
Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 1 -

User manual

Introduction

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the Discrete
Fourier Transform (DFT). This Intellectual Property (IP) core was designed to offer very
fast transform times while keeping a floating point accuracy at all computational stages.
Sundance’s core is the fastest and the most efficient available in the FPGA world. Based
on a radix-32 architecture, it also saves memory resources compared to other floating
point cores available on the market.

Features

• This IP core targets the following devices:
 Xilinx: Virtex-IITM, Virtex-II ProTM, Spartan-3TM and Virtex-4TM

• Forward and inverse complex FFT

• Transform sizes: 2m with m = 8 to 20
 (256, 512, 1024, …, 1M points)

• Arithmetic type : floating point

• Data formats

 IEEE-754
 24-bit mantissa, 8-bit exponent, 2’s complement
 14-bit mantissa, 8-bit exponent, 2’s complement
 Any mantissa and exponent precision upon request

• Configurable on the fly forward or inverse operation

• Configurable on the fly transform length

• Fully functional VHDL testbench and the related Matlab functions delivered

along the FFT/IFFT core for simulation purposes and specific performance
characterization.

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 2 -

Functional description

The Discrete Fourier Transform (DFT), of length N (N=2m), calculates the sampled
Fourier transform of a discrete-time sequence with N points evenly distributed.

The forward DFT with N points of a sequence x(n) can be written as follows:

∑ −

=

−

=
1

0

2

)()(N

n
N

nkj

enxkX
π

 with k = 0, 1, …, N-1

Equation 1: DFT

The inverse DFT is given by the following equation:

∑ −

=
=

1

0

2

)(1)(N

k
N

nkj

ekX
N

nx
π

 with n = 0, 1, …, N-1

Equation 2 : Inverse DFT

Algorithm

The FFT core uses a decomposition of radix-2 butterflies for computing the DFT. With 5
different stages, the processing of the transform requires log32(N) stages. To maintain an
optimal signal-to-noise ratio throughout the transform calculation, the FFT core uses a
floating point architecture with 8-bit exponent for the real and imaginary part of each
complex sample. This FFT core employs the decimation in frequency (DIF) method.

This FFT core is designed for FFT computation larger or equal to 1k points and up to 1M
points. Since FPGAs memory resources are limited and relatively small, the memory
banks used for the processing of the transform are not integrated in the core. External
memory, such as QDR SRAM, ZBT RAM, DDR SDRAM or SDRAM is most suited for
transforms larger than 16384 points. For shorter transforms, memory banks can likely be
implemented inside the FPGA depending on which device is used.

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 3 -

Data format

This core, when used in combination with Sundance’s float converter, is compliant to the
IEEE standard 754 for Binary floating-point arithmetic.

Other data formats available for this core are coded in 2’s complement for both the
mantissa and exponent.
The 8-bit exponent ranges from -128 to 127
The 24-bit mantissa ranges from -8388608 to 8388607
For implementations that require a different bit width p, values will range from -2(p-1) to
2(p-1) – 1.
The exponent bit width is noted Ebw. The mantissa bit width is noted Mbw.

Parameters and Ports definitions

Parameter name type Value Description

addr_width integer ≥ 8 and
≤ 20

Address width. This parameter (also noted Abw)
indicates the width of the address bus for twiddle
factors and data. If N is the maximum transform length
used for computing the FFT, then Abw=log2(N).
Please note that the transform length can be changed
on the fly by assigning a new FFT length when
restarting the core. However this new transform length
cannot be larger than 2Abw. Assigning the smallest
address width as possible is recommended for
achieving higher clock frequencies during synthesis.

Table 1 : Parameters definition

Port name Port width Direction Description

clk 1 Input Clock

reset 1 Input Asynchronous reset (active high)

cke 1 Input Clock enable (active high). When low, the clock inside the
core is disabled. If forced low, the cke signal must be remain
low for at least 4 clock cycles to ensure proper operation of
the core.

start 1 Input FFT start signal (active high). Start is asserted for one clock
cycle to start the core and the address generators. It is only
asserted once for continuous data processing (the core will
restart automatically every time a transform is complete). A

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 4 -

new start pulse will act as a synchronous reset, will restart the
core and discard the transform that was currently computed.

stop 1 Input FFT stop signal (active high). Stop is asserted for one clock
cycle to indicate that the current transform being computed is
the last one. The core will not restart automatically a new
transform after a stop pulse is received.

done 1 Output FFT done signal (active high). A done pulse indicates that the
results of the current transform are ready. The done pulse is
active on the first active cycle of the result_valid signal.

FFTlength 5 input FFT transform length. Please refer to the Transform length
section of this document for more details.

