

External Interface

User Manual

Certificate Number FM 55022

Revision History

Date	Comments	Engineer	Version
27/01/03	First version	J.V.	1.0
26/08/03	ComPort notation updated	J.V.	1.1
31/10/03	SDL section added	JPA	1.2
31/04/05	Comport interrupt condition detailed	J.V.	1.3

Table of Contents

Revision History	2
Contacting Sundance	4
Notational Conventions	5
Register Descriptions	5
Introduction	6
Interrupts	7
Interrupt Control Register	8
SDB Interrupt Control Register	9
Global Status Register	. 10
SDB Status Register	. 11
Global bus status register	. 11
Communication ports	. 12
Overview	. 12
ComPort Status and Control Register	. 13
ComPort Status and Control Register	. 14
Debugging flags	. 15
Sundance Digital Link	. 18
Overview	. 18
SDL debugging flags	. 20
SDB	. 21
SDB Status Register	. 22
Debugging flags	. 23
Output Flag Register	. 24
Input Flag Register	. 24
SDB Interrupts	. 24
DMA	. 26
SDB Initialisation	. 27
Suspending SDB transmission	. 27
Bus exchange	. 27
Data formatting	. 28
Global bus	. 29

Writing to the Global Bus	29
Reading from the Global Bus	30
Programmable Wait States	31
Additional feature	32
Triggering the transfer with ADC	32
Address reload	32
BUSY feed-back	32
Clock selection	32
STAT0 pulse	32
Global Bus access	32
HOLD	33
Global control configuration:	33
Global Bus Operation Register	34
Global Bus Control Register	35
SMT310, SMT310Q, SMT300, SMT300Q	36
LED register	37
Typical LED Register	37
CONFIG & NMI	38
Config Register	38
Timer	39
Timer Control Register	39
IIOF interrupt	40
IIOF Register	40
Virtex Memory Map	41
SDB Pin-Out	43
Index	45

Contacting Sundance

You can contact Sundance for additional information by going onto Sundance's support forum http://support.sundance.com/

Notational Conventions

Register Descriptions

The format of registers is described using diagrams of the following form:

31–24	23–16	15–8	7–0
	OFLAGLEVEL		
R,00000000	RW,1000000	R,0000000	R,1000000

The digits at the top of the diagram indicate bit positions within the register and the central section names bits or bit fields. The bottom row describes what may be done to the field and its value after reset. Shaded fields are reserved and should only ever be written with zeroes.

R	Readable by the CPU			
W	Writeable by the CPU			
RW	Readable and writeable by the CPU			
Binary digits indicate the value of the field after reset.				

Introduction

This document gather all the functionality of the typical Sundance's firmware so that the manual for each TIM can refer to it and only specify the additional features provided.

Interrupts

The generation of a CPU interrupt by a ComPort, an SDB, or the Global Bus starts when the FPGA asserts an *interrupt condition*. For example, this may be the result of an input FIFO becoming not empty or an output FIFO not full.

The interrupt condition is then further controlled by *interrupt condition enables* in the FPGA. If enabled, an asserted interrupt condition will cause one of the CPU's external interrupt lines to be asserted and an interrupt event to be latched in the processor's Interrupt Flag Register (IFR).

Finally, the processor will be interrupted, providing the interrupt event is enabled in the processor's Interrupt Enable Register (IER) *and* the Global Interrupt Enable (GIE) is set in the processor's Control and Status Register (CSR).

The DSP provides four external interrupt input lines, EXT_INT4, EXT_INT5, EXT_INT6, and EXT_INT7, which can be driven by a variety of interrupt conditions. Each external interrupt has a separate interrupt control register (INTCTRLn) where you set bits to enable the interrupt condition.

31–30	29–28	27–26	25–24	23–22	2	21–20	19–18	17–16
CP0 IE	CP1 IE	CP2 IE	CP3 IE	CP4	IE	CP5 IE	SDB0 IE	SDB1 IE
RW,00	RW,00	RW,00	RW,00	RW,0	0	RW,00	RW,00	RW,00
15		14	13			12	11	10
GB IE	: Т	CLK1 IE	TCLK	DIE	H	OF2 IE	IIOF1 IE	IIOF0 IE
RW,0		RW,0	RW,0)		RW,0	RW,0	RW,0
				9–0				

Interrupt Control Register

RW,000000000

Field	Description	Interrupt cor	ndition selected	
CPx IE(bit 0)	ComPort Input FIFO Interrupt	IFBM=0	not empty	
	Enable	IFBM=1	8 words available	
CPx IE (bit 1)	ComPort Output FIFO Interrupt Enable	OFBM=0	not full	
		OFBM=1	8 spaces available	
SDBx IE (bit 0)	SDB IFLAG Interrupt Enable	≥ IFLAGLEVEL words available		
SDBx IE (bit 1)	SDB OFLAG Interrupt Enable	≥ OFLAGLEVEL spaces available		
GB IE	Global Bus Interrupt Enable	STAT = 1		
TCLKn IE	TIM clock interrupt enable	See TIM specification		
llOFn IE	External line interrupt enable	See TIM specification		

It is possible to map more than one condition to an interrupt line. For example, you might map all of the ComPort conditions to a single interrupt line and then use the Global Status Register to find which condition or conditions had caused the interrupt.

SDB Interrupt Control Register

	31–30	29–2	28	27–26	25–24	23–22	2	21–20	19–18	17–16
	SDB0 IE	SDB ²	1 IE	SDB2 IE	SDB3 IE	SDB4	IE	SDB5 IE	SDB6 IE	SDB7 IE
	RW,00	RW,	00	RW,00	RW,00	RW,00)	RW,00	RW,00	RW,00
	45 44	40	10	11 10	0.0	7.0		5.4	2.2	1.0
	15–14	13–1	12	11–10	9–8	7–6		5–4	3–2	1–0
	SDB8 IE	SDB9	9 IE	SDB10 IE	SDB11 IE	SDB12	2 IE	SDB13 IE	SDB14 IE	SDB15 IE
	RW,00	0 RW,00 RW,0		RW,00	RW,00 RW,00)	RW,00	RW,00	RW,00
_			1				-			
	Field		Description			Int	errupt con	dition sele	cted	
	SDBx IE (I	oit 0)	SDB IFLAG Interrupt Enable			able	≥∣	FLAGLEV	EL words	available
	SDBx IE (bit 1) SDB OFLAG Interrupt Enable			≥ (OFLAGLE	VEL space	es available			

