
Sundance Multiprocessor Technology Limited

Application Note

Form : QCF32
Date : 11 Februay 2009

Application Note EVP6470-946 Last Edited: 03/12/2012 15:35:00

Unit / Module Description: SMT111-SMT372T-SMT946

Unit / Module Number:

Document Issue Number: 1.0

Issue Date: November 2012

Original Author: Graeme Parker

Application Note
for

EVP6472-946

Sundance Multiprocessor Technology Ltd, Chiltern House,
Waterside, Chesham, Bucks. HP5 1PS.

This document is the property of Sundance and may not be copied
nor communicated to a third party without prior written

permission.
© Sundance Multiprocessor Technology Limited 2009

Application Note EVP6472-946 Page 2 of 21 Last Edited: 03/12/2012 15:35:00

Revision History

Issue Changes Made Date Initials

1.0 Initial release Nov’12 GKP

Please read fully for a thorough understanding of this application note.

Application Note EVP6472-946 Page 3 of 21 Last Edited: 03/12/2012 15:35:00

Table of Contents

1 Introduction ... 4

2 Prerequisites .. 4

3 Firmware (system) Description ... 5

4 Hardware Setup ... 6

5 Xilinx Tools Setup ... 8

5.1 XPS/EDK Setup ... 8

5.2 SDK Setup .. 9

6 XPS/EDK Cores .. 10

6.1 ADC IP Core .. 10

6.2 DAC IP Core .. 12

6.3 HPI IP Core .. 14

6.4 Miscellaneous Cores ... 17

7 Code Composer ... 18

8 Running the Demonstration ... 19

9 Related Documents ... 21

10 Acronyms, Abbreviations and Definitions ... 21

Application Note EVP6472-946 Page 4 of 21 Last Edited: 03/12/2012 15:35:00

1 Introduction

This application note describes the processes involved in sampling data from the
SMT946 into the DSP’s memory.

It also describes a method to “replay” the samples through the SMT946’s DACs.

The SMT946 consists of 4 ADCs and 4 DACs as separate devices. A local 25MHz
clock is also present. All of these devices are connected to the Sundance Local Bus
(SLB) via logic/voltage level translators where appropriate.

The local clock is simply fed via the SLB to the SMT372T’s FPGA as a sampling
reference clock. Two MMCX connectors are also present on the SMT946, each of
which is also routed to the FPGA via the SLB connector.

It is the responsibility of the FPGA to generate the ADC sample start command, to
receive the ADC sampled data, and to send DAC data.

The described firmware is based on a Xilinx Microblaze (MB) processor. This is the
core component of the SMT372T firmware and is responsible for allowing
communication to and from the FPGA’s attached peripherals (Ethernet, DSPs’ Host
Ports, SLB, etc.).

Several IP cores are provided within this FPGA. All sources for these cores is
provided and is compatible with Xilinx ISE/EDK/SDK/BSB. Version 13.4 has been
used in this instance.

2 Prerequisites

It is not essential in order to run this demonstration application but it is highly
desirable for an in-depth knowledge of the following tools:

Xilinx ISE, EDK/SDK/XPS. Version 13.4 has been used throughout the development
of this application.

ISE has primarily been used to create new IP cores and MB peripherals. Xilinx
ChipScope has been used to show the logic functionality.

XPS/EDK has been used to create the MB system which is the heart of the firmware
of the SMT372T.

SDK has been used to create the MB program which controls the whole system.

Code Composer Studio (CCS, Texas Instruments). Version 5 has been used in this
instance. Its features show captured samples in a graphical way.

Application Note EVP6472-946 Page 5 of 21 Last Edited: 03/12/2012 15:35:00

3 Firmware (system) Description

Whilst the major processing elements of the SMT372T are obviously the two
TMS320C6472 DSPs, in some way they can be considered a peripheral of the FPGA.

When the SMT372T boots from power-on, the first action taken is that the FPGA is
configured (automatically) from a bitstream held in flash memory. This bitstream
can easily be changed using the Sundance SMT6002 flash programming utility (for
use on a Windows host PC).

After the FPGA is configured, typically the firmware will include a Microblaze (MB)
32-bit processor. In the application described here, this processor is set to run at
125MHz. The MB processor clock is actually derived from the DSP’s SYSCLKOUT pin.
The SYSCLKOUT pin is set to 25MHz using a Phase Locked Loop (PLL). Note that the
internal speed of the DSP is much higher than this.

In this application it is simpler to let the FPGA execute the default firmware, and
then to load and execute the demonstration firmware using Xilinx’s SDK tools via a
Xilinx JTAG pod.

When the application firmware is loaded, cores are present to:

1) Read the serial data from the ADCs and make this available as 32-bit registers
for the MB.

2) Write from MB accessible registers to the DACs.
3) DMA from either the ADC or DAC to the DSP’s Host Port Interface (HPI).
4) Allow the MB to access the DSP’s HPI.

With the above cores in the firmware, the software that the MB runs performs the
following:

1) Sets the DSP’s PLL to allow the MB to run at 125MHz.
2) Sets the DSP’s HPI destination address to point to DDR memory.
3) Initialises an ADC sample rate.
4) Sets up a DMA to copy ADC samples to the HPI.

