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Chapter 2

Recommended Sequences

2.1 Real Generalized Eigenproblem

2.1.1 RGG Generalized Eigenvalues and Eigenvectors

Name

srgg — Driver for solving real generalized eigenproblem, single precision
drgg — Driver for solving real generalized eigenproblem, double precision

Synopsis

#include <ceispack.h>

void srgg (n, a, b, alfa, beta, matz, z, fv, ierr)
int n;

int matz;

float *x*a, **xb, **z;

fcomplex *alfa;

float *beta, *fv;

int *ierr;

void drgg (n, a, b, alfa, beta, matz, z, fv, ierr)
int n;

int matz;

double *x*a, *xx*xb, *x*z;

dcomplex *alfa;

double *beta, *fv;

int *ierr;
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CHAPTER 2. RECOMMENDED SEQUENCES

n — order of input/output matrices

a — first square input matrix

b — second square input matrix

alfa ~ — length n output array containing numerators of eigenvalues

beta — length n output array containing denominators of eigenvalues

matz — flag which causes computation of eigenvectors

Z — output square array containing n transposed (row) eigenvectors

fv — temporary storage array of length n

ierr  — address of output variable containing error completion code
Diagnostics

On output the variable *ierr is set to 0 for normal return. If an error exit has been made,
the eigenvalues would be correct for indices [xierr,n — 1]. In such a case none of the
eigenvectors have yet been determined.

Description

Function rgg invokes the sequence of functions qzhes, qzit, gzval and optionally, qzvec
from the eigensystem library C_EISPACK to find the eigenvalues and eigenvectors of the
real generalized eigenproblem:

Ar = \Bux,

where A and B are real general matrices of order n. The solution is determined using the
Q7 algorithm. It is not required for the B to be non-singular. No inversion of the B or its
submatrices is performed. The (QZ algorithm is a generalization of the QR algorithm and
is reduced to the QR algorithm if B = I, i.e. B is an identity matrix.

The functions that implement the ()Z algorithm may also be applied for solving the
generalized eigenproblem of order 7:

NG, + XN 'G 1+ ...+ Gz =0

where the matrices A; are assumed of order n. This eigenproblem can be reduced to the
generalized problem

Az = A\Bz

by forming block-matrices A and B of order m = rn:

Gr—l Gr—2 GO Gr O --- 0
A= . . and B = — . . )
0 0 I 0 o 0 0 I

where I is the identity matrix. The m-vector z can be formed using the formula:

ECC_EISPACK 16 Copyright ©1993-2003 GDDI
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2.1. REAL GENERALIZED EIGENPROBLEM

2=\, N2, 2) T

The calculations proceed as follows. At first, the pair of input matrices are reduced to the
generalized Hessenberg form by orthogonal transformations. After the first step, A has
been reduced to upper Hessenberg form, and B has been reduced to upper triangular form.
The next step reduces A to upper quasi-triangular form while B is kept in upper triangular
form.

On the third step, the generalized eigenvalues are extracted from the pair of matrices in
the generalized upper quasi-triangular form.

If specified by the flag matz, the generalized eigenvectors are computed by the back
substitution in the last step. The eigenvectors are only computed if the input parameter
matz is set to any non-zero value.

Having returned from the function, the generalized eigenvalues can be computed as the
ratios of the corresponding elements of the arrays alfa and beta:

Re(a;) + iIm(o;)

Bi
The real and imaginary parts of the generalized eigenvectors are stored transposed
(row-wise) in the array z. If Im(c;) = 0, the i*" eigenvalue is real and the i*" row of 2

contains the corresponding eigenvector. If Im(a;) # 0 the i eigenvalue would be complex
and two cases arise:

)‘j:

If the imaginary part of an eigenvalue is positive, i.e. Im(q;) > 0, then the eigenvalue is
the first of a conjugate pair of eigenvalues. The " row of matrix z would contain the
real part, while (i + 1) row would contain the imaginary part of the corresponding
eigenvector.

If the imaginary part of an eigenvalue is negative, i.e. Im(c;) < 0, then the eigenvalue is
the second of a complex pair and the (i — 1)* and *" rows contain correspondingly
the real and the imaginary parts of its eigenvector conjugate.

All the eigenvectors are normalized so that the absolute value of each vector’s largest
component is equal to 1.

Performance

The computational speed of function rgg is determined by the desired level of accuracy.
The input parameter eps! to the function qzit controls that accuracy level within Q2
algorithm. An user can specify the desired accuracy level by varying parameter epsi when
invoking the functions of the (QZ algorithm explicitly instead of using the driver function.
For details see the Chapter Real Generalized Eigenproblem.
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Notes

Arrays a, b and z are expected to be in the format produced by the allocation function
fsquare.

The input matrices are modified by the function rgg.

Test

The test program is contained in rggt.c file. The example matrices are contained in
qzl.xpd, qz2.xpd files.

References

C. B. Moler, G. W. Stuart, SIAM Journal of Numerical Analysis, Vol. 10, pp.241-256, 1973.
R. C. Ward, SIAM Journal of Numerical Analysis, Vol. 12, pp.835-853, 1975.
R. C. Ward, Technical Note NASA, TN D-7305 (1973).

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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2.2. REAL GENERAL EIGENPROBLEM

2.2 Real General Eigenproblem

2.2.1 RG Eigenvalues and Eigenvectors

Name

srg — Driver for solving real general eigenproblem, single precision
drg — Driver for solving real general eigenproblem, double precision

Synopsis

#include <ceispack.h>

void srg (n, a, w, matz, z, iv, fv, ierr)
int n, matz;

fcomplex *w;

float **a, *xz, *xfv;

int *iv, *ierr;

void drg (n, a, w, matz, z, iv, fv, ierr)
int n, matz;

dcomplex *w;

double **a, *xx*xz, *fv;

int *iv, *ierr;

n — order of input/output matrices

a — square input matrix

w — output array containing n eigenvalues

matz — flag which causes computation of eigenvectors

z — square output array containing n column eigenvectors

iv — temporary storage array of length n

fv — temporary storage array of length n

ierr  — address of output variable containing error completion code
Diagnostics

On output, the variable *ierr is set to 0 for normal return. If an error exit has been made,
the eigenvalues would be correct for indices [xierr,n — 1]. In such a case, none of the
eigenvectors have yet been determined.

Description

Function rg invokes the recommended sequence of functions from the eigensystem library
C_EISPACK to find all eigenvalues and optionally, eigenvectors of a real general matrix.
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CHAPTER 2. RECOMMENDED SEQUENCES

Function rg calls the functions balanc, elmhes, hqr to determine eigenvalues only, or
balanc, elmhes, hqr2 and balbak to determine both the eigenvalues and eigenvectors.

The calculations proceed as follows. At first, the input matrix is balanced. It is then
reduced to upper Hessenberg form by the stabilized elementary similarity transformations.
Finally the upper Hessenberg matrix is reduced to upper quasi-triangular form by the real
QR algorithm to determine eigenvalues. If specified, the eigenvectors are determined by the
back substitution process.