31–30	29–28	27–26	25–24	23–22	21–20	19–18	17–16
CP0 STAT_INT	CP1 STAT_INT	CP2 STAT_INT	CP3 STAT_INT	CP4 STAT_INT	CP5 STAT_INT	SDB0 STAT_INT	SDB1 STAT_INT
R,10	R,10						
15–14	13–12	11–10	9–8	7–6	5–4	3–2	1–0
CP0 STAT	CP1 STAT	CP2 STAT	CP3 STAT	CP4 STAT	CP5 STAT	SDB0 STAT	SDB1 STAT
R,10	R,10						

Global Status Register

Field	Description (flags active when 1)
CPx STAT(0)	Data available in input FIFO: not (Incoming FIFO Empty Flag)
CPx STAT(1)	Space available in output FIFO: not (Outgoing FIFO Full Flag)
CPx STAT_INT(0)	Input interrupt condition asserted
CPx STAT_INT(1)	Output interrupt condition asserted

The status reflected by STAT_INT depends on the flag settings for the SDBs and the ComPort burst mode flags, IFBM and OFBM (see ComPort status and control register).

The Global Status Register is used by the standard boot loader to detect the ComPort to be used for initial program loading, and is used by interrupt service routines to detect which link has interrupted in an application using several links simultaneously.

31–30	29–28	27–26	25–24	23–22	21–20	19–18	17–16
SDB0 STAT_INT	SDB1 STAT_INT	SDB2 STAT_INT	SDB3 STAT_INT	SDB4 STAT_INT	SDB5 STAT_INT	SDB6 STAT_INT	SDB7 STAT_INT
R,10	R,10	R,10	R,10	R,10	R,10	R,10	R,10
15–14	13–12	11–10	9–8	7–6	5–4	3–2	1–0
SDB8 STAT_INT	SDB9 STAT_INT	SDB10 STAT_INT	SDB11 STAT_INT	SDB12 STAT_INT	SDB13 STAT_INT	SDB14 STAT_INT	SDB15 STAT_INT
R,10	R,10	R,10	R,10	R,10	R,10	R,10	R,10

SDB Status Register

Field	Description (flags active when 1)
SDBx STAT_INT(0)	Input interrupt condition asserted
SDBx STAT_INT(1)	Output interrupt condition asserted

Global bus status register

31–16				
R,000000	000000000000			
14-13	12	11	10	
	IIOF2 INT	IIOF1 INT	IIOF0 INT	
RW,00	RW,0	RW,0	RW,0	
9–0				
RW,00000000				
Description (flags active when 1)				
	Global bus interrupt condition asserted			
	R,0000000 14-13 RW,00 RW,00 RW,00 RW,0 Clobal bus interr	R,000000000000000000000000000000000000	R,000000000000000000000000000000000000	

Communication ports

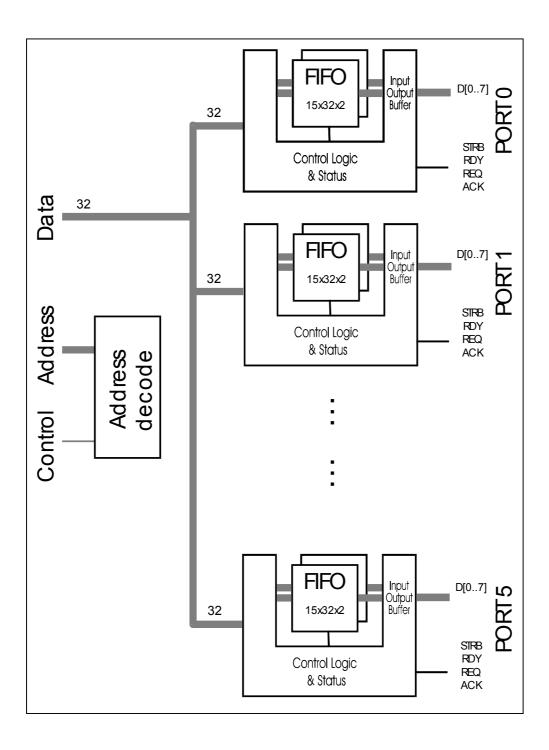
Overview

According to the board you can get up to six 8-bit, data-parallel, inter-processor links that follow Texas Instruments' TMS320C4x Communication Port standard. Additional information on the standard is available in the TMS320C4x User's Guide chapter 12: *Communication ports and the Texas Instrument Module Specification.*

The standard gives a TIM six links numbered from 0 to 5. Each link can be a transmitter or a receiver, and will switch automatically between these states depending on the way you use it. Writing to a receiver or reading from a transmitter will cause a hardware negotiation (token exchange) that will reverse the state of both ends of the link.

Following a processor reset, the first three links (0, 1, and 2) initialise as transmitters and the remainder (3, 4, and 5) initialise as receivers. When you wire TIMs together you *must* make sure that you only ever connect links initialising as transmitters to links initialising as receivers; never connect two transmitters or two receivers. For example, connecting link 0 of one TIM to link 4 of another is safe; connecting link 0 of one TIM to link 2 of another could damage the hardware.

Always connect ComPorts 0, 1, or 2 to ComPorts 3, 4, or 5.


On most carrier board the physical connection between ComPorts is made with FMS cables (Ref. SMT3xx-FMS). You must be careful when connecting the cables the make sure that one end is inserted in the opposite sense to the other. One end must have the *blue* backing facing out and the other must have the *silver* backing facing out.

The SMT310Q (SMT320) motherboard communicates with the host PC using ComPort 3 of the site 1 TIM. You should not make any other connections to this ComPort.

ComPorts

A TIM can have access up to six FIFO-buffered ComPorts, fully compliant with the Texas Instruments' standard [Error! Reference source not found.].

Each ComPort is associated with two 15x32-bit unidirectional FIFOs; one for input and one for output. An additional one-word buffer makes them appear as 16x32-bit FIFOs. These allow the guaranteed maximum transfer rate of 20MB/s to be achieved.

