others available. All
these are the interfaces defined in the board files.

Figure 3.73: Board files’ interfaces

Create an HDL wrapper, generate the bitstream, and export the design.
In SDK, create an FSBL, Application project, and use the code shown in
Method 5. Generate SD boot files as shown in Method 6. This method
should make the LED blink as expected.

Page 77

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

3.8 Method 8: Automating all the previous methods
using scripts

If you followed all the methods, and reached this point, I’m sure that you
realised that some steps are always repeating. Creating a project, creating
a new block diagram, etc. Also, when you are certain a project works, and
you want to store that information somewhere, or you want to share that
information with other people, size becomes an issue, as some projects can
be very heavy.

I want to share a way of automating the creation of a project, in a simple
way. Create a new project, selecting the board files like in Method 7. As
soon as you click on Finish, before doing anything else, look at the tcl
console.

Figure 3.74: Tcl console

Copy those commands (create_project, set_property) in an empty text file.
Select VHDL as target, create a new block design, etc. One by one, all the
movements you do with the tool, copy them into your text file.

Figure 3.75: Tcl commands in a text file

Continue copying all the steps in the script, and it should look similar to
this at the end:

Page 78

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

#Create project to blink a LED
create_project LED_Test /home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/LED_Test -part xczu4cg-sfvc784-1-e

#Board part selection
set_property board_part sundance.com:emc2-dp_te0820_4cg_1ea:part0:1.0 [current_project]

#Set target to VHDL
set_property target_language VHDL [current_project]

#Create block design in IP Integrator
create_bd_design "design_1"

#Add Zynq Ultrascale+ MPSoC IP
startgroup
create_bd_cell -type ip -vlnv xilinx.com:ip:zynq_ultra_ps_e:3.2 zynq_ultra_ps_e_0
endgroup

#Apply preset configuration
apply_bd_automation -rule xilinx.com:bd_rule:zynq_ultra_ps_e -config {apply_board_preset "1" } [get_bd_cells zynq_ultra_ps_e_0]

#Add AXI GPIO block
startgroup
create_bd_cell -type ip -vlnv xilinx.com:ip:axi_gpio:2.0 axi_gpio_0
endgroup

#Automate connections
startgroup

apply_bd_automation -rule xilinx.com:bd_rule:axi4 -config { Clk_master {Auto} Clk_slave {Auto} Clk_xbar {Auto}\
Master {/zynq_ultra_ps_e_0/M_AXI_HPM0_LPD} Slave {/axi_gpio_0/S_AXI} intc_ip {New AXI Interconnect} master_apm {0}}\
[get_bd_intf_pins axi_gpio_0/S_AXI]

apply_bd_automation -rule xilinx.com:bd_rule:board -config { Board_Interface {onboardleds (On-board LEDs) }\
Manual_Source {Auto}} [get_bd_intf_pins axi_gpio_0/GPIO]
endgroup

#Regenerate layout
regenerate_bd_layout
regenerate_bd_layout -routing

#Create VHDL wrapper
make_wrapper -files\
[get_files /home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/LED_Test/LED_Test.srcs/sources_1/bd/design_1/design_1.bd] -top
add_files -norecurse\
/home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/LED_Test/LED_Test.srcs/sources_1/bd/design_1/hdl/design_1_wrapper.vhd

#Build project and generate bitstream
launch_runs impl_1 -to_step write_bitstream -jobs 2
wait_on_run impl_1

#Export .hdf and .bit
file mkdir /home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/LED_Test/LED_Test.sdk
file copy -force /home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/LED_Test/LED_Test.runs/impl_1/design_1_wrapper.sysdef\
/home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/LED_Test/LED_Test.sdk/design_1_wrapper.hdf

Notice that the use of backslash is a continuation line in tcl.

You can delete the project, and from the main Vivado window, just paste
your script in the Tcl console. The project should be created, built, and
exported successfully. You can also go to Tools → Run Tcl Script... and
browse your script to run it.