Having returned from the function, the vector w contains the eigenvalues. Complex
conjugate pairs of the eigenvalues appear consecutively. The eigenvalue having the positive
imaginary part is stored first.

If specified by the flag matz, the array z contains unnormalized column eigenvectors. If the
it eigenvalue is real, the i*® column of the matrix z contains its eigenvector. The
eigenvectors are computed if the input flag matz is set to any non-zero value. When it is
set to 0 only the eigenvalues are computed.

If the i*" eigenvalue is complex then two cases arise: if the imaginary part of an eigenvalue

is positive, the i column of array z would contain the real part, while (i + 1)*® column of z
contains the imaginary part of the corresponding eigenvector. The conjugate of this vector

is the eigenvector for the conjugate eigenvalue.

Stabilized elementary transformations are generally faster than the orthogonal
transformations, since they employ a fewer number of arithmetic operations. The
disadvantage of elementary transformations is that they may possibly increase [, norm
(Frobenius norm) of reduced matrix, thus decreasing the accuracy of the computed
eigenvalues and eigenvectors, while orthogonal transformations keep 2-norm and condition
numbers of the eigenvalues of the reduced matrix unchanged. It follows from the equations:

QQ=QQ" =1

where () is orthogonal, and I is the identity matrix. The upper Hessenberg form H of the
original matrix A is evaluated by the following formula:

H=0QT4Q
and results in ||QTAQ|| = ||A]|.

The next sequence can be applied, using orthogonal similarity transformations to reduce
the original matrix to upper Hessenberg form and then determining the eigenvalues and
optionally, eigenvectors by the Q)R algorithm: balanc, orthes, hqr to find the
eigenvalues only, or balanc, orthes, ortran, hqr2 and balbak to find both the
eigenvalues and eigenvectors.

ECC_EISPACK 20 Copyright ©1993-2003 GDDI



2.2. REAL GENERAL EIGENPROBLEM

The next sequence can be used to find all the eigenvalues and some of the eigenvectors,
corresponding to specified eigenvalues, using elementary similarity transformations to
reduce the original matrix to upper Hessenberg form, Q)R algorithm to find the eigenvalues
and the inverse iteration technique to determine the eigenvectors: balanc, elmhes, hqr,
invit, elmbak, balbak, or the sequence using orthogonal similarity transformations to
reduce the original matrix to upper Hessenberg form, Q)R algorithm to compute the
eigenvalues and inverse iteration techniques to find the eigenvectors: balanc, orthes,
hqr, invit, ortbak, balbak.

Performance

See the discussion of performance in the description of related functions balanc, elmhes,
hqr, hqr2, balbak.

Notes

Arrays a and z are expected to be in the format produced by the allocation function
fsquare.

The input matrix is modified by the function rg.

Test
The test program is contained in rgt.c file. The example matrices are contained in
rmatrixl.xpd, rmatrix2.xpd, rmatrix3.xpd files.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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2.3 Symmetric Generalized Eigenproblem

2.3.1 RSG Generalized Eigenvalues and Eigenvectors

Name

srsg — Driver for solving generalized symmetric eigenproblem, single precision
drsg — Driver for solving generalized symmetric eigenproblem, double precision

Synopsis

#include <ceispack.h>

int srsg (n, a, b, w, matz, z, fvl, fv2, index)
int n, matz;

float *x*a, **xb, *w, **xz;

float *xfvl, xfv2;

int *index;

int drsg (n, a, b, w, matz, z, fvl, fv2, index)
int n, matz;

double *x*a, **xb, *w, **z;

double *fvl, *xfv2;

int *index;

n — order of matrix system

a — symmetric input matrix

b — positive definite symmetric input matrix

w — output array containing n eigenvalues

matz — flag which causes computation of eigenvectors

z — output square array containing n transposed (row) eigenvectors

fvl — temporary storage array of length n

fv2 — temporary storage array of length n

index — address of output variable containing error completion code
Diagnostics

The function rsg returns:

e ( for normal return.

e 1 if an error occurs in function reduc. It means that the second input matrix is not
positive definite. The output variable *index is set to (7n + 1).

e 2 3 if an error occurs either in functions tqlrat or tql2 respectively. The output
variable *index is set to the index of the eigenvalue which has not been determined.
The eigenvalues would be correct for indices [0, xindex — 1], but they may not be the
smallest eigenvalues. The array z contains the transposed (row) eigenvectors
associated with the computed eigenvalues.

+ ECC_EISPACK 22 Copyright ©1993-2003 GDDI



2.3. SYMMETRIC GENERALIZED EIGENPROBLEM

Description

Function rsg invokes the recommended sequence of functions from the eigensystem library
C_EISPACK to find the eigenvalues and eigenvectors of real symmetric generalized
eigensystem:

Az = \Buz,

where matrix A is symmetric, matrix B is symmetric positive definite.

Function rsg calls the functions reduc, tredl, tqlrat to determine the eigenvalues only,
or reduc, tred2, tql2 and rebak to determine both the eigenvalues and eigenvectors.

The calculations proceed as follows. The solution requires matrix B to be positive definite
and calculates its Cholesky factorization B = L' L. The original eigensystem is reduced by
orthogonal transformations to the standard symmetric eigenproblem:

Ay = Ay,
where
A =L71tALT,
and
y=L"2

Next, the symmetric matrix is reduced to the symmetric tridiagonal form and its
eigenvalues and if specified by the input flag matz, the eigenvectors are computed. At the
last step, the eigenvectors are back transformed to the vectors of the original coordinate
system.

Having returned from the function, vector w contains the eigenvalues stored in ascending
order. If specified, array z contains the associated transposed (row) eigenvectors. The
eigenvectors are normalized such that Z;7 BZ; = I. The eigenvectors are computed if the
input parameter matz is set to any non-zero value. When it is set to zero, only the
eigenvalues are computed.

The accuracy of the computed eigenvectors is commensurate to the magnitudes of the
elements of matrix A;. Thus when L~ !, and therefore A, having their elements of large
magnitudes, the small eigenvalues may have large relative errors. This can happen when B
is almost an indefinite matrix and is pointed out by the presence of eigenvalues which are
much larger than the elements of the original matrices A and B.

The alternative approach to solving such a problem is to neglect the symmetry and utilize
the functions for the real generalized eigenproblem. Although they are in general more
computationally expensive and the eigenvalues obtained may have non-zero imaginary
parts, the small eigenvalues are usually more precise than those computed by the
symmetric sequence.
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Notes

Arrays a, b and z are expected in the format produced by the allocation function fsquare.

Only the full upper triangles of the input matrices need be supplied. The strict upper
triangle of matrix a and the full upper triangle of matrix 6 are unchanged.
Performance

See the discussion of performance in the description of related functions reduc, tredil,
tred2, tqlrat, tql2, rebak.

Test

The test program is contained in rsgt.c file. The example matrices are contained in

rgensym. xpd file.

References
J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.