31	30	29–28	27	26	25	24	23–20	19–16	15–12	11-8
IER	OER		IFF	IFE	OFF	OFE		IFL		OFL
R,0	R,0		R,0	R,1	R,0	R,1		R,0000		R,1111
7		6	5		4	3	2	2	1	0
ICPRD	Y OC	PRDY	CLRC		FBM	OFBM	CLI	RIF	CLROF	DIR
R,0		R,1	W,0		RW,0	RW,0	W	,0	W,0	R,0

ComPort Status and Control Register

Field	Description (flags are active when 1)				
DIR	0 Reading				
DIR	1 Writing				
CLROF	Write 1 to clear outgoing FIFO				
CLRIF	Write 1 to clear incoming FIFO				
OFBM	0 Single-word operation Output FIFO Burst Mode				
OFDIM	1 8-word burst mode operation				
IFBM	0 Single-word operation				
	1 8-word burst mode operation				
CLRCP	Reset ComPort: Both FIFOs are cleared and the ComPort interface is set back to its default direction. Use with caution (see below).				
OFL	Output FIFO Level: Number of words (0–15) which can be written				
OCPRDY	ComPort interface buffer OCPRDY='1' if empty				
IFL	Incoming FIFO level: Number of words (0–15) available to be read				
ICPRDY	ComPort interface buffer; ICPRDY='0' if empty				
OFE	Outgoing FIFO Empty Flag (space is available for writing 16 words)				
OFF	Outgoing FIFO Full Flag				
IFE	Incoming FIFO Empty Flag				
IFF	Incoming FIFO Full Flag (16 words are available to be read)				
OER	Output error. The DSP has written to a full output FIFO.				
IER	Input error. The DSP has read from an empty input FIFO.				

There is a control and status register for each of the ComPorts. There is also one read-only Global ComPort Status Register that gathers status from all ComPorts in one place.

Debugging flags

The bit OER has been added to show when an output error occurs. It shows that a transfer has not been configured correctly (typically dma transfer). This flag gets set when a write is performed to a full FIFO and data has been lost. It can be cleared by clearing the output FIFO (using CLROF). A working application should never set this bit.

The bit IER has been added to show when an input error occurs. It shows that a transfer has not been configured correctly (typically dma transfer). This flag gets set when a read is performed from an empty FIFO and invalid data has been read. It can be cleared by clearing the input FIFO (using CLRIF). A working application should never set this bit.

□ Writing

The ComPort output buffer will be loaded with the first word written by the DSP; the next 15 writes will fill up the output FIFO. When the FIFO is full OFL will be 0 and OFF will be 1. Any further writes from the DSP will be discarded.

□ Reading

The 15 first words received will fill the input FIFO; the 16th word received will be kept in the ComPort input buffer. The DSP can read up to 16 words; any further read will return an indeterminate value.

Reset

CLRCP should only be used in special applications where the link's token exchange has been disabled. This will usually be where the other end of a link is a device—not another ComPort—that will never attempt to change the direction of transfer. Damage to the hardware could result if both ends of the link end up as transmitters.

Clearing the ComPort

The control and status register can be used to discard words in the FIFOs. Writing a value with CLROF or CLRIF set will clear the selected FIFO; there is no need to set the bit back to zero.

Note that CLRIF and CLROF clear only the FIFOs; they do not clear the oneword input or output buffers. On input you may need to set CLRIF twice. If the FIFO is full and a word is in the input buffer, the first CLRIF will clear the FIFO and allow a word to move in from the input buffer; the second CLRIF will remove that word. On output you can only clear the output FIFO; any word already in the output buffer can only be removed by being read from the other end of the link.

□ Interrupts:

The ComPort control logic can assert an interrupt condition as the result of data being transferred. The condition indicates that either one word or a block of 8 words has been moved. The bits IFBM and OFBM in the ComPort control and status register select which condition will assert the interrupt line. IFBM controls interrupt conditions for input and OFBM for output.

If **IFBM=0**, the condition will be asserted as soon as the input FIFO contains at least 1 word (IFE=0). The condition will not be asserted again, even if the FIFO contains 1 or more words until either of the following events has occurred:

1 word has been read from the input FIFO; or

• A write to an interrupt control register (ICR) has set the associated Interrupt Enable.

Following one of these events, the condition will be asserted again if or as soon as the input FIFO contains at least 1 word.

If **IFBM=1**, the condition will be asserted as soon as the input FIFO contains at least 8 words. The condition will not be asserted again, even if the FIFO contains 8 or more words, until either of the following events has occurred:

8 words have been read from the input FIFO; or

• A write to an interrupt control register (ICR) has set the associated Interrupt Enable.

Following one of these events, the condition will be asserted again if or as soon as the input FIFO contains at least 8 words.

If **OFBM=0**, the condition will be asserted as soon as the output FIFO has space for 1 or more words (OFF=0). The condition will not be asserted again, even if the FIFO has space for 1 or more words, until either of the following events has occurred:

• 1 word has been written to the output FIFO; or

• A write to an interrupt control register (ICR) has set the associated Interrupt Enable.

Following one of these events, the condition will be asserted again if or as soon as the output FIFO contains space for at least 1 word.

If **OFBM=1**, the condition will be asserted as soon as the output FIFO has space for 8 or more words. The condition will not be asserted again, even if the FIFO has space for 8 or more words, until either of the following events has occurred:

• 8 words have been written to the output FIFO; or

• A write to an interrupt control register (ICR) has set the associated Interrupt Enable.

Following one of these events, the condition will be asserted again if or as soon as the output FIFO contains space for at least 8 words.

□ Transfer techniques

Transfers can be managed using polling or interrupts, each with CPU control or DMA.

Sundance Digital Link

Overview

The SDL was developed by Sundance Multiprocessor Technology Ltd. to overcome the speed and asynchronous transfer issues linked to a ComPort interface. It's compatible with TI ComPort standard.

The SDL uses the ComPort links, which provide enough lines for the data and control signals.

According to the board you can get up to six 8-bit, data-parallel, inter-processor Sundance Digital Links (SDL).

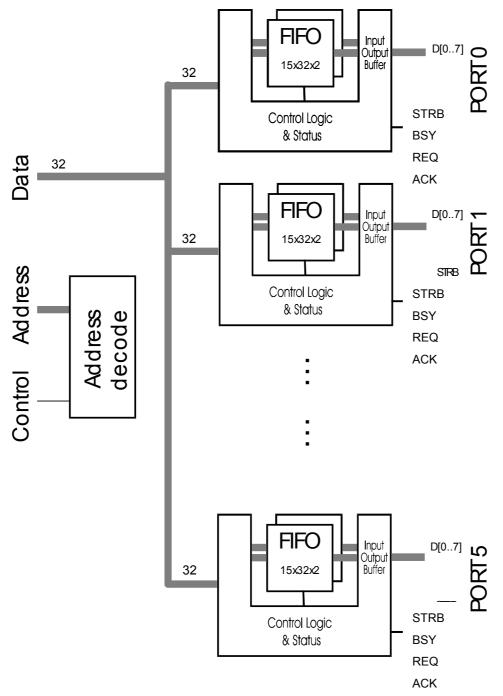
The SDL can work in two modes:

- Fast mode: SDL protocol is used (not compatible with ComPort). It provides a data rate up to 20MB/sec.
- Slow mode: ComPort protocol is used. It provides a data rate up to 10MB/sec.