Now, the next step would be to launch SDK, create the hardware platform,
FSBL, application, and generate SD boot files, true? All this can be done
with simple scripts.

Assuming that our project is called LED_Test, and the .hdf file is stored
in LED_Test/LED_Test.sdk, I want you to create the following files, at
the same level as the project’s directory:

Page 79

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

• LED_Test.c

This file will be the application code, seen in Method 5. Create this
file including that code, which makes the LED blink.

• LED_Test.bif

This file will be the one we normally create in SDK when generating
SD boot files (figure 3.69, Output BIF file). Write this in it:
//arch = zynqmp; split = false; format = BIN
the_ROM_image:
{

[fsbl_config]a53_x64
[bootloader]/home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/LED_Test/LED_Test.sdk/FSBL/Debug/FSBL.elf
[destination_device = pl]/home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/LED_Test/LED_Test.sdk/HardwarePlatform/design_1_wrapper.bit
[destination_cpu = a53-0]/home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/LED_Test/LED_Test.sdk/LED_Test/Debug/LED_Test.elf

}

As you can see, the files specified are the same as the ones we can see
in figure 3.69, pointing to the FSBL, bitstream and application.

• SDK_Script.sh

This file will be a script to run from our OS. I use Linux, but if you
use Windows, you can create your own script (.bat for example), and
use it in the same way. What we will do with this script, is the same
steps we do in SDK through the GUI. This, is simply faster.
Script to generate HW Platform, FSBL, and App standalone based on .hdf file.

#!/usr/bin/tclsh
Create workspace
setws /home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/LED_Test/LED_Test.sdk
Create Hardware Platform project
createhw -name HardwarePlatform -hwspec /home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/LED_Test/LED_Test.sdk/design_1_wrapper.hdf
Create FSBL project
createapp -name FSBL -app {Zynq MP FSBL} -proc psu_cortexa53_0 -hwproject HardwarePlatform -os standalone
Create Hello World project
createapp -name LED_Test -app {Hello World} -proc psu_cortexa53_0 -hwproject HardwarePlatform -os standalone
Delete helloworld.c and replace
file delete -force /home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/LED_Test/LED_Test.sdk/LED_Test/src/helloworld.c
cd /home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/
file copy -force ./LED_Test.c ./LED_Test/LED_Test.sdk/LED_Test/src
Build projects
projects -build
Generate SD boot files
cd /home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/
exec bootgen -arch zynqmp -image ./LED_Test.bif -w -o BOOT.bin
exit

The command setws locates the workspace folder, where all our projects
will be created.

The command createhw will create our hardware platform.

The command createapp can be used to create our FSBL and Hello
World applications. As you can see, the helloworld.c file is deleted
and replaced by our LED_Test.c file.

The command projects -build builds all the projects in the workspace.

Page 80

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

The command bootgen will generate the BOOT.bin file, based on
what we specified in our LED_Test.bif file.

Launch SDK in batch mode, in Linux is as follows:
source /home/Xilinx/SDK/2018.3/settings64.sh
xsdk -batch

Run SDK_Script.sh within xsdk:
cd /home/timin/Vivado_Projects/18.3/Zynq_book/Method_8/
source ./SDK_Script.sh

When it finishes, place the BOOT.bin file in an SD card, and you will see
that the LED blinks as expected.

NOTE: In order to use the scripts without path dependencies, they can be
written based on the script location. For tcl or tclsh scripts, simply add
these two lines in the beginning:
#Use script's path as project's path
set script_path [file dirname [file normalize [info script]]]

After these lines, replace the paths for $script_path throughout the script.

For other scripts, you can simply use $PWD instead of the path

Page 81

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

3.9 Method 9: Creating a kernel out of the design,
and using Embedded Linux

I remember the first time I used Linux. I didn’t understand the need of
having another operating system that wasn’t Windows, as I grew up using
W95, W98 and WXP.