FFT_nIFFT 1 Input FFT direction. High FFT, Low IFFT. This signal is
registered inside the core on a start pulse.

empty_pipeline 1 Input Empty the core pipeline before processing the next FFT/IFFT
pass.
If High, this signal will force the core to wait for all the data
of an FFT/IFFT pass to be output before the next pass can be
started. This is useful in a configuration where the processing
memory banks are swapped every new pass.
If Low the FFT core will start reading the data from the
memory before the core has completed the calculations for
the previous pass.
This signal is registered inside the core on a start pulse.

tw_din_addr_valid 1 Output Address valid strobe. This signal indicates that the current
addresses on tw_addr and din_addr are valid.

tw_addr Abw Output Twiddle factors address bus. This busgives the address in the
memory where the twiddle factors must be read from.

din_addr Abw Output Data input address bus. This bus gives the address in the
memory where the input data must be read from.

din_bank 1 Output Data input memory bank. This signal indicates which data
memory bank is used as the input bank.

tw 2.Mbw+2.Ebw
or 32 for

IEEE-754

Input Twiddle factors input. This bus should be connected to the
memory containing the twiddle factors. The data
decomposition is as follows.
Real mantissa: bits Mbw-1 down to 0
Imag mantissa: bits 2.Mbw-1 down to Mbw
Real exponent: bits 2.Mbw+ Ebw-1 down to 2.Mbw
Imag exponent: bits 2.Mbw+ 2.Ebw-1 down to 2.Mbw+ Ebw

din 2.Mbw+2.Ebw
or 32 for

IEEE-754

Input Data input. This bus should be connected to the input data
bank currently used for processing. The data decomposition is
as follows.
Real mantissa: bits Mbw-1 down to 0
Imag mantissa: bits 2.Mbw-1 down to Mbw
Real exponent: bits 2.Mbw+ Ebw-1 down to 2.Mbw
Imag exponent: bits 2.Mbw+ 2.Ebw-1 down to 2.Mbw+ Ebw

tw_din_valid 1 Input Twiddle factors, data input valid. This signal should be
asserted high when the data input (din) and twiddle factors
(tw) are valid.

dout_addr_valid 1 Output Data output address valid strobe. This signal indicates that the
current address on the dout_addr bus is valid

dout_addr Abw Output Data output and results address. This bus gives the address in
the memory where the output data (dout) must be written to.

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 5 -

dout_bank 1 Output Data output memory bank. This signal indicates which data
memory bank is used as the output bank.

dout 2.Mbw+2.Ebw
or 32 for

IEEE-754

Output Data output. This bus should be connected to the output data
bank currently used for processing. The data decomposition is
as follows.
Real mantissa: bits Mbw-1 down to 0
Imag mantissa: bits 2.Mbw-1 down to Mbw
Real exponent: bits 2.Mbw+ Ebw-1 down to 2.Mbw
Imag exponent: bits 2.Mbw+ 2.Ebw-1 down to 2.Mbw+ Ebw

dout_valid 1 Output Data out valid strobe. This signal indicates that the data on
the dout bus are valid and can be written to a memory bank
for further processing.

result_valid 1 Output Result valid strobe. This signal indicates that the data on the
dout bus are the final results of the transform and must be
written to the results memory bank.

Table 2 : Ports definition

Transform length

The FFT transform length is a parameter fed to the core. This parameter can be either
constant or can be changed on the fly in order to perform an FFT or Inverse FFT with a
different transform length.

The FFT length parameter as well as the FFT direction (FFT_nIFFT) is registered when a
start pulse is sent to the core. In the case the FFT transform length is a constant parameter
passed to the core, it is recommended to match the address bit width (addr_width) with
the length N of the transform: addr_width=log2(N). This will yield the best synthesis
results and guarantee an optimal clock frequency for this implementation. In any other
case 2addr_width must be bigger or equal to the longest transform length N.
The following table shows the FFTlength code for a given transform length:

Transform length FFTlength
code

Number of passes
through the core

256 00010 2
512 00011 2
1024 00100 2
2048 00101 3
4096 00110 3
8192 00111 3

16384 01000 3
32768 01001 3
65536 01010 4

131072 01011 4
262144 01100 4
524288 01101 4
1048576 01110 4

Table 3 : FFTlength codes

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 6 -

Twiddle factors

The twiddle factors used during the transform computation must be stored in a memory
accessible by the FFT core. The twiddle factors for a forward FFT of length N are given
by the following equation:

e N
kj

kTw
π2

)(
−

= with k = 0, 1, …, N-1

Equation 3: Twiddle factors DFT

The inverse FFT twiddle factors can be calculated as follows.

e N
kj

kTw
π2

)(= with k = 0, 1, …, N-1

Equation 4: Twiddle factors IDFT

The FFT core package comprises a Matlab program (FFT_test.m) and subroutines that
generate the twiddles factors and write them to a file (fftcore_twiddle) in the floating
point format required.