ECC_EISPACK 24 Copyright ©1993-2003 GDDI

+



+

2.3. SYMMETRIC GENERALIZED EIGENPROBLEM

2.3.2 RSGAB Generalized Eigenvalues and Eigenvectors

Name

srsgab — Driver for solving generalized symmetric eigenproblem, single precision
drsgab — Driver for solving generalized symmetric eigenproblem, double precision

Synopsis

#include <ceispack.h>

int srsgab (n, a, b, w, matz, z, fvl, fv2, index)
int n, matz;

float **a, *xb, *w, *xz;

float *xfvl, *xfv2;

int *index;

int srsgab (n, a, b, w, matz, z, fvl, fv2, index)
int n, matz;

double *x*a, **xb, *w, **z;

double *fvl, *xfv2;

int *index;

n — order of matrix system

a — symmetric input matrix

b — positive definite symmetric input matrix
w — output array containing n eigenvalues

matz — flag which causes computation of eigenvectors

z — square output array containing n row eigenvectors

fvl — temporary storage array of length n

fv2 — temporary storage array of length n

index — address of output variable containing error completion code
Diagnostics

The function rsgab returns:

e ( for normal return.

e 1 if an error occurs in function reduc?. This means that the second input matrix is
not positive definite. The output variable *index is set to (7n + 1).

e 2, 3 if an error occurs either in the functions tqlrat or tql2 respectively. The output
variable *index is set to index of the eigenvalue which has not been determined. The
eigenvalues would be correct for the indices [0, xindex — 1], but they may not be the
smallest eigenvalues. The array z contains the transposed (row) eigenvectors

associated with the computed eigenvalues.
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Description

Function rsgab invokes the recommended sequence of functions from the eigensystem
library C_EISPACK to find the eigenvalues and eigenvectors of the real symmetric
generalized eigenproblem:

ABzr = Az,
where matrix A is symmetric and matrix B is symmetric positive definite.

Function rsgab calls the functions reduc2, tredl, tqlrat to determine eigenvalues only,
or reduc2, tred2, tql2 and rebak to determine both the eigenvalues and eigenvectors.

The calculations proceed as follows. The original eigensystem is reduced to the standard
symmetric eigenproblem. Since the matrix B is positive definite, its Cholesky factorization
B = LL" exists and allows the original problem to be redefined as:

ALLT 2z = \z

and which is then transformed to the standard symmetric problem:

Ay = Ay,
where
A =L"AL
and
LTy =y

Next, the symmetric matrix is reduced to the symmetric tridiagonal form and its
eigenvalues and, if specified by the input flag matz, eigenvectors are computed. At the last
step, the eigenvectors are back transformed to the vectors of the original coordinate system.

Having returned from the function, vector w contains the eigenvalues stored in ascending
order. If specified, array z contains the associated transposed (row) eigenvectors. The
eigenvectors are normalized so that Z;" BZ; = I. The eigenvectors are computed if the
input parameter matz is set to any non-zero value. When it is set to zero, only the
eigenvalues are computed.

Notes

Arrays a, b and z are expected in the format produced by the allocation function fsquare.

Only the full upper triangles of the input matrices need be supplied. The strict upper
triangle of matrix a and the full upper triangle of matrix b are unchanged.
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Performance

See the discussion of performance in the description of related functions reduc2, tredi,
tred2, tqlrat, tql2, rebak.

Test

The test program is contained in rsgabt.c file. The example matrices are contained in
rgensym. xpd file.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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2.3.3 RSGBA Generalized Eigenvalues and Eigenvectors

Name

srsgba — Driver for solving generalized symmetric eigenproblem, single precision
drsgba — Driver for solving generalized symmetric eigenproblem, double precision

Synopsis

#include <ceispack.h>

int srsgba (n, a, b, w, matz, z, fvl, fv2, index)

int n, matz;

float **a, *xb, *w, *xz;
float *xfvl, *xfv2;

int *index;

int drsgba (n, a, b, w, matz, z, fvl, fv2, index)

int n, matz;

double *x*a, **xb, *w, **z;
double *fvl, *xfv2;

int *index;

n — order of matrix system

a — symmetric input matrix

b — positive definite symmetric input matrix

w — output array containing n eigenvalues

matz — flag which causes computation of eigenvectors

Z — square output array containing n transposed (row) eigenvectors

fvl — temporary storage array of length n

fv2 — temporary storage array of length n

index — address of output variable containing error completion code
Diagnostics

The function rsgba returns:

e ( for normal return.

e 1 if an error occurs in function reduc2. This means the second input matrix is not
positive definite. The output variable index is set to (7n + 1).

e 2. 3 if an error occurs either in the function tqlrat or tql2 respectively. The output
variable *index is set to index of the eigenvalue which has not been determined. The
eigenvalues would be correct for the indices [0, *index — 1], but they may not be the
smallest eigenvalues. The array z contains the eigenvectors associated with the

computed eigenvalues.
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Description

Function rsgba invokes the recommended sequence of functions from the eigensystem
library C_EISPACK to find the eigenvalues and eigenvectors for the real symmetric
generalized eigenproblem:

BAx = Az,

where A is symmetric and B is symmetric positive definite.

Function rsgba invokes the sequence of functions reduc2, tredl, tqlrat to determine
eigenvalues only, or reduc2, tred2, tql2 and rebak to determine both the eigenvalues
and eigenvectors.

The calculations proceed as follows. The original eigensystem is reduced to the standard
symmetric eigenproblem. Since matrix B is positive definite, its Cholesky factorization
B = LL" exists and allows the original problem to be redefined as:

LLTAz = \z

and then transformed to the standard symmetric problem:

Ay = Ay,
where
A =LTAL
and
L1lz=y

Next, the symmetric matrix is reduced to the symmetric tridiagonal form and its
eigenvalues and, if specified by the input flag matz, eigenvectors are computed. At the last
step, the eigenvectors are back transformed to the vectors of the original coordinate system.

Having returned from the function, the vector w contains the eigenvalues stored in
ascending order. If specified, the array z contains the associated transposed (row)
eigenvectors. The eigenvectors are normalized so that Z;7 B-'Z; = I. The eigenvectors are
computed if the input parameter matz is set to any non-zero value. When it is set to zero,
only the eigenvalues are computed.

Notes

Arrays a, b and z are expected in the format produced by the allocation function fsquare.

Only the full upper triangles of the input matrices need be supplied. The strict upper
triangle of matrix a and the full upper triangle of matrix b are unchanged.
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Performance

See the discussion of performance in the description of related functions reduc2, tredi,
tred2, tqlrat, tql2, rebak.

Test

The test program is contained in rsgbat.c file. The example matrices are contained in

rgensym. xpd file.