When it comes to embedded systems, it’s very important to know why an
operating system is needed. In fact, in this book I don’t attempt to explain
too much theory about operating systems, but it’s important to see when
an application requires it, and also, what the advantages and disadvantages
are, especially in terms of complexity.

The first question to address is: do we need an operating system for an
application as simple as toggling an LED? The immediate answer is no,
and there is no other answer, it’s simply not needed. But, the essence of
this book is to show the simplest and most graphical way to understand an
application in a hardware device, and make it work in many different ways,
touching different areas in the levels of abstraction in embedded systems.

Figure 3.76: Levels of abstraction

Page 82

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Why is it not needed? In other words, why do we need an operating system
in an application?

Making an LED blink is a simple application, that requires, in the case
of using the PS in the Zynq device, access to a certain memory mapped
address for the AXI GPIO controller. The memory address is mapped in
DDR, memory that is accessible by the ARM core.

But, what if we want to add several applications to run at the same time,
in addition to the LEDs? Baremetal could still be a solution, handling
interrupts, and prioritising the applications to our convenience, but, is
this efficient? To which extent? The answer to this question is essentially
memory. If there is not enough memory available in hardware to manage
all the applications, "someone" has to decide which application has access
to DDR in a certain moment in time (memory management). This "someone"
is the operating system, or OS.

On top of that, an OS is an inner layer between the hardware and thousands
of frameworks, drivers, and filesystem support, which is not available sometimes
for baremetal applications. Also, the OS allows the use of multithreading,
which means that you can exploit the performance of all the ARM cores
available in the Zynq device, and not just one.

Now, why Linux? I don’t want to go too far in this matter, but Linux:

• Provides lots of device drivers. You don’t need to write a USB stack
or an I2C library, it’s given.

• Provides network and filesystem support. TCP/IP, UDP, etc, also
given.

• It’s portable. It works in Android devices, microblaze, x86 architectures,
etc.

• It’s free and open source. It also comes with a large community from
which you can get a lot of information, and solutions to known issues.

The tool that Xilinx offers to generate a Linux image based on our hardware
design in Vivado is called Petalinux. This book has been written using
Petalinux 18.3

Before we dig into Petalinux, I want to leave clear the data flow we’ve
followed until now, and what is new from now on:

• Standalone:

Page 83

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

– Vivado → Hardware design, configuring the PS, and adding an
AXI GPIO block in the PL.

– Export hardware design.

– SDK → Description in C for the ARM core to command the
AXI GPIO controller, to toggle the LED.

– SD Card booting → Requires an FSBL, bitstream and application
files, all merged in a .bin file

NOTE - The AXI GPIO block has an address range assigned, to
which we can have direct access in our code. When we read/write
from/to that address range, is the real range in hardware.

Figure 3.77: SD Card for standalone applications

• OS-based:

– Vivado → Design of PS/PL distribution, configuring the PS,
and adding an AXI GPIO block.

– Export hardware design.

– Petalinux → Generates Linux image based on our design, adding
the drivers/modules we want.

– SD Card booting → Requires two partitions:

∗ BOOT partition → BOOT.bin file (which merges the FSBL,
bitstream and u-boot), image.ub (Linux image), and the
device tree (it can be merged within image.ub).

∗ rootfs partition → File system (group of folders where all
our files will be stored, being "/" the root.

Page 84

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

– Write an application in a Linux compiler, that makes the LED
blink, using the Linux GPIO driver (alternatively, you can write
your own driver for your own application).

NOTE 1 - Some definitions:

1- u-boot: launches the Linux kernel (image.ub)

2- Linux kernel: manages the demands from the different controllers
to efficiently use the resources available in hardware.

3- Device tree: file that "tells" the kernel some information regarding
the hardware. The idea of the device tree, is that, knowing that there
are so many ARM-based boards out there, a kernel can be re-used for
different boards, just changing the device tree file.

NOTE 2 - The AXI GPIO block has an address range assigned, to
which we do NOT have direct access in our code. When we read/write
from/to an address range in our Linux application, is a virtual address
range. The translation of physical/virtual address is managed by the
MMU. The physical address is given to the kernel by the device tree,
or mapped through the FSBL.