Memory

The memory banks are external to the FFT core. Two banks are dedicated to data
processing. The signals din_bank and dout_bank indicate which bank is used for input
and which bank is used for output. Every new pass, the banks are swapped as the FFT
core needs to access the data calculated from the previous pass.

Minimal memory usage architecture

The block diagram below shows a configuration that uses as few memory banks as
possible. Please note that a system using dual port memory or QDR SRAM will only
require one data bank.

Figure 1 : Minimum memory usage architecture

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 7 -

The output data bank is either A or B. The number of passes through the core will help to
determine which one is the output data bank. Table 3 shows the number of passes in
function of the transform length. If the number is odd for a given transform length, the
FFT results will be in data bank B. If even, the results will be stored in data bank A.

Streaming IO architecture

A streaming IO architecture is presented below for continuous data processing. Please
note that a system using Dual Port Memory or QDR SRAM will only require two data
banks.

Figure 2 : Streaming IO memory architecture

Streaming IO processing with concurrent data input and data output requires 5 memory
banks to be connected to the FFT core. In this type of architectures, the maximum
continuous throughput depends on the number of passes through the FFT engine and the
clock rate is it running at. The table below shows how the memory banks are used when
performing several transforms in a row.

Bank Pass 1

FFT 1
Pass 2
FFT 1

Pass 3
FFT 1

Pass 1
FFT 2

Pass 2
FFT 2

Pass 3
FFT 2

Pass 1
FFT 3

Pass 2
FFT 3

Pass 3
FFT 3

Data A Write input data for FFT 2 FFT read FFT write FFT read FFT write FFT read FFT write

Data B FFT read FFT write FFT read FFT write FFT read FFT write Read output results of FFT 2
Data C FFT write FFT read FFT write Read output results of FFT 1 Write input data for FFT 4
Data D Read output results of FFT 0 Write input data for FFT 3 FFT read FFT write FFT read

Twiddles read read read read read read read read read

Table 4 : Memory banks for a streaming IO architecture

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 8 -

Memory latency

The FFT core generates the addresses for twiddles factors, data input and data output.
The memory latency is calculated as the number of clock cycles it takes between the
address is valid on the core address bus and the twiddle factors or data are available at the
input of the FFT core. This latency can be up to 15 clock cycles. The FFT core expects
the latency to be the same for the twiddle factors and the data input and to remain the
same during the transform computation. This latency is automatically calculated inside
the FFT core by monitoring the tw_din_valid signal (driven high by the user few clock
cycles after tw_din_addr_valid goes high).

Radix-32 vs Radix 2

Sundance’s radix-32 butterfly architecture allows the core to be connected to much less
memory for the same processing performances than designs with radix-2 butterflies
implemented in parallel. The following table shows how much memory is required to
perform an FFT in both configurations.

FFT length
radix-32 memory required

(in Mbytes)
radix-2 memory required

(in Mbytes)
256 0.02 0.08
512 0.04 0.18
1024 0.08 0.39
2048 0.23 0.86
4096 0.47 1.88
8192 0.94 4.06
16384 1.88 8.75
32768 3.75 18.75
65536 10.00 40.00

131072 20.00 85.00
262144 40.00 180.00
524288 80.00 380.00
1048576 160.00 800.00

Table 5: Radix-32 vs Radix-2 memory usage
Data throughput=maximum data throughput as shown in Table 7

Using a radix-32 architecture substantially reduces the number of memory resources
required. The main benefit is seen at the system level. A single-width PMC module used
to perform long transforms with Sundance’s FFT core, achieves the same level of
processing performances as a radix-2 implementation spread over two 6U CompactPCI
boards bundled with multiple FPGAs and memory devices.

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 9 -

Resources usage and performances

The following table summarizes the resources usage and performances of a 24-bit
mantissa, 8-bit exponent floating point FFT/IFFT core.

Device Slices Multipliers 18x18 Block RAMs
18Kb Fmax

Virtex-4
XC4VLX40 -12 12394 40 36 200.2 MHz

Virtex-II Pro
XC2VP40 -7 12293 40 36 175 MHz

Spartan-3
XC3S4000-5 12835 40 36 105.3 MHz

Table 6 : Core resources usage

The FFT/IFFT processing time with an FPGA internal clock running at 200MHz is
shown in the table below.

FFT/IFFT transform size Processing time Sustained throughput
in MSPS

256 3.68µs 69.6
512 6.24µs 82.1

1024 11.4µs 90.1
2048 31.8µs 64.3
4096 61.4µs 66.7
8192 123µs 66.7

16384 246µs 66.7
32768 492µs 66.7
65536 1.31ms 50.0
131072 2.62ms 50.0
262144 5.24ms 50.0
524288 10.5ms 50.0

1048576 21ms 50.0

Table 7: Core performances

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 10 -

The following graph displays the Signal to Noise Ratio of a Fast Fourier Transform
performed over a 1024 points random vector with a 24-bit wide mantissa and 8-bit wide
exponent. The software Discrete Fourier Transform was calculated using the FFTw
function with a float accuracy (http://www.fftw.org/).