References
J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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2.4 Symmetric Eigenproblem

2.4.1 RS Eigenvalues and Eigenvectors

Name

srs — Driver for solving symmetric eigenproblem, single precision
drs — Driver for solving symmetric eigenproblem, double precision

Synopsis

#include <ceispack.h>

int srs (n, a, w, matz, z, fvl, fv2, index)
int n, matz;

float *x*a, *w, *x*xz, *fvl, *xfv2;

int *index;

int drs (n, a, w, matz, z, fvl, fv2, index)
int n, matz;

double *xa, *w, **xz, *xfvl, *fv2;

int *index;

n — order of input/output matrices

a — symmetric input matrix

w — output array containing n eigenvalues

matz — flag which causes computation of eigenvectors

Z — output square array containing n transposed (row) eigenvectors

fvl — temporary storage array of length n

fv2 — temporary storage array of length n

index — address of output variable containing error completion code
Diagnostics

Function rs returns 0 for normal return or 1 if an error exit has occured. If an error
occured, the output variable *index is set to index of the eigenvalue which has not been
determined. The eigenvalues would be correct for indices [0, xindex — 1], but they may not
be the smallest eigenvalues. The array z contains transposed (row) eigenvectors associated
with the computed eigenvalues.

Description

Function rs invokes the recommended sequence of functions from the eigensystem library
C_EISPACK to find the eigenvalues and, optionally eigenvectors of a real symmetric matrix.
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Function rs calls the functions tredl, tqlrat to determine the eigenvalues only, or
tred2, tql2 to determine both the eigenvalues and eigenvectors.

The calculations proceed as follows. The original matrix is reduced to the symmetric
tridiagonal form and its eigenvalues are computed. If specified by the flag matz, the
transformations are accumulated in the array z and the computed eigenvectors are back
transformed to the original coordiante system.

Having returned from the function, vector w contains the eigenvalues stored in ascending
order. If specified, array z contains the transposed (row) orthonormal eigenvectors
associated with the computed eigenvalues. The eigenvectors are computed if the input
parameter matz is set to any non-zero value. When it is set to zero, only the eigenvalues
are computed.

Notes

Matrix a is expected to be in the format produced either by allocation functions fmatrix,
fsquare, trngl fmatrix, fsym. If trngl _fmatrix is being used for the allocation, the
lower triangle matrix must be specified. Only the lower triangle of the input matrix need
be supplied.

Array zis expected to be in the format produced by the allocation function fsquare.

If only the eigenvalues are to be computed, the input matrix is modified by the function rs.
If computation of the eigenvectors is specified arrays a and z may coincide (in this case
array a must be the full array). If they are distinct, matrix a is preserved by the function.

Performance

See the discussion of performance in the description of related functions tredl, tred2,
tqlrat, tql2.

Test

The test program is contained in rstest.c file. The example matrices are contained in

rsymmetl.xpd, rsymmet2.xpd, rsymmet3.xpd files.

References
J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.
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B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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2.4.2 RSM All Eigenvalues and Some Eigenvectors

Name

srsm — Driver for solving symmetric eigenproblem, single precision.
drsm — Driver for solving symmetric eigenproblem, double precision.

Synopsis

#include <ceispack.h>

int srsm (n, a, w, m, z, fv, iwork, index)
int n, m;

float **a, *w, *x*xz, *fv;

int *iwork, *index;

int drsm (n, a, w, m, z, fv, iwork, index)
int n, m;

double **a, *xw, **z, *fv;

int *iwork, *index;

n — order of input matrices
a — symmetric input matrix
w — output array containing n eigenvalues
m — number of eigenvalues to be determined
z — rectangular output array containing m transposed (row) eigenvectors
fv — temporary storage array of length 8n
iwork — temporary storage integer array of length n
index — output variable containing error completion code
Diagnostics

The function rsm returns:

e () for normal return.

e 1, 2 if an error occurs in functions tqlrat or imtqlv respectively. The output
variable index is set to the index of the eigenvalue which has not been determined.
The eigenvalues would be correct for the indices [0, xindex — 1], but may not be the

smallest eigenvalues.

e 3 if an error occurs in function tinvit. The variable *index indicates the negative of
the last index of the eigenvalue that corresponds to the eigenvector of which fails to
converge in 5 iterations. The rows of matrix z corresponding to such an eigenvalues

are set to zero.
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Description

Function rsm invokes the recommended sequence of functions from the eigensystem library
C_EISPACK to find all eigenvalues and some eigenvectors of a real symmetric matrix.

Function rsm calls the functions tredl, tqlrat to determine all eigenvalues, or tredl,
imtqlv, tinvit and trbakl to determine all eigenvalues and those eigenvectors,
corresponding to the first m eigenvalues.

The calculations proceed as follows. The original matrix is reduced to the symmetric
tridiagonal form and its eigenvalues are computed. If specified by the input variable m, the
eigenvectors of the symmetric tridiagonal matrix are computed by the inverse iteration
technique and further they are back transformed to those of the original coordinate system.

Having returned from the function, vector w contains the eigenvalues stored in ascending
order. If specified, array z contains the transposed (row) orthonormal eigenvectors
associated with the computed eigenvalues. The eigenvectors are computed if the input
parameter m is greater than 0. When it is set to zero, only the eigenvalues are computed.

To find some of the eigenvalues of a real symmetric matrix, one can use another sequence
of functions: tredl to reduce original matrix to symmetric tridiagonal form and then
compute the eigenvalues by either functions ratqr to determine an eigenvalue of minimum
magnitude, bisect to determine eigenvalues which lie in the specified interval or tridib to
compute eigenvalues having specified indices.

Notes

Matrix a is expected to be in the format produced either by allocation functions fmatrix,
fsquare, trngl _fmatrix, fsym. If trngl_fmatrix is being used for the allocation, the
lower triangle must be specified.

Only the lower triangle of the original matrix need be supplied. The input matrix is
modified by the function rsm.

Rectangular m x n matrix z is expected to be in the format produced by the allocation
function fmatrix.

Performance

See the discussion of performance in the description of related functions tredl, tqlrat,
imtqlv, tinvit, trbakl.

Test

The test program is contained in rsmt.c file. The example matrices are contained in
rsymmetl.xpd, rsymmet2.xpd, rsymmet3.xpd files.
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References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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2.5 Symmetric Band Eigenproblem

2.5.1 RSB Eigenvalues and Eigenvectors

Name

srsb — Driver for solving band symmetric eigenproblem, single precision.
drsb — Driver for solving band symmetric eigenproblem, double precision.

Synopsis

#include <ceispack.h>

int srsb (n, mb, a, w, matz, z, fvl, fv2, index)
int n, mb, matz;

float **a, **xz, *w;

float *xfvl, *xfv2;

int *index;

int drsb (n, mb, a, w, matz, z, fvl, fv2, index)
int n, mb, matz;

double **a, **z, *w;

double *fvl, *xfv2;

int *index;

n — order of input/output matrices

mb — number of sub/super diagonals

a — band symmetric input matrix

w — output array containing n eigenvalues

matz — flag which causes computation of eigenvectors

z — square output array containing n row eigenvectors

fvl — temporary storage array of length n

fv2 — temporary storage array of length n

index — address of output variable containing error completion code
Diagnostics

The function rsb returns:

e ( for normal return.

e 1 if the computation of an eigenvalue fails. The output variable *index is set to index
of the eigenvalue which has not been determined. The eigenvalues would be correct
for the indices [0, *index — 1], but may not be the smallest eigenvalues. The array z
contains transposed (row) eigenvectors associated with the computed eigenvalues.

e 12n if the number of subdiagonals is mb < 0 or mb > n.
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Description

Function rsb invokes the recommended sequence of functions from the eigensystem library
C_EISPACK to find the eigenvalues and optionally, eigenvectors of a real band symmetric
matrix.