The standard gives a TIM six links numbered from 0 to 5. Each link can be a transmitter or a receiver, and will switch automatically between these states depending on the way you use it. Writing to a receiver or reading from a transmitter will cause a hardware negotiation (token exchange) that will reverse the state of both ends of the link.

Following a processor reset, the first three links (0, 1, and 2) initialise as transmitters and the remainder (3, 4, and 5) initialise as receivers. When you wire TIMs together you *must* make sure that you only ever connect links initialising as transmitters to links initialising as receivers; never connect two transmitters or two receivers. For example, connecting link 0 of one TIM to link 4 of another is safe; connecting link 0 of one TIM to link 2 of another could damage the hardware.

Always connect SDL 0, 1, or 2 to SDL 3, 4, or 5.


On most carrier board the physical connection between SDL is made with FMS cables (Ref. SMT3xx-FMS). You must be careful when connecting the cables the make sure that one end is inserted in the opposite sense to the other. One end must have the *blue* backing facing out and the other must have the *silver* backing facing out.

The SMT310Q (SMT320) motherboard communicates with the host PC using ComPort 3 of the site 1 TIM. That's why a ComPort is implemented on this site instead of an SDL. You should not make any other connections to this ComPort.

SDL

A TIM can have access up to six FIFO-buffered ComPorts, fully compliant with the Texas Instruments' standard.

Each SDL is associated with two 15x32-bit unidirectional FIFOs; one for input and one for output. An additional one-word buffer makes them appear as 16x32-bit FIFOs. These allow the guaranteed maximum transfer rate of 20MB/s to be achieved.

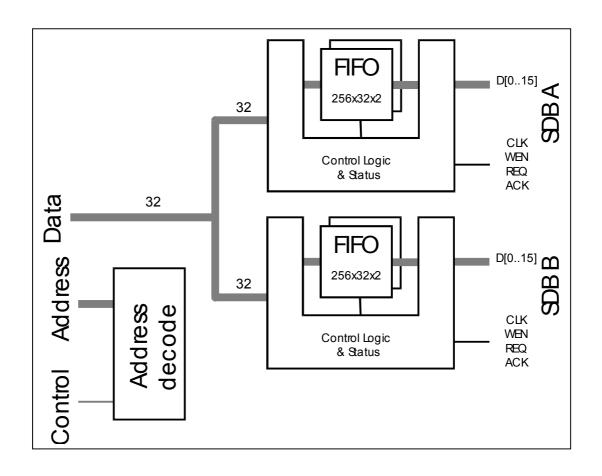
SDL Status and Control Register

See section "ComPort Status and Control Register" of "Communication Port" chapter. Following bits have been added to ComPort Status Register:

31-30	29	28-16	15–14	13-12	12-0
-	MOD	-	-	-	-
	0		RW,10	RW,10	

Field	Description (flags are active when 1)					
MOD	0 Slow mode: compatible with ComPort protocol					
MOD	1 Fast mode: incompatible with ComPort					

SDL debugging flags


See section "Debugging flags" of "Communication Port" chapter

SDB

Some board provide Sundance Digital Buses (SDBs). These 16-bit data parallel links for synchronous transmission can achieve high-speed data transfer across 40-way flat ribbon cables with ground-interlaced 3.3v signals (Ref. SMT3xx-SDB-CAB).

The SDBs are connected directly to the Virtex device and can support data rates of up to 200MB/s (100MHz). A total data rate of 400MB/s can be sustained by running both 16-bit buses at the same time. VHDL for the SDB is available in SMT6358 packages V3.0 and above.

An SDB integrates two 256×32-bit unidirectional FIFOs, one for input and one for output.

SDB Status Register

 31	30	29	28		27		26	25	24	23–16
IER	OEF	R IFLAG	OFL	AG	IFI	=	IFE	OFF	OFE	IFL
 R,0	R,0	R,0	R,	1	R,0)	R,1	R,0	R,1	R,00000000
15–8	8	7	6		5	4	3	2	1	0
OF	L	TRANS	PRI	C	DIS		SDBCLK		CLROF	DIR
 R,1111	1111	RW,0	RW,0	R	W,0		RW,0	W,0	W,0	R,0

Field	Description (flags are active when 1)			
DIR	0 Reading Transfer direction			
	1 Writing			
CLROF	Clear outgoing FIFO			
CLRIF	Clear incoming FIFO			
SDBCLK	0 EMIF clock / 2 (typically 50MHz) SDB clock speed			
ODDOLIN	1 EMIF clock (typically 100MHz)			
DIS	0 Pause transmission when FIFO is full			
DIS	1 Continue transmission even when FIFO full			
PRI	0 Transmitter wins Priority for changing direction of transfer			
	1 Equal priority			
TRANS	Set to 1 after reset to make this SDB start as a transmitter			
OFL	Outgoing FIFO Level: number of words that can be written			
IFL	Incoming FIFO Level: number of words that can be read			
OFE	Outgoing FIFO Empty			
OFF	Outgoing FIFO Full			
IFE	Incoming FIFO Empty			
IFF	Incoming FIFO Full			
OFLAG	Outgoing FIFO Flag. Set when OFLAGLEVEL writes can be performed.			
IFLAG	Incoming FIFO Flag. Set when IFLAGLEVEL reads can be performed.			
OER	Output error. The DSP has written to a full output FIFO.			
IER	Input error. The DSP has read from an empty input FIFO.			

Debugging flags

The bit OER has been added to show when an output error occurs. It shows that a transfer has not been configured correctly (typically dma transfer). This flag gets set when a write is performed to a full FIFO and data has been lost. It can be cleared by clearing the output FIFO (using CLROF). A working application should never set this bit.

The bit IER has been added to show when an input error occurs. It shows that a transfer has not been configured correctly (typically dma transfer). This flag gets set when a read is performed from an empty FIFO and invalid data has been read. It can be cleared by clearing the input FIFO (using CLRIF). A working application should never set this bit.

Output Flag Register

31–24	23–16	15–8	7–0
	OTRIGGER		
R,0000000	RW,1000000	R,0000000	R,1000000

Input Flag Register

31–24	23–16	15–8	7–0
			ITRIGGER
R,0000000	R,1000000	R,0000000	RW,1000000

Field	Description
OTRIGGER	Outgoing FIFO trigger. Set to 128 after reset.
ITRIGGER	Incoming FIFO trigger. Set to 128 after reset.

