
Cadre Codesign Inc. - Confidential Information

CT-JPEG04

December 2004
This document is confidential and proprietary to Cadre Codesign Inc.

 It cannot be released, distributed, copied in whole or in part, or modified
without the written permission of Cadre Codesign Inc.

JPEG Compression
Design Specification

Ref: CT-JPEG04 general purpose spec doc.fm

CT-JPEG04

A JPEG Compression Algorithm implementation
1.0 Introduction

This document describes Cadre Codesign (CCI) FPGA implementation for a JPEG
compression algorithm based on the ISO/IEC 10918-1 standard. Dubbed CT-JPEG04, this
development uses Xilinx ®’s Virtex-II FPGA as the reference platform hardware. Data is fed to
the FPGA and is compressed by the CT-JPEG04 engine into a JPEG JFIF format. The core
compresses data by leveraging configurable tables, i.e. quantization and Huffman tables.

The sensor interface specification was was replaced by a set of values, and other than a JFIF,
no output interface were defined. CT-JPEG04 compresses incoming data of 10 pixels of 8 bits
fed to the FPGA on every cycle of a 66 MHz clock and supports speeds of 500 frames per
second at a resolution of 1280 x 1024. The compression ratio, depending on the quantization
and Huffman tables, can vary from 0 to 100.

2.0 JPEG Architecture

2.1 Overview

This section describes in general terms, the different modules that are used in the CT-JPEG04
compression algorithm as shown in the diagram below.

Figure 2.1.0 standard JPEG compression architecture

DCT
8x8

Quantization Zig Zag

Differential
coding

Run Length
Encoding

Variable Length
Coding

dc quantization indices

ac quantization indices

Variable Length
Coding

AC Huffman
table

DC Huffman
table

Quantization
table

JFIF
Format

Input Image
Compressed

Data

Huffman
tables

Quantization
table
 Copyright Cadre Codesign Inc. 2004 Confidential to Cadre Codesign Inc Page 1 of 4

JPEG Architecture Ref: CT-JPEG04 general purpose spec doc.fm
2.1.1 General description

The CT-JPEG04 primary function is to apply a DCT coefficients to input data. These
coefficient apply one of the 64 cosine basic functions to various spatial frequencies (8 x 8
templates) to construct the original block.

Each DCT coefficient is uniformly quantized with a quantization step that is taken from a user-
defined quantization table of 64, 1-byte elements. The quality and compression ratio of an
encoded image can be changed by selecting q-table elements (usually by scaling up or down).

2.2 Design Implementation

The CT-JPEG04 core is composed of 9 modules (detailed below):

• Make Block ! DC_EOB

• DCT ! Huffman

• ZigZag ! Reorder FIFO

• Quantization ! JFIF

• DPCM RLE ! Local Controller

Figure 2.2.0 CT-JPEG04 core design implementation.

2.2.1 MakeBlock

The MakeBlock module memorizes the incoming pixels from the sensor interface, and builds
8x8 blocks required by the DCT transform. At each sensor interface clock cycle (66MHz), the
MakeBlock takes from the incoming frame, of 1280 by 1024 pixel, line by line, 10 pixels of 8
bits. The MakeBlock module outputs blocks of 8x8 pixels at the rate of 8 pixels per clock
period (85MHz).

2.2.2 DCT

The DCT module performs the 2 dimensions Discrete Cosine Transform (DCT). The DCT
module (see: Figure 2.2.2 TDCT module architecture) is composed of 3 sub-modules: two 1-D
DCT and a Transform sub-modules. The DCT module outputs 8x8 DCT coefficients blocks at
the rate eight DCT coefficients per cycle, where each DCT coefficient is 11 bits.

Figure 2.2.2 DCT module architecture

MakeBlock
DCT
8x8

QuantizationZig Zag
DPCM

&
RLE

VLC
(Huffman)

JFIF

Local Controller
JPEG IP Core

DC_EOB
From

Sensor
Interface

To
Output

Interface

DCT

1-D DCT

Transform

To the

Quantization
module

From
Makblock
module

1-D DCT
 Copyright Cadre Codesign Inc. 2004 Confidential to Cadre Codesign Inc Page 2 of 4

JPEG Architecture Ref: CT-JPEG04 general purpose spec doc.fm
2.2.3 ZigZag

For each 8x8 quantized DCT coefficients block, the ZigZag module sorts the 64 coefficients
into a single column of 64 lines according to their ascending frequency. The module, after a
latency of 5 clock cycles, outputs a column at the throughput of 8 quantized DCT coefficients
per clock cycle.