Function rsb calls the functions bandr, and tqlrat to determine eigenvalues only, or
bandr, and tql2 to determine both the eigenvalues and eigenvectors.

The calculations proceed as follows. The original matrix is reduced to the symmetric
tridiagonal form and its eigenvalues are computed. If specified by the input flag matz the
transformations are accumulated in the array z and the eigenvectors are back transformed
to the original coordinate system.

Having returned from the function, vector w contains the eigenvalues stored in ascending
order. If specified, array z contains the associated transposed (row) orthonormal
eigenvectors. The eigenvectors are computed if the input parameter matz is set to any
non-zero value. When it is set to zero, only the eigenvalues are computed.

Function rsb invokes one of the possible sequences for the computation eigenvalues and
eigenvectors of real band symmetric matrix. The function bqr can be applied to find the
eigenvalue of smallest magnitude, or the functions bqr, and bandv to determine the
eigenvalues and corresponding eigenvectors.

Other possible sequences can include the functions that apply the implicit ()L algorithm to
find the eigenvalues of reduced symmetric tridiagonal matrix.

Notes

Matrix a is expected to be in the format produced by the allocation functions
trngl_band_fmatrix or fbandsym. If the first function is being used, the lower part of
band must be specified.

Only the lower part (half band width) of the input matrix need be supplied. The input
matrix is modified by the function rsb.

The total number of diagonals in the input matrix is equal to (2my, + 1).

Array zis expected to be in the format produced by the allocation function fsquare.

Performance

See the discussion of performance in the description of related functions bandr, tqlrat,
tql2.
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Test

The test program is contained in rsbt.c file. The example matrices are contained in
bsm01.xpd, bsm02.xpd and bsm03.xpd files.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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2.6 Real Special Tridiagonal Eigenproblem

2.6.1 RT Eigenvalues and Eigenvectors

Name

srt — Driver for solving tridiagonal eigenproblem, single precision
drt — Driver for solving tridiagonal eigenproblem, double precision

Synopsis

#include <ceispack.h>

int srt (n, a, w, matz, z, fv, index)
int n, matz;

float **a, *w, *x*xz, *fv;

int *index;

int drt (n, a, w, matz, z, fv, index)
int n, matz;

double **a, *xw, **z, *fv;

int *index;

n — order of input/output matrices
a — tridiagonal input matrix
w — output array containing n eigenvalues
matz — flag which causes computation of eigenvectors
z — square output array containing n transposed (row) eigenvectors
fv — temporary storage array of length n
index — output variable containing error completion code
Diagnostics

The function rt returns:

e ( for normal return.

e 1 if an error occurs in the function figi. The output variable *index is set to (n + i)
if the product a;;_1a;-1; <0, or to —(3n + i) if the product a;;_1a;_1,; = 0 with one
factor not 0. In such a case the eigenvectors of the symmetric tridiagonal matrix are
not simply related to those of original matrix and should not be computed.

e 2 if an error occurs in the function figi2. The output variable *index is set to
(n + 1) if the product a;;—1a,-1; < 0, or to (2n + 1) if the product a;;_1a,_1,; = 0 with
one factor is not 0. In such a case none of the eigenvectors have yet been computed.
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e 3, 4 if an error occurs in the functions imtqll or imtql2 respectively. The output
variable *index is set to index of the eigenvalue which has not been determined. The
eigenvalues would be correct for indices [0, xindex — 1]. If the failure occurs in
function imtqll these eigenvalues are ordered but they may not be the smallest ones.
If the failure occurs in function imtql2 these eigenvalues are unordered. The array z
contains transposed (row) eigenvectors associated with the computed eigenvalues.

Description

Function rt invokes the recommended sequence of functions from the eigensystem library
C_EISPACK to find the eigenvalues and, optionally eigenvectors of a special real
tridiagonal matrix.

Function rt calls the functions figi, and imtqll to determine eigenvalues only, or figi?2
and imtql2 to determine both the eigenvalues and eigenvectors.

The calculations proceed as follows. The original matrix is reduced to the symmetric
tridiagonal form and its eigenvalues are computed. If specified by the input flag matz, the
diagonal similarity transformations are accumulated and later used to back transform the
eigenvectors to those of the original system.

Having returned from the function, the vector w contains n eigenvalues stored in ascending
order. If specified by the input flag matz, array z contains the associated transposed (row)
orthonormal eigenvectors. The eigenvectors are computed if the input parameter matz is
set to any non-zero value. When it is set to zero, only the eigenvalues are computed.

To determine some of the eigenvalues of a special tridiagonal matrix one can use the
function figi to reduce the original matrix to symmetric tridiagonal form and then
compute the eigenvalues by either functions ratqr, bisect or tridib.

To compute some eigenvalues and corresponding eigenvectors one can call the sequence
figi, bisect, tinvit, bakvec or figi, tsturm, bakvec.

Notes

Matrix a is expected to be in the format produced either by the allocation functions
band_fmatrix, fband or f3diag.

The input matrix is unchanged by the function rt.

Array zis expected to be in the format produced by the allocation function fsquare.

Performance

See the discussion of performance in the description of related functions figi, figi2,
imtqll, imtql2.
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Test

The test program is contained in rtt.c file. The example matrices are contained in
trispcl.xpd, trispc2.xpd files.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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2.7 Symmetric Tridiagonal Eigenproblem

2.7.1 RST Eigenvalues and Eigenvectors

Name

srst — Driver for solving symmetric tridiagonal eigenproblem, single precision
drst — Driver for solving symmetric tridiagonal eigenproblem, double precision

Synopsis

#include <ceispack.h>

int srst (n, d, e, matz, z, index)
int n, matz;

float *d, *e, *x*xz;

int *index;

int drst (n, d, e, matz, z, index)
int n, matz;

double *d, *e, *xz;

int *index;

n — order of input/output matrices
t — input symmetric tridiagonal matrix
d — length n input vector of diagonal elements/output n ascending eigenvalues
e — length n input vector containing subdiagonal elements of input matrix
matz — flag which causes computation of eigenvectors
Z — output square array containing n transposed (row) eigenvectors
index — address of output variable containing error completion code
Diagnostics

The function returns 0 for normal return, or 1 if an error occurs in the functions imtqll or
imtql2. The output variable *index is set to the index of the eigenvalue which has not
been determined. The eigenvalues would be correct for the indices [0, xindex — 1]. If the
failure occurs in function imtqll, these eigenvalues are ordered but may not be the
smallest ones. If the failure occurs in function imtql2 these eigenvalues are unordered. The
array z contains transposed (row) eigenvectors associated with the computed eigenvalues.