Figure 3.78: SD Card for linux applications

Page 85

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Now it’s time to build the kernel, using Petalinux, and generate the files we
need to boot from SD card, and make the LED blink from Linux.

First of all, assuming Petalinux is installed, we need to create a Petalinux
project:
$ petalinux-create --type project --template zynqMP --name LED_Test_kernel

Then, we can place the .hdf file generated in Method 8 into the project
folder. From that directory, we can configure the project settings:
$ petalinux-config --get-hw-description -p .

A window similar to this one should appear:

Figure 3.79: Petalinux project configuration

We should change the configuration so that the Linux kernel is launched
from SD card:

Subsystem AUTO Hardware Settings → Advanced bootable images storage
Settings → boot image settings → image storage media → primary SD

We can also merge the device tree with the kernel image:

Subsystem AUTO Hardware Settings → Advanced bootable images storage
Settings → dtb image settings → image storage media → from boot image

Also, the file system will be in the SD card:

Page 86

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Image Packaging Configurations → Root filesystem type → SD card

Save the configuration and exit.

Before building the kernel, we can configure it, and select the modules we
want included. To do so:
$ petalinux-config -c kernel

This time you will see a window like this one:

Figure 3.80: Petalinux kernel configuration

Disable initramfs in kernel configuration GUI:

General setup → Initial RAM file system and RAM disk (initramfs/initrd)
support

Include userspace I/O platform driver:

Device Drivers → Userspace I/O drivers → <*> Userspace I/O platform
driver with generic IRQ handling

Save the configuration and exit. After some work done by Petalinux, the
kernel should be successfully configured.

Page 87

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

At this point, you have to edit the device tree, to define the peripherals
included in the design, in this case, the AXI GPIO block. Edit the file
system-user.dtsi:
$ nano project-spec/meta-user/recipes-bsp/device-tree/files/system-user.dtsi

Change the contents of the file, including this instead:
/include/ "system-conf.dtsi"
/ {
chosen{
bootargs = "earlycon clk_ignore_unused console=ttyPS0,115200 earlyprintk root=/dev/mmcblk1p2 rw rootwait uio_pdrv_genirq.of_id=generic-uio";

};
};

&axi_gpio_0 {
compatible = "generic-uio";

};

&usb0 {
status = "okay";

};

&dwc3_0 {
status = "okay";
dr_mode = "host";

};

&sdhci1 {
disable-wp;
no-1-8-v;

};

&smmu {
status ="okay";

};

&fclk0 {
status = "okay";

};

/* ETH PHY */
&gem0 {

status = "disabled";
};

&gem1 {
status = "disabled";

};

&gem2 {
status = "disabled";

};

&gem3 {
status = "okay";
//reg = <0x0 0xff0e0000 0x0 0x1000>;
//clock-names = "pclk", "hclk", "tx_clk", "rx_clk";
//clocks = <0x3 0x1f 0x3 0x34 0x3 0x30 0x3 0x34>;
phy-mode = "rgmii-id";
phy-handle = <ðPhy>;
ethPhy:phy@1{

reg = <0x1>;
ti,rx-internal-delay = <0x8>;
ti,tx-internal-delay = <0xa>;
ti,fifo-depth = <0x1>;
ti,rxctrl-strap-worka;
marvell,reg-init = <3 16 0xff00 0x12 3 17 0xfff0 0x00>;

};
};

The important thing to know here, is that AXI GPIO is declared as generic-uio.
This means that the UIO driver can be used to control the IP. But we
will not use this driver. Also, the declaration of the SD controller, USB
or Ethernet, for additional features.

Page 88

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

At bootargs, some parameters are defined as environment variables, to point
to the correct source (SD card partitions) in order to boot properly.