2.2.4 Quantization

The Quantization module divides each block of 8x8 DCT coefficients by a user defined
quantization table of 8x8 integer. This step consists to force many DCT coefficients, especially
the high frequencies ones, to a zero value. Each division result is truncated to the nearest
integer value. At each clock cycle, the Quantization module can process 8 DCT coefficients,
and produces 8 quantized DCT coefficients after one clock cycle of latency.

2.2.5 DPCM–RLE

Composed of two sub-modules, the Differential Pulse Code Modulation (DPCM) and the Run
Length Encode (RLE), the DPCM sub-module treats only the DC coefficient while the RLE
sub-module treats the AC coefficients.

2.2.6 DC_EOB

This module manages the eight pairs of Run Length count and AC coefficient produced at
each clock cycle by the DPCM-RLE module. Depending on the free space in the FIFO
memory, this module will force (or not) the highest frequency AC coefficients (by steps of
eights coefficients) to zero in order to increase the free space in the FIFO, to preserve an
overflow in the FIFO, and to preserve a lost of 8x8 block.

2.2.7 Huffman

Composed of three sub-modules (see: Figure 2.2.7 Huffman module): Config, Code Generator,
Huffman core, the Huffman core sub-module produces one Huffman code and one amplitude
code for each pair of Run Length count and quantized DCT coefficient. It outputs the number
of valid bits for each Huffman or amplitude code, since they are defined on a variable number
of bits. The Huffman are generated by the Code Generator sub-module, which uses the DC
and AC tables are given by the user and stored in the Config sub-module.

Figure 2.2.7 Huffman module

2.2.8 Reorder – FIFO

Sub divided in two sub-modules: the Reorder and the FIFO, this module concatenates, at
each clock cycle (85MHz), 8-pairs of Huffman-amplitude codes into one long data string.
Subsequently, the Reorder sub-module stores the long data string, in packet of 16 bits and in
a chronological order, in the FIFO sub-module. At each clock cycle the Reorder sub-module
can store up to 224 bits of information in the FIFO. The FIFO can memorize 262K of

Huffman

Config Code

Generator

To

Reorder−FIFO
module

From
DPCM−RLE

module

Huffman

core

From
USB or

JFIF module
Output
 Copyright Cadre Codesign Inc. 2004 Confidential to Cadre Codesign Inc Page 3 of 4

Synthesis results Ref: CT-JPEG04 general purpose spec doc.fm
information bits into 16 blocks of RAM, and can output if requested by the JFIF module 16 bits
at each clock cycle (48MHz).

2.2.9 JFIF

The JFIF module sends output files, where each file corresponds to one frame, in the JFIF
format through the Output interface. The file includes all the information to reconstruct the
image, such as some characteristics of the image (size, color, type), the quantization table, the
DC and AC tables of the Huffman module, and the information bits that correspond to the
image.

3.0 Synthesis results

Table 1: Synthesis resultsa

a. Synthesized with Symplify and placer and routed with Xilinx tools

Modules Slices BlkRam Mult 18 x 18

MaleBlock 497 16 0

DCT 1940 0 26

ZigZag 627 0 0

Quantization 264 2 8

DC_EOB 83 0 0

DPCM&RLE 414 0 0

Huffman 668 9 0

Reorder 5560 16 0

JFIF 481 2 0

Controller 158 0 0

Total 10750 45 34
 Copyright Cadre Codesign Inc. 2004 Confidential to Cadre Codesign Inc Page 4 of 4

	1.0 Introduction
	2.0 JPEG Architecture
	2.1 Overview
	Figure 2.1.0 standard JPEG compression architecture
	2.1.1 General description

	2.2 Design Implementation
	Figure 2.2.0 CT-JPEG04 core design implementation.
	2.2.1 MakeBlock
	2.2.2 DCT
	Figure 2.2.2 DCT module architecture

	2.2.3 ZigZag
	2.2.4 Quantization
	2.2.5 DPCM–RLE
	2.2.6 DC_EOB
	2.2.7 Huffman
	Figure 2.2.7 Huffman module

	2.2.8 Reorder – FIFO
	2.2.9 JFIF

	3.0 Synthesis results
	Table 1: Synthesis results

	CT-JPEG04
	A JPEG Compression Algorithm implementation