OFLAG in the SDB status register will be 1 when there are at least OTRIGGER spaces available in the output FIFO. OTRIGGER must be programmed with a value between 1 and 255.

IFLAG in the SDB status register will be 1 when there are at least ITRIGGER words in the input FIFO. This register must be programmed with a value between 1 and 255.

CLRIF and CLROF do not affect OTRIGGER or ITRIGGER.

SDB Interrupts

The firmware has been designed to allow transfers to be controlled by interrupt conditions. The main constraint in the design was to make sure that only one interrupt condition could be generated for each frame of data. This cannot be done directly by mapping the FIFO flags to interrupt lines because the flags can generate many edges during a transfer. Instead, after generating an interrupt condition, the FPGA prevents the device from asserting further conditions until the last access of the frame has been performed.

Condition assertion during output:

- 1. Wait until the output FIFO has enough space to store a new frame, i.e., spaces available in the output FIFO >= OTRIGGER.
- 2. Assert a condition to synchronise a frame transfer (DSP to SDB).
- 3. Wait until the frame transfer has been completed before looking at the available space again. Completion is detected by observing a write to the FIFO at address:

```
SDB FIFO address + 4*(OTRIGGER–1)
```

Condition assertion during input:

- 1. Wait until the input FIFO contains at least one frame, i.e., words available in the input FIFO >= ITRIGGER.
- 2. Assert a condition to synchronise a frame transfer (SDB to DSP).
- Wait until the frame transfer has completed before looking at the number of words available again. Completion is detected by observing a read from the FIFO being performed at address:

SDB FIFO address + 4*(ITRIGGER-1)

Writing to IFLAGLEVEL or OFLAGLEVEL will allow the corresponding condition to be reasserted even though a complete frame transfer may not have happened.

DMA

SDB transfers can be performed using DMA without any processor interaction.

The DMA should be set to transfer frames of up to 255 words, with read synchronisation on the SDB's interrupt condition. The FIFO must be addressed using consecutive word addresses to allow for correct synchronisation; you must not use an increment of zero on the DMA's address into the FIFO. For transfers of more than one frame, you must use a global index register to adjust the DMA's address into the FIFO as follows (note the negative frame index):

	SDB OTRIGGER	= FRAMESIZE
	SDB ITRIGGER	= FRAMESIZE
	DMA Global Index	= (Frame Index<<16) + Element Index
whore	Element Index	= 4
where	Frame Index	= - 4*(FRAMESIZE-1)

The transfer will access words at offsets in the FIFO from 0 to FRAMESIZE-1. Applying the negative Frame Index at the end of the frame will bring the offset back to 0. Accessing the word at offset FRAMESIZE-1 will allow synchronisation by a new interrupt condition.

The SDB interrupt condition must be mapped in one of the interrupt control registers to provide synchronisation on one of the external interrupt lines. The first synchronisation event will be generated when the interrupt control register has been written and the condition becomes true.

SDB Initialisation

The SDBs have been designed to allow their use with older, unidirectional SDBs. When the processor comes out of reset, an SDB will be configured as a receiver. It can be set to be a transmitter by the DSP, providing the other end of the bus is not configured as a transmitter.

Initially the SDB clock is stopped; it will start running when the first transfer is initiated. If the SDB receives 5 clock edges it will be locked as a receiver and will only become a transmitter as the result of the normal data transfer protocols (using REQ and ACK signals as described in the SDB specification). As long as the clock lines are not being driven, the SDB can be switched to a transmitter by setting the TRANS bit in its control and status register. The TRANS bit can be read to see if the bus has been allocated. It will be set thereafter.

When connecting two SDBs together you must make one of them a transmitter before transfers will work; this is independent of the actual direction of the first transfer. Neither trying to switch an SDB that has already been connected to a transmitter nor changing TRANS once the clocks have started running will have any effect.

When two SDBs are connected it does not matter which end is set to be a transmitter. When connecting an SDB to an input-only SDB, the SDB must be made a transmitter.

Suspending SDB transmission

To prevent loss of data, transmission will normally be suspended when a receiving FIFO becomes full. In certain circumstances, allowing the transmission to continue may be more important than losing data. This can be achieved by setting the DIS bit in the control and status register.

When DIS is set, a reading SDB will never indicate that its FIFO is full and will continue reading; a writing SDB will ignore a full signal from the receiver and continue to send data.

Bus exchange

The SDB allows fully bi-directional transmission but, for maximum throughput, bus turn-around should be reduced to the minimum. The priority of bus ownership can be selected using the PRI bit. If PRI is 1 there is no priority: a transmitter will release the bus as soon as a receiver requests it. If PRI is 0 the transmitter will hold the bus as long as its output FIFO contains data, even if the receiver is requesting the bus.

Data formatting

32-bit words are sent in two 16-bit packets with the least significant bits being sent first.

You should refer to SDB specifications V2.0 and above for technical information [**Error! Reference source not found.**]. The major change since version V2.0 has been to make the WEN signal active low. This makes it easy to connect the SDB directly to many types of FIFO and video processors. All existing boards are compatible with this firmware change without modification.

Global bus

The board provides a global bus that is compatible with the TIM standard. A dual port RAM (DPR) is used as intermediate storage for transfers of data frames between the DSP and an external device on the global bus; each frame can have up to 256 32-bit words. All transfers start from the first word of the DPR. For debugging, the POS field in the Global Bus Control Register will tell you which word of the frame is being transmitted.

When writing, the DSP writes a frame to the DPR and the FPGA then sends it across the global bus to the external device. When reading, the FPGA reads from the external device across the global bus to the DPR and the DSP then reads it.

The FPGA needs to know when the DSP has finished transferring data to or from the DPR. It determines this by observing a trigger word in the DPR, usually the final word of a frame. The FPGA hands control of the DPR to the global bus when the DSP accesses the trigger word¹. You define the trigger word by setting the Operation Register TRIGGER field to the number of words in the frame minus one.

A Global Bus Address Register is used to hold the address to be presented to the external device. You may elect for this address to be incremented by 1 after each word has been moved between the DPR and the external device; you do this by setting the INC bit in the Global Bus Control Register.

The global bus H1 clock runs at half EMIF clock speed or external close. This will be typically a 50MHz global bus H1 clock.

Writing to the Global Bus

First specify the trigger value in the Operation Register. For example, if your frame size were 128 words, you would write a trigger value of 127. At the same time that you set the trigger you must also set the OPERATION bit to 1, indicating that data is to go from the DSP to the global bus.