Description

Function rst invokes the recommended sequence of functions from the eigensystem library
C_EISPACK to find all eigenvalues and, optionally eigenvectors of a real symmetric
tridiagonal matrix.
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Function rst invokes the function imtql1l to find the eigenvalues only, or function imtql2
to determine both the eigenvalues and eigenvectors. The eigenvalues are computed by the
implicit QL algorithm.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

Having returned from the function, the vector d contains n eigenvalues stored in ascending
order. If specified by the input flag matz, array z contains the associated transposed (row)
orthonormal eigenvectors. The eigenvectors are computed if the input parameter matz is
set to any non-zero value. When it is set to zero, only the eigenvalues are computed.

The function rst invokes one of the possible sequences for the computation of the
eigenvalues and eigenvectors of a real symmetric tridiagonal matrix. The functions imtqlv,
tqll or tqlrat can be used to find all of the eigenvalues of a symmetric tridiagonal matrix.

The functions bisect, ratqr and tridib can be used to find some of the eigenvalues,
namely those which are lie within a specified interval, the algebraically smallest or largest
eigenvalues, and the eigenvalues which are lie within specified boundary indices respectively.

The functions tql2 and imtql2 find all the eigenvalues and eigenvectors. The function
tsturm finds those eigenvalues which lie within a specified interval and the eigenvalues
corresponding to them.

The functions bisect, imtqlv, ratqr and tridib associate the submatrix indices with
the eigenvalues computed.

The function tinvit finds the eigenvectors which correspond to the specified eigenvalues,
and is called after that the eigenvalues required have been determined by the functions
bisect, imtqlv, ratqr or tridib.

The function tridib is generally faster and more accurate than the function ratqr if the
eigenvalues are clustered. If more than n/4 of the eigenvalues are to be found, the
functions tqll, imtqll or tqlrat are generally faster than either tridib and bisect.

Generally the functions tqll, tql2 and tqlrat, which are introduce ()L algorithm with
explicit shift does not performed well on the matrices which have not have subsequent row
norms increasing from top to bottom, as opposite to the matrix:

ti; = 10% for i € [1,n]
T = Liiv1 = tig1, = 1 fori e [1, n— 1]
tij =0 for the rest of the matrix

If the eigenvalues of small magnitude are needed to have the accuracy relative to
themselves, not to the norm of the matrix, the functions based on the explicit QL
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algorithm are almost certainly fail to determine the eigenvalues with such a high precision.
Instead, the functions imtqll, imtql2, imtqlv that utilize the implicit Q)L algorithm are
not sensitive so crucially to such a special structure of a matrix and may compute the
small eigenvalues with the accuracy still relative to themselves.

Notes

Array zis expected to be in the format produced by the allocation function fsquare.

Performance

See the discussion of performance in the description of related functions imtqll, imtql2.

Test

The test program is contained in rstt.c file. The example matrices are contained in
trisyml.xpd, trisym2.xpd, trisym3.xpd and trisym4.xpd files.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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2.8 Complex General Eigenproblem

2.8.1 CG Eigenvalues and Eigenvectors

Name

ccg — Driver for solving complex general eigenproblem, single precision
zcg — Driver for solving complex general eigenproblem, double precision

Synopsis

#include <ceispack.h>
void ccg (n, a, w, matz, z, fvl, cv2, cv3, ierr)
int n;

int matz;

fcomplex **a, **z, *w;
float *fvil;

fcomplex *cv2, *cv3;
int *ierr;

void zcg (n, a, w, matz, z, fvl, cv2, cv3, ierr)
int n;

int matz;

dcomplex **xa, **z, *w;

double *fvil;

dcomplex *cv2, *cv3;

int *ierr;

n — order of input/output matrices

a — square input matrix

w — output array containing n eigenvalues

matz — flag which causes computation of eigenvectors

zZ — output square array containing n column eigenvectors

fvl — temporary storage array of length n

cv2  — temporary storage array of length n

cv3d  — temporary storage array of length n

ierr  — address of output variable containing error completion code
Diagnostics

On output the variable *ierr is set to zero for normal return. If an error exit has been
made, the eigenvalues would be correct for the indices [xierr,n — 1]. In such a case, none of

the eigenvectors have yet been determined.
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Description

Function cg invokes the recommended sequence of functions from the the eigensystem
library C_EISPACK to find all eigenvalues and optionally, eigenvectors of a complex
general matrix.

The function calls the functions cbal, corth, and comgr to determine the eigenvalues
only, or cbal, corth, comqr2 and cbabk2 to determine both the eigenvalues and
eigenvectors.

The calculations proceed as follows. At first, the input matrix is balanced. Next, it is
reduced to upper Hessenberg form by the unitary similarity transformations and finally the
upper Hessenberg matrix is reduced to upper triangular form by the complex QR
algorithm to determine eigenvalues.

If specified by the flag matz, the eigenvectors are determined by the back substitution
process. The eigenvectors are computed if the input parameter matz is set to any non-zero
value. When it is set to zero, only the eigenvalues are computed.

Having returned from the function, vector w contains n eigenvalues. If specified, the array z
contains n column eigenvectors. They are unnormalized.

Function cg invokes one of the possible sequences for the determination of the eigenvalues
and eigenvectors of complex general matrix. Another sequence can be applied, using
stabilized elementary similarity transformation to reduce original matrix to upper
Hessenberg form and determine the eigenvalues and eigenvectors by LR algorithm: cbal,
comhes, and comlr to find the eigenvalues only, or cbal, comhes, comlr2 and cbabk2 to
find both the eigenvalues and eigenvectors.

Stabilized elementary transformations are generally faster than unitary transformations,
since they employ fewer arithmetic operations. The disadvantage of elementary
transformations is that they possibly increase the Iy norm (Frobenius norm) of the reduced
matrix, thus decreasing the accuracy of the computed eigenvalues and eigenvectors, while
unitary transformations keep the 2-norm and condition numbers of the eigenvalues of
reduced matrix unchanged.

The next sequences can be used to find all the eigenvalues and some eigenvectors,
corresponding to the specified eigenvalues, using elementary similarity transformations to
reduce the original matrix to upper Hessenberg form, the LR algorithm to find the
eigenvalues and the inverse iteration technique to find the eigenvectors: cbal, comhes,
comlr, cinvit, combak, cbabk2, or the sequence utilizing unitary similarity
transformations to reduce the original matrix to upper Hessenberg form, the QR algorithm
to find the eigenvalues and the inverse iteration technique to find the eigenvectors: cbal,
corth, comqr, cinvit, cortb, cbabk2.
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Performance

See the discussion of performance in the description of related functions cbal, corth,
comgr, comgr2, cbabk2.

Notes

Arrays a and z are expected to be in the format produced by the allocation function
csquare.

The input matrix is modified by the function cg.

Test

The test program is contained in cgt.c file, the example matrices are contained in

cmatrixl.xpd, cmatrix2.xpd, cmatrix3.xpd, cmatrix4.xpd and cmatrix5.xpd files.

References
J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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2.9 Hermitian Eigenproblem

2.9.1 CH Eigenvalues and Eigenvectors

Name

cch — Driver for solving Hermitian eigenproblem, single precision.
zch — Driver for solving Hermitian eigenproblem, double precision.