The samples will be stored directly into the DSP’s DDR memory. This can then be
viewed in the time or frequency domains using the CCS embedded graph functions.

Application Note EVP6472-946 Page 6 of 21 Last Edited: 03/12/2012 15:35:00

4 Hardware Setup

Set the SMT372T’s DIP switches as shown here:

Build the system with the SMT372T screwed onto the SMT111 (this creates an
EVP6472). Using two SLB extenders (with JTAG breakout), attach the SMT946 to the
EVP6472.

Application Note EVP6472-946 Page 7 of 21 Last Edited: 03/12/2012 15:35:00

Connect a signal generator and oscilloscope to the SMT946. The picture below
shows the signal generator cable in brown and the oscilloscope cable in blue.

An EVP6472 USB connection to a host PC will allow the SMT372T’s flash to be
reprogrammed (not shown connected here).

The SLB extender’s JTAG breakout cable will plug directly into a Xilinx JTAG
programmer (pod).

CCS connects to the SMT111’s JTAG1 header.

Application Note EVP6472-946 Page 8 of 21 Last Edited: 03/12/2012 15:35:00

5 Xilinx Tools Setup

5.1 XPS/EDK Setup

The following screenshot shows the XPS/EDK system assembly view open at the bus
interfaces tab. This shows the MB and its components, and the peripherals for the
ADC, DAC, DMA, and HPI.

The project is called system_372t.xmp and is provided as an archive.

Application Note EVP6472-946 Page 9 of 21 Last Edited: 03/12/2012 15:35:00

5.2 SDK Setup

The following screenshot shows the SDK project during a debug session of the DMA
process:

Application Note EVP6472-946 Page 10 of 21 Last Edited: 03/12/2012 15:35:00

6 XPS/EDK Cores

All of the custom cores were created using XPS. The “create template” check box
was selected to enable quick and easy development. The folder structures are the
defaults that XPS creates.

6.1 ADC IP Core

This core is located here:

.\Firmware\FPGA\Ethernet_Boot-946\pcores\adc_946_burst_v1_00_a

This core is presented with the following features:

It simultaneously samples all 4 channels at a rate determined by the setting in the
sample wait counter. This counter is a 16 bit counter that is programmed by the MB
(see address map). The ADC sampling is performed using a finite state machine
(FSM) within the FPGA. When enabled, by writing to the control register, the FSM
continues to run and control the physical ADC. The ADC sampling (see datasheet) is
initiated by the assertion of the CONVST pin in conjunction with the CS pin. The
ADC will then return a BUSY signal as is performs the requested conversion. During
this time the inputs to the ADC should remain “quiet” (see datasheet). This
improves the performance.

When BUSY is de-asserted the FSM retrieves the samples serially and stores them in
4 16-bit registers, one for each ADC channel. The MB can read these registers at a
maximum speed equivalent to the sample rate. The MB has two memory addresses
to read, each one returning the samples from two channels.

When attempting to read these sample registers, the MB will be put into a wait state
until a valid sample is present.

The sample rate is equivalent to the speed at which the ADC can perform the
conversion and the speed at which the FSM can generate the necessary ADC control
signals. In addition to the basic FSM operation, a 16-bit counter is provided (see
memory map) that delays the FSM operation. This is used to control the sample rate.

Address

Offset

Register Function

0 Control / status Bit:0 1=enable FSM

4 Wait counter 16-bit FSM delay counter

8 ADC 0 & 1 Channels 0 & 1

C ADC 2 & 3 Channels 2 & 3

Notes:

MB address is big endian.

This core has been created with burst support enabled.

Application Note EVP6472-946 Page 11 of 21 Last Edited: 03/12/2012 15:35:00

The ADC core’s FSM operation is shown here in flow diagram format:

START / RESET

Transfer MB regsisters
to DAC output register

Shift data to DAC

WAIT_COUNTER++

WAIT_COUNTER
 = REG1?

Yes

No

No

Yes

New sample
Available?

No

Yes

WAIT_COUNTER = 0

FSM in RST?

Application Note EVP6472-946 Page 12 of 21 Last Edited: 03/12/2012 15:35:00

6.2 DAC IP Core

This core is located here:

.\Firmware\FPGA\Ethernet_Boot-946\pcores\fifo_946_dac_v1_00_a

Contrary to the core name, no FIFO is employed.

In a similar way to how the ADC core operates, when the MB writes to the DAC
registers, the write transaction will only complete if the previous DAC register
values are being shifter serially out to the DAC devices. If a sample remains in the
DAC output registers, then the MB access cycle will stall until there is an empty
transfer register.

A FIFO buffered interface is not needed for this demonstration as the MB is fast
enough (coupled with DMA where necessary) to perform at rates well in excess of
100kHz.

The DAC output word rate is timed in a similar fashion to the ADC by the use of a
wait counter which can be programmed by the MB. In both cases (ADC and DAC) the
wait counter (and associated FSM) operate at the LOCALCLK rate. This is based on a
25MHz fitted oscillator. Other clock source can be used such as the two MMCX
connectors provided.

