

User manual

Introduction

The polyphase filterbank algorithm is a very efficient way to implement a uniformly distributed multi-channel filterbank using a Fast Fourier Transform (FFT). This Intellectual Property (IP) core was designed to process data in real time up to rates of 1GSPS in Virtex-4 devices. Sundance's core is the fastest and the most efficient available in the FPGA world.

Features

- This IP core targets the following devices:
 ➤ Xilinx: Virtex-IITM, Virtex-II ProTM, Spartan-3TM and Virtex-4TM
- Number of channels: $M=2^{m}$ with m = 3 to 12 (8 to 4096 channels)
- Arithmetic type and data formats :
 - 16-bit integer fixed point
 - Any resolution upon request
- Configurable on the fly filter taps for each channel
- Fully functional VHDL testbench and the related Matlab functions delivered along the FFT/IFFT core for simulation purposes and specific performance characterization.

-1-

Algorithm

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the Discrete Fourier Transform (DFT), that is transform data between the time and frequency domains. Consider the DFT X(k) of a data set consisting of a sequence x(n) multiplied by a window function h(n) implemented in the form of a Finite Impulse Response (FIR) filter.

$$X(k) = \sum_{n=0}^{N-1} h(n) \cdot x(n) e^{\frac{-j2\pi nk}{N}} \text{ with } k = 0, 1, ..., N-1$$

Equation 1: Windowed original function

The Fourier transform computing effort required by the implementation described in Equation 1 is very large. However, it is possible to apply some mathematical tricks to reduce it and make the algorithm implementation fit more easily in FPGA devices. For an FFT implementation, k takes the values 0 to N-1. To prune the output data only a subset of the X(k) values need to be calculated. If N can be factored as rM and only every rth value of X(k) is taken then the calculation is reduced to:

$$X(k') = \sum_{n=0}^{N-1} h(n) . x(n) e^{\frac{-j2\pi n k'}{N}} \text{ with } k' = 0, 1, ..., M-1$$

Equation 2: Windowed pruned function

This can be rearranged in the following manner:

$$X(k') = \sum_{m=0}^{r-1} \sum_{n=0}^{M-1} h(n+mM) \cdot x(n+mM) e^{\frac{-j2\pi nk'}{M}} \text{ with } k' = 0, 1, \dots, M-1$$

Equation 3: Polyphase filterbank

The total workload needed to implement the windowing is unchanged but the FFT is reduced to a single M-point transform. This can be implemented by a structure as the one shown in Figure 1. The data filtering in the polyphase filterbank is performed using two independent filter paths for the In and Quadrature phase samples. This further reduces the computational load by halving the number of multiplications required. The Polyphase filterbank core is therefore implemented as per Equation 4.

$$X(k') = \sum_{m=0}^{r-1} \sum_{n=0}^{M-1} (hI(n+mM).xI(n+mM) + hQ(n+mM).xQ(n+mM)) e^{\frac{-j2\pi nk'}{M}}$$

with k' = 0, 1, ..., M-1. With $xI = I_{in}$ and $xQ=Q_{in}$. With $hI=I_{filter_taps}$ and $hQ=Q_{filter_taps}$

Equation 4: Polyphase filterbank implementation

- 2 -

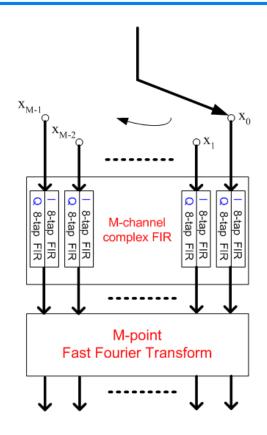


Figure 1: Polyphase filterbank

Implementation

Prior to performing the Fourier transform, the samples undergo first an M-decimation and are filtered using a complex 8-tap filter with independent real and imaginary paths. The filter coefficients are entirely user defined and can be loaded or updated at anytime before or during processing.

The FFT core uses a decomposition of radix-4 and radix-2 butterflies for computing the DFT, ranging from 8 to 4096 points. The FFT length is a user programmable parameter and it can be changed without the need to reconfigure the FPGA.

Fast

Data format

The data format is 16-bit integer fixed point and is kept as such for all processing stages. Please note that the FFT requires normally a 2-bit growth per radix-4 stage, therefore, a scaling coefficient is user programmable in order to keep the best accuracy as possible.

Other data formats are available upon request.