You can now build the kernel:
$ petalinux-build

Be patient, it can take a while, but it should build successfully. From now
on, the folder we care about in the project files, is the one called images.
Inside, we can find the root file system and the kernel image. We just need
the BOOT.bin file that merges the FSBL, bitstream and u-boot. In order
to do so, we have to copy the FSBL.elf file (we have seen how to generate
it in previous methods) into ./images/linux/. Then:
$ petalinux-package --boot --format BIN --fsbl ./images/linux/FSBL.elf \
--fpga ./images/linux/system.bit --u-boot --pmufw ./images/linux/pmufw.elf

This command generates the BOOT.bin file, placed in ./images/linux/.
Now we have all the required files to boot Linux from an SD card. To prepare
the SD card, software tools like gparted can be used. As I mentioned earlier,
it’s necessary to make two partitions. Executing gparted, and having an
empty SD card connected to our host PC, select the SD card in the tool.
Please, make sure it’s the SD card, otherwise you can do irreversible damage
and lose files from your hard disk.

Figure 3.81: Gparted, SD Card

Make sure the SD card is unmounted (you can right click on any partition
of the SD card and select unmount), and delete the partition of the SD

Page 89

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

card so that it displays unallocated. Right click the unallocated space and
create a new partition (clicking on new):

Free Space Proceeding (MiB): 4
New Size (MiB) : 512
Free space following (MiB): (it will automatically select the rest)
Align to: MiB
Create as: Primary Partition
Filesystem : fat32
Label : BOOT

Figure 3.82: Gparted, BOOT partition

Click on "Add". Right click the remaining unallocated space and click on
new:

Free Space Proceeding (MiB): 0
New size (MiB) : it automatically shows the full size
Free Space Following(MiB): 0
Align to: MiB
Create as: Primary Partition
Filesystem : ext4
Label : rootfs

Page 90

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.83: Gparted, rootfs partition

Click on Add. Apply all operations to create the partitions (Edit → Apply
All Operations). Click on Apply when asked if you are sure. Click on Close
when it finishes. Close gparted.

Figure 3.84: Gparted, SD Card set up

Page 91

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Now, assuming that you are in the project’s directory, you should copy
the boot files into the BOOT partition, and the file system into the rootfs
partition. Give root permissions to the rootfs partition, and extract the file
system:
$ sudo cp ./images/linux/BOOT.BIN /media/BOOT
$ sudo cp ./images/linux/image.ub /media/BOOT
$ sudo cp ./images/linux/rootfs.tar.gz /media/rootfs
$ sudo chown root:root /media/rootfs
$ sudo chmod 755 /media/rootfs
$ cd /media/rootfs
$ sudo tar -xvzf ./rootfs.tar.gz

The SD card should have this structure now:

Figure 3.85: Hierarchy of folders inside the SD card

Placing the SD card in the hardware, and turning on, Embedded Linux
boots. In order to see and interact with the board, it can be done using a
MicroUSB to USB cable, and a terminal. Using picocom for example:
$ sudo picocom -b 115200 /dev/ttyUSB0 -l

Log in using root as username and root as password.

Page 92

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Figure 3.86: Booting Embedded Linux

As we already know from the design we’ve made in Vivado, the AXI GPIO
block is mapped at 0x80000000 in memory.

Using a the following command, we are able to turn the LED on:
devmem 0x80000000 8 1

Where 8 is the number of bits of the data we are writing, and 1 is the
value. To turn the LED off:
devmem 0x80000000 8 0

Page 93

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

3.10 Method 10: Using C and Python running
Ubuntu

Ubuntu is one of the most used distributions of Linux. For us, it opens
doors to install multiple packages that allow us to develop applications in
high-level programming languages, having direct access to our peripherals
instantiated in the FPGA.

In order to have Ubuntu running in the board, and be able to install gcc
and python, and make the LED blink using C and Python code, we have to
use the Ubuntu file system.