You may now write your data to the DPR. As soon as the FPGA detects a write to the trigger word, it will send the data in the DPR out to the external device.

Once the complete frame has been sent, the FPGA will signal an interrupt condition by setting the DONE flag in the Global Bus Control Register. You can use this condition to interrupt the DSP or synchronise a DMA transfer.

¹ In fact, the actual trigger condition is that bits 9–2 of the address used to access the DPR are equal to the trigger value. The FPGA ignores bits 17–10 and bits 1–0 of the address used to access the DPR. This means that there are many trigger locations in the address space allocated to the DPR.

Reading from the Global Bus

First specify the trigger value in the Operation Register as described above. At the same time that you set the trigger you must also set the OPERATION bit to 0 indicating that data is to go to the DSP from the global bus. Setting OPERATION to 0 will start a transfer of data from the external device into the DPR.

As soon as the external device has moved TRIGGER+1 words, the transfer will stop and the FPGA will set the DONE flag in the Global Bus Control Register, signalling an interrupt condition. You can use this condition to interrupt the DSP or synchronise a DMA transfer.

Once DONE has been set, you may read data out of the DPR. When the FPGA detects the DSP reading the trigger word, it will examine the AUTORESTART bit in the Global Bus Control Register. Another frame transfer from the external device will start if AUTORESTART is 1; no action will be taken if the bit is 0.

Programmable Wait States

The FPGA has its own internal software-configurable wait-state generator that is used in conjunction with the external ready line, RDY. You control the generator by configuring two fields in the Global Bus Control Register: WTCNT specifies the number of software wait states to generate and SWW selects one of four options.

 RDY_{wtcnt} is an internally generated ready signal. When an external access is begun, the value WTCNT is loaded into a counter; WTCNT can be any value from 0 through 7. The counter is decremented every H1/H3 clock cycle until it becomes 0. Once the counter reaches 0, it will remain at 0 until the next external access. RDY_{wtcnt} will be 1 while the counter is nonzero and 0 otherwise.

The four SWW options combine RDY and RDY_{wtcnt} to generate the internal ready signal, RDY_{int} that controls global bus accesses. As long as $RDY_{int} = 1$, the current external access is extended. When RDY_{int} becomes 0, the current access will complete.

SWW = 00_2	RDY _{int} = RDY;	RDY _{wtcnt} is ignored.
SWW = 01_2	RDY _{int} = RDY _{wtcnt} ;	RDY is ignored.
SWW = 10 ₂	RDY _{int} = RDY _{wtcnt} OR RDY;	either generates ready.
SWW = 11_2	RDY _{int} = RDY _{wtcnt} AND RDY;	both must occur to generate ready.

SWW Value	RDY	RDYwtcnt	RDYint	
00	0	0	0	RDY int is dependent only upon RDY. RDY wtcnt is ignored.
00	0	1	0	RDY _{wtcnt} is ignored.
00	1	0	1	interne -
00	1	1	1	
01	0	0	0	RDY int is dependent only upon RDY wtcnt. RDY is ignored.
01	0	1	1	RDY _{wtcnt} . RDY is ignored.
01	1	0	0	1000 C
01	1	1	1	
10	0	0	0	RDY int is the logical-OR (electrical
10	0	1	0	AND because these signals are low
10	1	0	0	true) of RDY and RDY wtcnt.
10	1	1	1	
11	0	0	0	RDY int is the logical-AND (electrical
11	0	1	1	OR because these signals are low
11	1	0	1	true) of RDY and RDY wtcnt.
11	1	1	1	and a second second second second

Wait-State Generation for Each Value of SWW

Additional information is available in the TMS320C4x User's Guide chapter 9.4: Programmable Wait States.

Additional feature

Triggering the transfer with ADC

The acquisition process requires two levels of synchronisation: one to show that the data is available in the ADC which allows to perform the global bus transfer and another one to show that the data is available in the global bus DPRAM for the DSP. To prevent these two levels of synchronisation that would require CPU intervention the global bus transfer can be directly initiated by the external synchronisation and the DSP is only receiving the synchronisation showing that data is available in the global bus DPRAM. The DMA controller can directly perform the read without any processor interruption. The transfer is edge triggered and the trigger source is fixed.

Address reload

The global bus start address can be reloaded after each frame transfer. This is useful when an acquisition is made from consecutive ADCs. The global bus will scan all the ADCs in a circular fashion. A DMA controller on the C6x can then automatically capture data from the ADCs.

BUSY feed-back

This bit is set if the global bus has not yet completed the last transfer operation. You should wait for this bit to become zero before changing the global bus parameters: destination address, the transfer size, and the control register. In read you should wait for this bit to become zero before reading the data.

Clock selection

The Global bus clock source can be taken from an external source (CLKIN) instead of being the CPU frequency/4. This enables to synchronise the global bus transfer with an external device for synchronous transfer. This is used on the SMT310 family² (300 / 310 / 310Q) to synchronise the board with the clock of the PCI Bridge.

STAT0 pulse

The SMT310 family requires a pulse on STAT0 during the last word of a frame transfer. This is needed for the interface with the PCI Bridge (It is used to generate a BLAST see bridge chip manual).

Global Bus access

The firmware has the ability to decide how the STROBE line behaves during read and write access. It can either stay low during the full access or rise between every single access. This setting depends on the device accessed.

<u>HOLD</u>

On some motherboards the ready signal is asserted to grant the control of the global bus but it might be necessary to have a hold time for the access to the on-board memory after it has been granted. If this bit is set the wait state count specify a hold time after the ready signal is asserted. This is to be used on the SMT328.

Global control configuration:

The following table gives the values to set to access the global bus resources.

SMT310Q:

Access to PCI bridge internal registers and access through aperture.

*GLOBAL_BUS_CTRL= PULSE| WSTRB| CLKSEL| INC;

With that setting the access through the global bus will be incremented (INC), they will be using the carrier board clock (CLKSEL) to be synchronised with the bridge chip. Strobe signal will stay low during write transfer (WSTRB). This will allow the transfer to happen every clock cycle when RDY is low. At the end of the transfer the STAT<0> signal will be asserted during the last word transfer and be used as a BLAST signal to terminate a burst transfer to the pci bridge.

Access to SRAM

*GLOBAL_BUS_CTRL= CLKSEL| INC;

With that setting the access through the global bus will be incremented (INC), they will be using the carrier board clock (CLKSEL).