Port name	Port width	Direction	Description
clk	1	Input	Clock
reset	1	Input	Asynchronous reset (active high)
start	1	Input	Start signal (active high). Start is asserted for one clock cycle to start the core. It needs to be asserted once at the beginning unless the core has been given a stop command. The data on I_in and Q_in must be valid on the same clock cycle as start is asserted.
stop	1	Input	Stop is asserted for one clock cycle to interrupt the data processing and put the core in an idle state.
load_filter_taps	1	Output	Load filter pass signal (active high). A new filter tap is loaded to the internal core memory when this signal is active.
I_filter_taps	16	input	In phase filter taps bus. The In phase filter taps coefficients are loaded to the internal core memory via this bus.
Q_filter_taps	16	Input	Quadrature phase filter taps bus. The Quadrature phase filter taps coefficients are loaded to the internal core memory via this bus.
Filter_taps_addr	15	Input	Filter taps address bus. The filter taps will be written to the address provided on this bus. The three Least Significant Bits (2 downto 0), represent the tap indexing in a filter. The Most Significant Bits represent the filter number.
FFT_scaling	4	Input	FFT scaling. The scaling schedule is specified with two bits for every pair of the FFT radix-2 stages. For example, a scaling schedule for Number of channels=256 could be [2 2 2 3]. When the number of channels is not a power of 4, the maximum bit growth for the last stage is one bit. For instance, [0 2 2 2 2] or [1 2 2 2 2] are valid scaling schedules for N=512, but [2 2 2 2 2] is invalid. The two MSBs of FFT_scaling can only be 00 or 01.
NB_CH	3	Input	Number of channels. This parameter is the number of channels present in the signal and is equivalent to the FFT length. The value of NB_CH is log2(number of channels).

Ports definitions

FC108 - Polyphase filterbank

I_in	16	Input	Input data bus: In Phase component
Q_in	16	Input	Input data bus: Quadrature Phase component
I_out	16	Output	Output data bus: In Phase component
Q_out	16	Output	Output data bus: Quadrature component
data_valid	1	Output	Data valid signal: data on the I_out and Q_out bus are valid
overflow	1	Output	Overflow: indicates if the FFT calculation has overflowed during processing. If an overflow is detected the results should be discarded and it is recommended to increase the FFT scaling factor (FFT_scaling) for further processing.

Table 1 : Ports definition

Number of channels

The Number of channels is a parameter fed to the core. This parameter can be either constant or can be changed on the fly in order to perform calculations with a different number of channels. The following table shows the FFTlength code for a given transform length:

Number of Channels	NB_CH code
8	00011
16	00100
32	00101
64	00110
128	00111
256	01000
512	01001
1024	01010
2048	01011
4096	01100

Table 2 : NB_CH codes

- 5 -

Resources usage and performances

Device	Slices	Multipliers 18x18	Block RAMs 18Kb	Fmax
Virtex-II Pro XC2VP40 -7	5,901	36	157	125.0MHz
Virtex-II XC2V8000	5,230	36	157	106.7 MHz

Table2 : Resources usage and performances

Testbench and Matlab programs

The Filterbank core package comprises a VHDL testbench and two Matlab programs to generate data and check results.

Filterbank_TB.vhd: This testbench is designed to work with the Filterbank core. It extracts the core parameters from the 'settings.txt' file and load the filter taps from the 'filter_taps.txt' file. The input data are also read from a file ('data_in.txt') and continuously sent to the core once started. Upon the simulation completion, the results are written to the 'data_out.txt' file. Please make sure that the file paths in the testbench VHDL file are pointing to the folder where the files are being stored.

filterbank_in.m : This Matlab program generates the parameters, filter taps and data in format expected by the core (see Data format). The filterbank core data and the filter taps are saved in an ASCII format respectively in the 'data_in.txt' and 'filter_taps.txt' files. A third file, 'settings.txt', contains the parameters for thefilterbank core simulation.

Please make sure that the file paths in the FFT_test.m Matlab program are pointing to the same files as the VHDL testbench.

filterbank_out.m : This Matlab program reads the files generated by the filterbank_in.m program as well the results of the simulation from the 'data_out.txt' file. It then performs the data processing as per Equation 4 and calculates for each data batch the Signal To Noise Ratio (SNR) that is written to the 'SNR.txt' file.

Please make sure that the file paths in the FFT_test.m Matlab program are pointing to the same files as the VHDL testbench.