Address

Offset

Register Function

0 Control / status Bit:0 1=enable FSM

4 Wait counter 16-bit FSM delay counter

8 DAC 0 & 1 Channels 0 & 1

C DAC 2 & 3 Channels 2 & 3

Application Note EVP6472-946 Page 13 of 21 Last Edited: 03/12/2012 15:35:00

The DAC core’s FSM operation is shown here in flow diagram format:

START / RESET

Transfer MB regsisters
to DAC output register

Shift data to DAC

WAIT_COUNTER++

WAIT_COUNTER
 = REG1?

Yes

No

No

Yes

New sample
Available?

No

Yes

WAIT_COUNTER = 0

FSM in RST?

Application Note EVP6472-946 Page 14 of 21 Last Edited: 03/12/2012 15:35:00

6.3 HPI IP Core

Application Note EVP6472-946 Page 15 of 21 Last Edited: 03/12/2012 15:35:00

The previous timing diagram (captured from Xilinx ChipScope) shows the first HPI
transfers that are made from the MB demonstration code.

The corresponding code excerpts are shown here:

 *HPIC[0]=4;

 *HPIA[0] = 0x029A0110/4;

 *HPIDauto[0] = 5;

 *HPIA[0] = 0x029A0100/4;

 *HPIDauto[0] = 0x01;

 *HPIC[0]=0x0000;

 *HPIA[0]=0xE0000000/4;

In each HPI transfer you can clearly see the two 16-bit parts of the transaction; two
HDS2_O active low strobes with alternate states for HHWIL_O.

The following diagram shows the regularly spaced slv_read_ack signal which
corresponds to the ADC sampling rate. After a sufficient amount of samples have
been made, the DMA controller transfers these samples over the HPI using a burst
type transfer. You can see the two 16-bit parts forming samples for ADC channels 0
& 1.

Application Note EVP6472-946 Page 16 of 21 Last Edited: 03/12/2012 15:35:00

Application Note EVP6472-946 Page 17 of 21 Last Edited: 03/12/2012 15:35:00

6.4 Miscellaneous Cores

Other cores that are part of this application can be found in the Xilinx archived
sources.

The DMA IP core is provided by Xilinx.

Application Note EVP6472-946 Page 18 of 21 Last Edited: 03/12/2012 15:35:00

7 Code Composer

The following screenshot shows CCS connected to the first core of the first DSP in
the JTAG scan path.

The memory browser is displaying the contents of the DDR memory which holds the
ADC samples for channels 0 & 1. These are displayed as 16-bit unsigned integers.

The small demonstration program merely sets up the DDR controller. The DSPs’
PLLs have already been setup using HPI transfers from the MB.

At the bottom of the screenshot can be seen a graphical display of the captured
samples.

Application Note EVP6472-946 Page 19 of 21 Last Edited: 03/12/2012 15:35:00

8 Running the Demonstration

Connect the Xilinx download pod to the SLB extender JTAG cable.

Connect the XDS560 (or compatible) to the EVP6472 connector labelled JTAG1.

Connect a suitable signal source as shown, and the DAC output to an oscilloscope.

Power on the system.

Run Xilinx SDK and load the workspace.

Run CCS but do not connect to the target yet. The target will be the first core of the
first DSP in the JTAG path. As the first part of the MB program is to reset the DSPs,
CCS and the XDS560 may be unsettled by this reset process if the core is connected.

Configure the FPGA using SDK option Xilinx Tools > Program FPGA.

The relevant options should already be set as shown here:

Run the MB until after the DMA Complete line. This will take about 34 seconds as it
is capturing 1M samples at 500ks/s.

The next part of the program (commented out):

 for(i=0;i!=5000000;i++) {

 *HPIDauto[0] = *adc01;

 }

Shows capturing data without using DMA.

Application Note EVP6472-946 Page 20 of 21 Last Edited: 03/12/2012 15:35:00

Debug (or Connect to the DSP core) in CCS. Examine the memory contents at
address 0xE0000000 and display this as a single time graph. Start address should be
0xE0000002, 16-bit unsigned, index increment of 2.

The final program part shows “replaying” the samples using the MB in a simple
read/write method.

The DAC output can be observed on an oscilloscope.

Application Note EVP6472-946 Page 21 of 21 Last Edited: 03/12/2012 15:35:00

9 Related Documents

SMT372T User Guide

SMT111 User Guide

EVP6472 User Guide

SLB Specification

SMT946 User Guide

TMS320C6472 product page: http://www.ti.com/product/tms320c6472

ADC product page: http://www.ti.com/product/ads8372

DAC product page: http://www.ti.com/product/dac8831

10 Acronyms, Abbreviations and Definitions

CCS Code Composer Studio

DDR Dual Data Rate. Typically refers to memory.

DSP Digital Signal Processor

EDK Embedded Development Kit

FSM Finite State Machine

MB MicroBlaze (processor)

SDK Software Development Kit

XPS Xilinx Platform Studio

http://www.ti.com/product/tms320c6472
http://www.ti.com/product/ads8372
http://www.ti.com/product/dac8831