SMT320:

Access to all resources

• *GLOBAL_BUS_CTRL= INC;

With that setting the access through the global bus will be incremented (INC) and use the on-board oscillator (EMIF clock/2: 50MHz typically).

SMT328:

Access to control register

• *GLOBAL_BUS_CTRL= HOLD| WTCNT (2)| CLKSEL|SWW(3)| INC ;

With that setting the access through the global bus will be incremented (INC), they will be using the carrier board clock (CLKSEL). The wait state will be waiting for ready internal and external (SWW(3)) and hold for 2 cycles after ready is asserted (HOLD | WTCNT (2)).

Access to other resources (VME and DPRAM)

• *GLOBAL_BUS_CTRL= HOLD|RSTRB|WTCNT (1)| CLKSEL|SWW(3)| INC ;

With that setting the access through the global bus will be incremented (INC), they will be using the carrier board clock (CLKSEL). The wait state will be waiting for ready internal and external (SWW(3)) and hold for 1 cycles after ready is asserted (HOLD | WTCNT (1)).

SMT118:

Access to resources

• *GLOBAL_BUS_CTRL= WTCNT (15) | SWW(1)| INC ;

With that setting the access through the global bus will be incremented (INC). The wait state will be waiting for ready internal (SWW(1)). The number of wait state will depend on the TIM accessed.

Global Bus Operation Register

31-16	15–9	8	7–0
NBFRAMES		OPERATION	TRIGGER
		RW,0	RW,0000000

Field	Descriptio	Description				
OPERATION	0 Read from the Global Bus					
	1 Write to the Global Bus					
TRIGGER	One less than the number of words to move					
NBFRAMES	Number of frames read					

The latest global bus interface is double buffered for dma so that it can read ahead the next buffer while the first one is being read by the DSP. Similarly a buffer is being written while the previous one is being sent.

The important thing is to set the global bus operation register before enabling the global bus interrupt on an external interrupt line so that the interrupt generated is the one relevant to the operation (read/write).

This has changed for the SMT335 firmware as it used to need the dma event to be forced for a write and that the external interrupt was enabled before the operation register was set. This is the only change needed when updating from a version of the SMT335 prior to 3.13.6.

Global Bus Control Register

31–25	2	4	23	22			21	20	19–1	16	
	НО	LD	PULSE	EXT_TRIGGER		R	STRB	WSTRB	WSTRB WTC		
	R٨	/,0	RW,0		RW,0			RW,0	RW,0	RW,0000	
15–	-8	7	6		5 4-3			2		1	0
PO	S	RLD	CLKSE	EL	BUSY	SWV	V	INC	AUTOR	AUTORESTART	
R,0000	0000	RW,0	RW,0		R,0	RW,0	0	W,0	W,0 RW,0		R,0

Field	Des	Description				
STAT	STAT becomes 1 when a global bus transfer has completed and is set to 0 when the DSP next accesses the DPR.					
AUTORESTART	0	The global bus read will only occur when the transfer count is set.				
AUTORESTART	1	A global bus read operation will be restarted once the DSP has read the previous data.				
INC	0	Do not increment the address after each transfer.				
INC	1	Increment the global bus address after every access				
SWW	Software wait state mode selection					
WTCNT	Nun	nber of software wait states (0–15)				
BUSY	tran	if the global bus interface has not yet completed the last sfer operation. Cleared when the data has been written to external device.				
CLKSEL	Sele	ect the global bus clock from external source.				
	(SM	T310/SMT310Q Specific for PCI chip interface)				
RLD	Relo	oad start address after each frame transfer.				
POS	Curi	rent position of the Global Bus transfer.				
WSTRB	0 STRB rises for a cycle between writes					
	1	STRB stays low during the write for the frame length				
RSTRB	0	STRB stays low during the read for the frame length				
	1	STRB rises for a cycle between reads				

EXT_TRIGGER	Start Global bus transfer on trigger. The trigger source is fixed. The global bus can only use IIOF0 as their trigger source. The transfer is edge triggered.
PULSE	Generate a pulse on STAT0 on the last word of the frame. (SMT310/SMT310Q Specific for PCI chip interface)
HOLD	When set the wait state count specifies the hold time after the bus has been granted.

SMT310, SMT310Q, SMT300, SMT300Q

Burst Transfer.

This section is not relevant for new versions of the firmware in which the hardware handle burst interruption at page boundary.

To transfer over the PCI the global bus is set-up to be able to perform burst transfer across the PCI bridge chip. A burst transfer is happening whenever the global bus transfer size register is set to transfer more than one word at a time. During a burst a word is transferred on every clock cycle.

The PC memory can be accessed through aperture 0 of the PCI Bridge but a burst transfer must not cross a 1KBytes boundary (256 words). This is because the page size of the bridge chip is 1KBytes.

In other words burst transfer must always be ended on a page boundary. For example you should never burst from the pci address XXXX3FCH to XXXX400H. Address XXXX400H would actually be targeting address XXXXX000H in the pci address space as the page accessed by this burst was in the address range XXXXX000H - XXXXX3FCH.

To make sure a page crossing does not happen during burst access an address alignment has to be performed. The global bus transfer size has to be reduced not to cross a page. For DMA it is advised to align the transfer on 256 words and then setup the DMA to transfer by bursts of 256 words to ensure no page boundary is crossed during burst.

LED register

The number of led depends on the TIM.

Typically you will be able to find the following:

An LED always displays the state of the FPGA DONE pin. This LED is off when the FPGA is configured (DONE=1) and on when it is not configured (DONE=0).

This LED should go on when the board is first powered up and go off when the FPGA has been successfully programmed. If the LED does not light at power-on, check that you have the mounting pillars and screws fitted properly. If it stays on, the DSP is not booting correctly.

The remaining LEDs can be controlled with the LED register. Writing 1 will illuminate the LED; writing 0 will turn it off.

Typical LED Register

31–4	3	2	1	0
	LEDZ	LEDW	LEDY	LEDX
	RW,0	RW,0	RW,0	RW,0

CONFIG & NMI

The TIM specification describes the operation of an open-collector type signal CONFIG that is driven low after reset.

This signal, on a standard C4x based TIM, is connected to the processor's IIOF3 pin. On the module the CONFIG signal is asserted after power on, and can be released by writing the value (1<<6) to the config register. Conversely, CONFIG may be reasserted by writing 0 to this bit. It is not possible for software to read the state of the CONFIG signal.

The NMI signal from the TIM connector can be routed to the DSP NMI pin.