Synopsis

#include <ceispack.h>

int cch (n, a, w, matz, zr, zi, fml, fvl, fv2, index)
int n, matz;

fcomplex x*x*a;

float *w, **zr, **zi;

float **fml, *xfvl, *xfv2;

int *index;

int zch (n, a, w, matz, zr, zi, fml, fvl, fv2, index)
int n, matz;

dcomplex **a;

double *w, **zr, *%*zi;

double **fml, *fvl, *fv2;

int *index;

n — order of input/output matrices
a — input Hermitian matrix
w — output array containing n eigenvalues
matz — flag which causes computation of eigenvectors
Zr — square output array containing real parts of n transposed (row) eigenvectors
71 — square output array containing imaginary parts of n transposed (row) eigenvectors
fml  — temporary storage rectangular 2 x n array
fvl — temporary storage array of length n
fv2 — temporary storage array of length n
index — address of output variable containing error completion code
Diagnostics

Function ch returns 0 for normal return or 1 if an error exit has been made. The output
variable *index is set to the index of the eigenvalue which has not been determined. The
eigenvalues having their indices in [0, xindex — 1] would be correct, but may not be the
smallest eigenvalues. If specified, the arrays zr, zi contains the transposed (row)
eigenvectors associated with the computed eigenvalues.
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Description

Function ch invokes the recommended sequence of functions from the eigensystem library
C_EISPACK to find the eigenvalues and, optionally eigenvectors of Hermitian matrix.

Function ch calls the functions htridi, and tqlrat to determine eigenvalues only, or
htridi, tql2, and htribk to determine both the eigenvalues and eigenvectors.

The calculations proceed as follows. At first the original matrix is reduced to the
symmetric tridiagonal form and its eigenvalues are computed. If specified by the flag matz,
the eigenvectors of the symmetric tridiagonal matrix are computed and back transformed
to those of the original system. The eigenvectors are computed if the input parameter matz
is set to any non-zero value. When it is set to zero, only the eigenvalues are computed.

Having returned from the function, vector w contains n eigenvalues stored in ascending
order. If specified, arrays zr, zi contain the real and imaginary parts respectively, of the
associated orthonormal transposed (row) eigenvectors.

The variations of the recommended sequence for determining eigenvalues and eigenvectors
of Hermitian matrix would be the substitution of the implicit QL algorithm and bisection
technique for the explicit and rational QL algorithms. See the description of function rst
for the discussion of the properties of implicit and explicit QL algorithms and the
description of related functions as well.

If the original Hermitian matrix is stored in a single real array the reduction function
htrid3 need to be substituted for the function htridi and the function htrib3 need to be
substituted for the function htribk. See the description of the functions htrid3 and
htrib3.

Notes
Array a is expected to be in the format produced either by the allocation functions

cmatrix, csquare, trngl_cmatrix, chermit. If trngl_cmatrix is being used for the
allocation, the lower triangle must be specified.

Only the lower triangle of the original matrix need be supplied. The function modified it
on return.

Arrays zr, zi are expected to be in the format produced by the allocation function fsquare.

Rectangular 2-rows, n-columns array fmI is expected to be in the format produced by the
allocation function fmatrix.
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Performance

See the discussion of performance in the description of related functions htridi, tqlrat,
tql2, htribk.

Test

The test program is contained in cht.c file, the example matrices are contained in
hermiti0.xpd and hermitil.xpd files.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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Chapter 3

Real Generalized Eigenproblem

3.1 QZ Algorithm

3.1.1 QZHES Reduction to Hessenberg Form

Name

sqzhes — Reduction of pair of matrices to generalized Hessenberg form, single precision
dqzhes — Reduction of pair of matrices to generalized Hessenberg form, double precision

Synopsis

#include <ceispack.h>

void sqzhes (n, a, b, matz, z, rv)
int n;

int matz;

float **a, *xb, **z;

float *rv;

void dqzhes (n, a, b, matz, z, rv)
int n;

int matz;

double *x*a, *xx*xb, *x*z;

double *rv;

n — order of input/output matrices
a — first square input/output matrix
b — second square input/output matrix
matz — input flag which causes accumulation of transformations
z — output transposed orthogonal transformation matrix
rv — temporary storage array of length n
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Description

Function qzhes performs the first phase of the QZ algorithm for solving the generalized
matrix eigenvalue problem:

Az = \Bx

Function qzhes accepts a pair of a real general matrices and reduces one of them to upper
Hessenberg form and the other to upper triangular form using Householder transformations
and rotations:

(4,B) = (A", B")

where the matrix A’ is in upper Hessenberg form, matrix B’ is in upper triangular form.

At first, the matrix B is reduced to an upper triangular form using a sequence of (n — 1)
Householder reflections that are simultaneously applied to matrix A:

B=HBand A= HA,

where matrix H is the product of Householder transformations. Then the matrix A is
reduced to an upper Hessenberg form by a sequence of (n —1)(n — 2)/2 left-hand rotations

R. Right-hand rotations R’ are applied to both the matrices A and B to preserve upper
triangular form of the B:

A" = RAR' and B' = RBR'

A simultaneous reduction is possible if the entries of A are eliminated column-wise from
left to right and from bottom to top in a column. This process is illustrated for a matrix of
order 6:

(4) x x x x X
3) (1) x x x X
(2) (6) (9) x x x
(1) ) ) (10) x x

Each rotation which eliminates an element of the A when applied to the B sets its
subdiagonal entry to a non-zero value. Then this element is annihilated by the right-hand
rotation which does not affect the already eliminated entries of the matrix A. Total number
of right-hand rotations is the same as of left-hand ones and equal to (n — 1)(n — 2)/2.

If specified by the input flag matz, the function accumulates right-hand transformations

used in the reduction process for later use for eigenvectors computation. They are stored
transposed into the array z. The transformations are accumulated when matz is set to a

non-zero value. When matz is set to 0, the output matrix z is not referenced.

Having returned from the function the matrix a is in upper Hessenberg form, and the
matrix b is in upper triangular form.
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Performance

The reduction process is numerically stable. It requires about 13—7713 multiplications, 13—7713

additions and n? square roots. If accumulation of the transformation is specified, it
requires additionally 3n* multiplications and 2n® additions.

Notes

Arrays a, b and z are expected to be in the format produced by the allocation function
fsquare.

Test

The test program is contained in rggt.c file. The example matrices are contained in
qzl.xpd, qz2.xpd files.