Download the ubuntu base file system for arm64. It can be found here:

http://cdimage.ubuntu.com/ubuntu-base/releases/bionic/release/
ubuntu-base-18.04.2-base-arm64.tar.gz

Now, after deleting all the files from the rootfs partition of the SD card, we
can copy and extract the downloaded Ubuntu base file system in the emtpy
partition:
$ sudo cp ~/Downloads/ubuntu-base-18.04.2-base-arm64.tar.gz /media/rootfs/
$ cd /media/rootfs
$ sudo tar xvzf ./ubuntu-base-18.04.2-base-arm64.tar.gz

For us to install packages in file system, we will require internet connection.
An easy way to install packages in this file system for ARM, which is in
the SD card, but "pretending that" this file system is actually the one in
our computer (although our computer is probably not ARM-based!) is
doing what is known as cross-compiling.

A tool that allows us to do cross-compiling is qemu. Having qemu installed:
$ sudo apt install qemu-user-static

We can use chroot to set up the file system of the SD card:
$ sudo cp -av /usr/bin/qemu-aarch64-static /media/rootfs/usr/bin

We need to copy certain files from our computer, before doing chroot. This
file will allow internet connection:
$ sudo cp -av /run/systemd/resolve/stub-resolv.conf /media/rootfs/etc/resolv.conf

Now, mount proc, sys, dev, dev/pts to the new fileystem and enter into
chroot environment:

Page 94

http://cdimage.ubuntu.com/ubuntu-base/releases/bionic/release/ubuntu-base-18.04.2-base-arm64.tar.gz
http://cdimage.ubuntu.com/ubuntu-base/releases/bionic/release/ubuntu-base-18.04.2-base-arm64.tar.gz

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

$ cd /media/rootfs
$ sudo mount -t proc /proc proc/
$ sudo mount -t sysfs /sys sys/
$ sudo mount -o bind /dev dev/
$ sudo mount -o bind /dev/pts dev/pts
$ sudo chroot ./

At this point, we are using the root file system of our SD card. Let’s do
some configurations:

Add an admin user with sudo permissions:
$ adduser ubuntu
$ addgroup ubuntu adm && addgroup ubuntu sudo \
&& addgroup ubuntu audio && addgroup ubuntu video

Change root password:
$ passwd root

Setup the hostname:
$ echo Ubuntu_VCS-1 > /etc/hostname
$ echo 127.0.0.1 localhost > /etc/hosts
$ echo 127.0.1.1 Ubuntu_VCS-1 >> /etc/hosts

Fetch the latest package lists from server, and then, upgrade.
$ apt-get update
$ apt-get upgrade

Install some packages:
$ apt-get install dialog perl
$ apt-get install locales
$ apt-get install sudo net-tools ethtool wireless-tools network-manager \
wpasupplicant nano wget apt-utils udev iputils-ping

Install gcc, devmem2, python and usb utils:
$ apt-get install gcc devmem2 python usbutils

Exit and unmount:
$ exit
$ sudo umount proc
$ sudo umount sys
$ sudo umount dev/pts
$ sudo umount dev

The Ubuntu file system is ready. Place the SD card again in the hardware,
and the kernel should boot, showing Ubuntu 18.04 LTS for ARM.

Page 95

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Log in using your username and password:

Figure 3.87: Booting Ubuntu 18.04 LTS for ARM

We can turn on the LED again, in a similar way to Method 9, using devmem2 :
$ sudo devmem2 0x80000000 b 1

Or turn it off:
$ sudo devmem2 0x80000000 b 0

Let’s do a simple application in C. Create a file called axi_gpio.c:
$ nano axi_gpio.c

Copy this code inside:

Page 96

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char **argv)
{

int i=0;
int *led;
printf("Blinking test\n\r");

int fd = open("/dev/mem", O_RDWR | O_SYNC);
printf("Device opened\n\r");

void *virt_addr = mmap(0, 4096, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0x80000000);
led=(int *)(virt_addr);
printf("Memory mapped at address %p.\n", virt_addr);

printf("Device mapped in memory\n\r");

printf("Blinking LED...");
for(i=0;i<5;i++)
{

printf(".");
*led=0x1;
sleep(1);
*led=0x0;
sleep(1);

}

printf("\n\rTest finished\n\r");

munmap(virt_addr, 1000);
close(fd);
return 0;

}

As you can see, the code is simple:

• Opening the device called mem, which allows us to access physical
addresses in memory

• Mapping the physical address 0x80000000 into a virtual address,
managed by the kernel

• Using a variable that points to that virtual address, to blink the LED
in a loop.