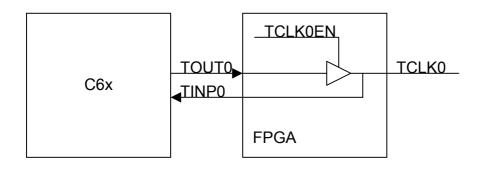
WARNING: Several software components include code sequences that assume setting GIE=0 in the DSP CSR will inhibit all interrupts; NMI violates that assumption. If an NMI occurs during such code sequences it may not be safe to return from the interrupt. This may be particularly significant if you are using the compiler's software pipelining facility.

Config Register

31–8	7	6	5–0
	NMI EN	TRI CONF	
	RW,0	RW,0	

Field	Description					
TRICONF	0 drive CONFIG low					
	1 tri-state CONFIG					
NMIEN	0 Disconnect NMI from the DSP					
	1 Connect NMI from TIM to the DSP.					

Timer


The TIM TCLK0 and TCLK1 signals can be routed to the DSP's TOUT/TINP pins. The signal direction must be specified, together with the routing information in the timer control register.

Timer Control Register

31–6	5	4	3–0
	TCLK1 EN	TCLK9 EN	
	RW,0	RW,0	

Field	Desc	ription
TCLK0EN	0	TIM TCLK0 is an input
ICLIV	1	Enable TIM TCLK0 as an output
TCLK1EN	0	TIM TCLK1 is an input
	1	Enable TIM TCLK1 as an output

If the TIM TCLKx pin is selected as an output, the DSP TOUTx signal will be used to drive it. The TIM TCLKx pin will always drive the DSP TINPx input.

IIOF interrupt

It is possible to generate pulses on the external interrupt lines of the TIM.

Writing one to an IIOF bit of the IIOF register generates a low pulse of 30 ns minimum on the corresponding IIOF line. There is no need to clear the bit.

In read these bit can be read as one if the IIOF line is low and as zero if the IIOF line is high. They can be used as TTL input.

On the SMT310Q:

- 1. It can be used for interrupting the host PC when the TIM is located on the first site of the SMT310Q.
- 2. On any TIM it can give some small debugging facilities, as these lines are available from the SMT310Q J2 header.

The SMT310 needs pull-ups added to the IIOF lines to disable them after reset.

The IACK pin functionality is not implemented.

IIOF Register

31–12	11	10	9	8	7–0
	IACK	IIOF2	IIOF1	IIOF0	
	W	RW	RW	RW	

Field	Description				
llOFn	Write	Writing 1 generates a low pulse			
	Read	Read as 0 when IIOFn line is high			
		Read as 1 when IIOFn line is low			
IACK	Write	Writing 1 generates a low pulse			
	Read	unused			

Virtex Memory Map

A(I+5)A(i+4)	A(i+3)	A(i+2)	A(i+1)	A(i)	Resources
0 0	0	0	0	0	ComPort 0 FIFO
LI	L			1	ComPort 0 Status/Control
	0	0	1		ComPort 1
	0	1	0		ComPort 2
	0	1	1		ComPort 3
	1	0	0		ComPort 4
	1	0	1		ComPort 5
	1	1	0	1	Global Bus interrupt Status
	1	1	1	0	SDB interrupt Status
	1	1	1	1	Global interrupt Status
			·		
0 1	0	0	0	0	SDB 0 FIFO
			0	1	SDB 0 Input Flag
			1	0	SDB 0 Status/Control
			1	1	SDB 0 Output Flag
	0	1			SDB 1
	1	0			SDB 2
	1	1			SDB 3
1 0	0	0	0		Global Bus Control
		0	1		Global Bus DMA Start Address
		1	0		Global Bus DMA Length
	1				Global Bus Data RAM
1 1	0	0	0		TCLK routing register
		0	1		CONFIG
		1	0		LED
		1	1		IIOF register

1	1	1	0	0	0	Interrupt Control Register, INT4
					1	SDB extension to INT4
			0	1		Interrupt Control Register, INT5
			1	0		Interrupt Control Register, INT6
			1	1		Interrupt Control Register, INT7

SDB Pin-Out

Pin	Signal	Signal	Pin
4			
1	CLK	GND	2
3	D0	GND	4
5	D1	GND	6
7	D2	GND	8
9	D3	GND	10
11	D4	GND	12
13	D5	GND	14
15	D6	GND	16
17	D7	GND	18
19	D8	GND	20
21	D9	GND	22
23	D10	GND	24
25	D11	GND	26
27	D12	GND	28
29	D13	GND	30
31	D14	GND	32
33	D15	GND	34
35	UD0	DIR	36
37	WEN	REQ	38
39	UD1	ACK	40

Bibliography

- TMS320C6x Peripherals Reference Guide (literature number SPRU190) describes common peripherals available on the digital signal processors. This book includes information on the internal data and program memories, the external memory interface (EMIF), the host port, multichannel-buffered serial ports, direct memory access (DMA), clocking and phase-locked loop (PLL), and the power-down modes.
- 2. TIM-40 MODULE SPECIFICATION Including TMS320C44 Addendum
- 3. SDB Technical Specification V2.1 or above
- 4. TMS320C4x User's Guide (literature number SPRU063) describes the C4x 32-bit floating-point processor, developed for digital signal processing as well as parallel processing applications. Covered are its architecture, internal register structure, instruction set, pipeline, specifications, and operation of its six DMA channels and six communication ports. Software and hardware applications are included.

Index

Bibliography	44
Board not working	
badly-connected comports	.12, 18
comport reset misused	15
firmware revision	2
LED illuminated	37
NMI	
no SDB transmitter selected	27
Comports	
burst mode	10
cables	12, 18
clearing the FIFOs	15
control and status registers	14
FIFOs	13, 19
restrictions on connecting	.12, 18
warning about using reset	15
Contacting Sundance	4
field values after reset	
Global Bus	
reading	
writing	
Input Flag Register	
Interrupts	
asserting	16
enabling	7
interrupt condition	7
interrupt condition enable	7
mapping	8

reasserting	16
SDB interrupt condition assertion.	24
LEDs	37
FPGA DONE pin	37
LED register	37
Links . See Comports. See Compo NMI38,	
waning about use	38
Notational Conventions	
Output Flag Register Programmable Wait States	24
register descriptions	5
SDB	21
cables	21
initialisation	27
pin-out	43
priority	27
status register	22
suspending transmission	27
using DMA	26
using DMA Global Indexes	26
using old-style SDBs	27
VHDL	21
WEN signal changed	28
SDL and status registers	
Timer	
timer control register	39
Virtex	
memory map	41