Figure 3: FFT SNR

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 11 -

Testbench and Matlab programs

The FFT core package comprises a VHDL testbench, three Matlab programs and a C
program implementing the FFTw functions.

fftcore_TB.vhd: This testbench is designed to work with the FFT core. It reads the
twiddle factors from a file (‘fftcore_twiddle.txt’) and stores them in the twiddle factors
memory bank connected to the core. The input data are also read from a file
(‘fftcore_data_in.txt’) and stored in a memory bank that will be accessed by the core once
started. Upon the transform completion, the results, available in one of the processing
memory banks, are written to a file (‘fftcore_results.txt’).

FFT_test.m : This Matlab program generates data and twiddle factors in the floating
point format expected by the core (see Data format). The data to be input to the FFT core
and the twiddle factors are saved in a text format respectively in the ‘fftcore_data_in.txt’
and ‘fftcore_twiddle.txt’ files.

Analyse_FFT_results_Matlab.m : This Matlab program reads the output result file
(‘fftcore_results.txt’) from the FFT core, calculates the expected results with the fft
Matlab function and returns the Signal-to-Noise Ratio. The data used for the transform
calculation by the Matlab fft function come from the FFT_test.m program.

Analyse_FFT_results_FFTw.m : This Matlab program reads the output result file from
the FFT core, reads the FFT results from the FFTw results file and returns the Signal-to-
Noise Ratio.

UseFFTw : This directory contains the source files and executables of the UseFFTw
program that reads the data input for the FFT core (‘fftcore_data_in.txt’) and calculates
the FFT results using the FFTw functions (http://www.fftw.org).
Three parameters are expected when executing the program:
FFT length: 256, 512, …, or 1048576.
Data input file name: fftcore_data_in
Data output file name: fftw_results

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 12 -

The data input file is coded in integer format for the mantissa/exponent and is organized
as follow:
Line1: Mantissa Real0
Line2: Mantissa Imag0
Line3: Exponent Real0
Line4: Exponent Imag0
Line5: Mantissa Real1
…

The data output file is coded in float and is organized as follow:
Line1: Real0
Line2: Imag0
Line3: Real1
Line4: Imag1
Line5: Real2
…

The UseFFTw program can be modified and recompiled by users using Microsoft Visual
C++.

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 13 -

Waveforms

Start

Figure 4: Start

Figure 3 shows how the FFT core must be started. The start signal is driven high for one
clock cycle. The first address for the data and twiddles is generated after 7 clock cycles.
The user then fetches the twiddles and data in the memory and drives the signal
tw_din_valid high. A new data and twiddle are then expected every new clock cycle.

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 14 -

Data input memory bank swap

Figure 5 : Memory bank swap

When the core requires a new pass to be computed, it needs to get the results data from
the previous pass as input data. A pass transition is indicated by an inversion of the
din_bank signal. This signal can be used to multiplex the memory banks connected to the
core during processing.

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 15 -

Continuous processing between two consecutive passes

Figure 6 : empty_pipeline low

When a pass transition occurs, the din_bank and dout_bank signals are inverted.
However, due to the core latency, the dout_bank signal is inverted after the din_bank
signal, when all the data for the previous pass have been processed through the core.
Forcing the empty_pipeline signal low when starting the core will enable to continuously
process data through the core without pausing between two consecutive passes. As a
result the core will need to access the same memory bank for read and write operations
simultaneously. Therefore, if this mode is used, the processing memory banks connected
to the core must be dual port.

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 16 -

Halted processing between two consecutive passes

Figure 7 : empty_pipeline high

When the empty_pipeline signal is driven high, the core will pause the processing
between two consecutive passes in order to empty the data pipeline. As shown on the
waveform above, a new pass is started only when all the data from the previous pass have
been processed through the core and written to memory. This mode should be used when
the data processing memory banks are single port.

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 17 -

 Results

Figure 8 : Results

When the last pass of the algorithm is processed, the data coming out of the core are the
results of the transform. These results are in a non-sequential order and must be written in
memory at the addresses given on the dout_addr bus. The transform results are stored in
memory in a bit-reversed order.

Floating Point Fast Fourier Transform v2.1

Fast Fourier Transform product manual
May 2005 www.sundance.com - 18 -

Done

Figure 9 : Done

After the last result data has been output from the core, the done signal is high for one
clock cycle, indicating the completion of the transform. A new transform is then
processed through the core.