Page 97

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

Save the file, and then compile it using gcc:
$ gcc axi_gpio.c -o test

Run the output file:
$ sudo ./test

The LED should blink as expected.

Now, let’s apply this concept to make the LED blink using Python. Instead
of using the same code as before, where there was a main function that
maps the address and makes the LED blink, we can just use the same code
to define a general function, that can be declared in a header file. Modify
axi_gpio.c with the following code:
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include "axi_gpio.h"

int gpio(int value)
{

int *led;

int fd = open("/dev/mem", O_RDWR | O_SYNC);

void *virt_addr = mmap(0, 4096, PROT_READ | PROT_WRITE, MAP_SHARED, fd,0x80000000);
led=(int *)(virt_addr);

*led=value;

munmap(virt_addr, 1000);
close(fd);
return 0;

}

As you can see, we are just declaring a function called gpio, with a parameter
called value. On top, we include a file called axi_gpio.h. Create the header
file adding this code in it:
int gpio(int value);

Compile the file axi_gpio.c again using gcc, and generate a shared object
or .so file:

Page 98

An approach to the Zynq architecture using VCS-1
Chapter 3
Timoteo García Bertoa

$ gcc -shared -o axi_gpio.so -fPIC axi_gpio.c

With this file, we can import C functions in Python. Run Python:
$ sudo python

Run the following commands:
>>> from ctypes import *
>>> gpio =CDLL("./axi_gpio.so")

Finally, you can just turn the LED on with a simple command:
>>> gpio.gpio(1)

Or turn it off:
>>> gpio.gpio(0)

Create a file called axi_gpio.py with this code:
import time
from ctypes import *
gpio =CDLL("./axi_gpio.so")

while True:
gpio.gpio(1)
time.sleep(1)
gpio.gpio(0)
time.sleep(1)

Run the script, and the LED should blink as expected:
$ sudo python ./axi_gpio.py

Page 99

An approach to the Zynq architecture using VCS-1
Chapter 4
Timoteo García Bertoa

4
CHAPTER

What have I learnt?

I hope this book has been useful to you, as much it has been to me. FPGAs,
low-powered devices capable of running applications in real time at high
frequencies, are a passion for many, me included.

Zynq and Zynq Ultrascale+ architectures from Xilinx opened doors towards
an infinity of possibilities, where users take the baton and implement solutions
taking the best out of these devices.

So far, in this book we could make the simplest signal available, a LED,
blink using the Programmable Logic alone and using the Processing System,
both standalone and OS-based. We covered most of the varieties the tools
offer us to design and obtain the same result, using VHDL, C and Python
languages, and learning how to manually do each step, or even use board
files, create Integrated Packages or scripting.

This knowledge is the result of years of experience, and just an injection of
morale for what is to come!

Page 100

	FPGAs. What is that?
	Introduction to Zynq
	Playing with a LED
	Method 1: Using VHDL, programming the PL through JTAG
	Method 2: Using VHDL, using IP Integrator, programming the PL through JTAG
	Method 3: Creating an packaging an IP
	Method 4: Using the PS to provide clocking, standalone, using JTAG
	Method 5: Using C, programming the PS/PL, standalone, using JTAG
	Method 6: Booting from SD card
	Method 7: Using custom board files from Sundance, using a board interface
	Method 8: Automating all the previous methods using scripts
	Method 9: Creating a kernel out of the design, and using Embedded Linux
	Method 10: Using C and Python running Ubuntu

	What have I learnt?