Fast

Waveforms

Load filter taps

taps Name	Value	Sti.		170	11.2	180	1 . 1	an .	200			120	1 23	0 .	240		250	1.13	260		270		280	1.1	290
	Value	311	-	N.V.	-	140		~ '	200		206	3.6 ns	1 69		270	-	1.94		190	-	ein	-			190
reset	0	1							L																
Prolk	1		Г	L	5	1		டா			L				L	5	1		1_	1	L	5	1		1
₽ start	0		1																						
₽ stop	0																								
► load_filter_taps	1	1		9.00	2211	11/21			E11112	5	(d)							-							
🖲 🖻 filter_taps_addr	0000	3 8										(0001	X0002		003	X000	-	X000		X000		X000		X000	-
P- I_filter_taps	051C		-914	100		115	102	Const.		(061	C.C.	(0345	(051B		16F	X014	4	X05F	3	XICI	F	(F9E	F) FBC	16
🖲 🖻 🛛 filter_taps	F6DA									XF6	DA	(035C	FSDE)(F	673	X03F	3	X05A	D	XFOR	SA .	XOSE	E	XOD/	17
⊞ ⇔ t_in	UUUU	8	500	1.10		nes.					2.51		27.500	e de la composition de la comp	2010		1000						ang s		200
⊛ ¤ Q_in	UUUU	8 8										1018111													
E 🕶 NB_CH	5					222					244					1920				122	111				
🗄 🖻 FFT_scaling	000		0.022	1.00	8390	0.00			10.02	-00	999	dia an i				1223	100		1.1.1	10.2	200	26204	1943	199	194 A
data_vaid	0						118						8	81			221	100			2.25		nund.	133	
· overflow	0			2000				unaz;			22:					and a		contra							
🗄 🖷 I_out	0000	1	10/2/2	inna	2500	7950	199293	unya.	is one	ason	200		waa u	yayışı	2000	9999	WW	a an	200	unyo	a dan	000	yo ya	uun?	
🖲 🗢 🕄 out	0000	1																							

Figure 2: Load filter taps

The filter taps are loaded to the core by driving the load_filter_taps signal high and incrementing the filter_taps_addr signal. Please note that that the filter taps do not need to be loaded to the core in a sequential order and that updating some of the filter taps during processing is possible.

- 7 -

Start

Name	Value	Sti	i 27,40	1 2750	1 27,60	1 27,70	1 27,90	1 27,90	1 28,00	ı 2810	1 28,20	ı 28j30	1 28	2830 6 pc	1 286	i0 i
► reset	0															
► ck	1															
₽ start	0															
₽ stop	0		0.000.0000										11.12.2.2.4			
► load_filter_taps	0		-			7							1000000			
🖲 🖻 filter_taps_addr	OOFF		X00FD	XOOFE	XOOFF											
P L_fiter_taps	F000		XOB5E	(092E	XF000				_							
🗈 🍽 Q_fiker_taps	F433		(FFID	OHFE	XF433	0.000				200220000		0.000.0000		·/////////////////////////////////////	0.02020452	
🗈 🖻 Lin	ESAD		_				XFF58	(DDID	3321	(E007	X2800	(010C	(E9AD	(3178	X311F	726
⊞ ∾ Q_in	F0A6						C4E9	(ESF8	XE829	(F76C	D79E	(F9E3	FOAS	(2171	FASC	
■ ► NB_CH	5															
	000			1993-1993 (B.S.		0.00000000				Contraction of the					S. C	
• data_valid	0															
 overflow 	0															
± • Lout	0000															
⊞ ® Q_out	0000															

Figure 3: Start

Once the filter taps have been loaded to the core, a start pulse generated by the user interface will signify the start of the processing inside the core. The user parameters (NB_CH and FFT_scaling) and the first data sample are registered inside the core on the same clock cycle as the start pulse. Data samples must then be valid at the input of the core every subsequent clock cycle.

Output data valid

Name	Value	Sti	1890	1900	1910	1920	ı 1930	1940	19	949.3 ns	1970	1 1990	1990	1 20,00	с н.
reset	0														
₽ck	1														
₽ start	0														
₽ stop	0														
Ioad_filter_taps	0	1													
🗉 🖻 filter_taps_addr	003F														
🗄 🖻 L_filter_taps 🛛	F000														
	F433														
⊞ ➡ l_in	DEEF	200	XC776	XF543	C82F	E7AF	3088	(3E88	XDEEF	X379E	X17EA	X12D8	(361E	(1480) FI
⊞ ► Q_in	27A8	27	(0B36	D7DE	XC993	X38D7	(070€	(1885	X27AB	X0070	XE60C	(FB5C	OEFI	(EA89)(F(
⊞ ► NB_CH	3														
■ ► FFT_scaling	000														
data_valid	1														
 overflow 	0														
🖲 🗢 l_out	E0C6					XF17E	XF100	X0EC9	(EOC6	XE900	FASE	XFF99	XEE96	X0AD2)/FE
🗄 🗢 🛈 out	0E2C					XICE3	XCOBS	X1166	YOEZ	XOF97	X0988	XFFEC	XF840	YF2EE	X01

Figure 4: output data valid

The results are valid on the I_out and Q_out data buses when the data_valid signal is high.

- 9 -

References

[1] Bellanger and Daguet, 'TDM-FDM Transmultiplexer: Digital Polyphase and FFT', IEEE Trans Com, Vol Com-22, N° 9, pages 1199-1205, Sept 1974

[2] Crochiere and Rabiner, 'Multirate Digital Signal Processing', Prentice-Hall, NJ, 1983

[3] John Button 'Multi-resolution FX correlator', CSIRO Telecommunications and Industrial Physics, ALMA memo 447, 2003

- 10 -