References

C. B. Moler, G. W. Stuart, SIAM Journal of Numerical Analysis, Vol. 10, pp.241-256, 1973.
R. C. Ward, Technical Note NASA, TN D-7305 (1973).
R. C. Ward, SIAM Journal of Numerical Analysis, Vol. 12, pp.835-853, 1975.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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3.1.2 QZIT Reduction to Generalized Triangular Form

Name

sqzit — Combination shift ()Z iterations, single precision
dqzit — Combination shift ()7 iterations, double precision

Synopsis

#include <ceispack.h>

void sqzit (n, a, b, epsl, matz, z, ierr)
int n;

float epsi;

float *x*a, **xb, **z;

int matz, *ierr;

void dqzit (n, a, b, epsl, matz, z, ierr)
int n;

double epsli;

double *x*a, *xx*xb, *x*z;

int matz, *ierr;

n — order of input/output matrices

epsl — input variable containing absolute error tolerance

a — input upper Hessenberg/output quasi-triangular matrix

b — input/output matrix in upper triangular form

matz — flag which causes accumulation of transformations

z — input/output transposed orthogonal transformation matrix

ierr  — address of output variable containing error completion code
Diagnostics

On output the variable xierr is set to 0 for normal return. If the limit of MAXITER
iterations is exceeded while the 7 diagonal block of order 1 or 2 is being determined, the
error flag *ierr is set to (i + 1). The principal minors in rows and columns between indices
[xierr,n — 1] would be appropriate for eigenvalues computation by gzval function. No
eigenvectors can be determined.

Description

Function qzit performs the second phase of the Q7 algorithm for solving the generalized
matrix eigenvalue problem:

Az = \Bx

Function qzit accepts a pair of real matrices, one of them in upper Hessenberg form and
the other in upper triangular form. Then qzit reduces the Hessenberg matrix to a
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quasi-triangular form using orthogonal transformations while keeping the triangular form
of the second matrix.

The QR algorithm with a shift of origin is applied effectively to the matrix in upper
Hessenberg form:

C =AB™,

but the matrix C' is never formed. Orthogonal transformations are such that A is kept in
upper Hessenberg form and B is kept in upper triangular form at each iteration.

A shift of the origin at each iteration is computed as the eigenvalues of the lowermost 2 x 2
principal minor if they are complex or that eigenvalue which is closer to a lower diagonal
element of this minor if they are real. When a lowermost principal minor of order 1 or 2
has split from the rest of the matrix, the iteration continues with the remaining part of the
matrix. The tolerance in the test for splitting is commensurate to the absolute error
tolerance €. The iterations proceed until the whole matrix has finally split into minors of 1
and 2 order.

If specified by the input flag matz, the function accumulates the transformations used in
the reduction process for later use in the eigenvectors computation. The transformations
are stored transposed into the array z. The transformations are accumulated when matz is
set to a non-zero value. When it is set to zero, the matrix z is not referenced.

The input constant epsI is an absolute tolerance used to determine negligible elements. A
non-positive tolerance may be entered, however in this case an element will be neglected
only if it less than roundoff error times the norm of its submatrix. If the epsI is positive,
then an element would be considered negligible if it is less than eps? times the norm of its
submatrix. A positive value of epsl would lead to a faster execution, but with less accurate
results.

The input matrix a is in upper Hessenberg form, and the matrix b is in upper triangular
form.

If specified by the flag matz, the input matrix z contains transposed transformation matrix
obtained in the reduction by the function qzhes. Otherwise z is not referenced.

Having returned from the function, the matrix « is in upper quasi-triangular form. The
matrix b is still in upper triangular form, but its entries have been altered. If specified by
the matz flag, the matrix z would contain information about the transformations used in
both phases.

The entry b[n-1] [0] contains ¢; times the norm of output matrix B for later use by the
functions qzval and gzvec.
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Performance

The rate of convergence is proportional to a third order. The computation time is affected
by the value of the absolute error tolerance epsi. It can be reduced by increasing the value
of epsI but the accuracy of computed eigenvalues and eigenvectors would be reduced as
well.

Notes

Matrices a, b and z are expected to be in the format produced by the allocation function
fsquare.

Test

The test program is contained in rggt.c file. The example matrices are contained in
qzl.xpd, qz2.xpd files.

References

C. B. Moler, G. W. Stuart, SIAM Journal of Numerical Analysis, Vol. 10, pp.241-256, 1973.
R. C. Ward, Technical Note NASA, TN D-7305 (1973).
R. C. Ward, SIAM Journal of Numerical Analysis, Vol. 12, pp.835-853, 1975.

B. S. Garbow, et. all, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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3.1.3 QZVAL Generalized Eigenvalues

Name

sqzval — Forms generalized eigenvalues, single precision
dqgzval — Forms generalized eigenvalues, double precision

Synopsis

#include <ceispack.h>

void sqzval (n, a, b, alfa, beta, matz, z)
int n;

float **a, *x*Db;

fcomplex *alfa;

float x*beta;

int matz;

float *x*z;

void dgzval (n, a, b, alfa, beta, matz, z)
int n;

double **a, *x*b;

dcomplex *alfa;

double *beta;

int matz;

double **z;

n — order of input/output matrices

a — quasi-triangular input/output matrix

b — input matrix in upper triangular form

alfa ~ — length n output array containing numerators of eigenvalues

beta — length n output array containing denominators of eigenvalues

matz — flag which causes accumulation of transformations

z — transposed orthogonal transformation input/output matrix
Description

Function qzval performs the third phase of the (QZ algorithm for solving the generalized
matrix eigenvalue problem:

Az = \Bx

Function gzval accepts a pair of real matrices, one of them in quasi-triangular form and the
other in upper triangular form.

The function proceed as follows. First, the diagonal elements of matrix a that correspond
to a principal minors of order 1 are stored in real parts of entries of array alfa. The signs of
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these elements may be inverted in order to store absolute values of corresponding diagonals
of matrix b into array beta.

At the next step, the function reduces remaining 2 x 2 blocks by orthogonal
transformations into blocks of 1 and 2 order, so that any remaining 2 x 2 blocks correspond
to pairs of complex eigenvalues. The transformations are applied if a block can be
triangularized in a real arithmetic. If a block corresponds to a pair of complex eigenvalues,
the transformations are accumulated in the transformation matrix z and complex roots are
stored into the array alpha with a sign possibly inverted in order to store the absolute
values of corresponding diagonals of matrix b into array beta. In such a case, the
transformations are not applied. The matrix b is being kept upper triangular during the
computation process.

The ratios of the corresponding elements of vectors o and [ forms the generalized
eigenvalues of the original eigenproblem:

Re(a;) +iIm(o;)
Bi

If specified by the input flag matz, the function accumulates the transformations used in
the reduction process for later use in the eigenvectors computation. The transformations
are stored transposed into array z. The transformations are accumulated when matz is set
to a non-zero value. When it is set to zero, the matrix z is not referenced.

A=

Having returned from the function, the matrix ¢ has been reduced so that the remaining
diagonal blocks of order 2 are corresponding to complex eigenvalues. The matrix b is still
upper triangular but its elements have been modified.

The array alfe which contains the real and imaginary parts of the diagonal elements of the
triangular matrix that would be obtained if a were reduced completely to triangular form
by unitary transformations. Non-zero values of Im(«;) occur in pairs, the first member
positive and the second negative. The entries of the alfa array introduce the numerators of
the generalized eigenvalues.

The array beta contains the diagonal elements of the corresponding matrix b, normalized to
be real and non-negative. The entries of the beta array introduce the denominators of the
generalized eigenvalues.

The output array z contains the product of the right-hand transformations for all three
stages, if specified by the flag matz.

Performance

The computed eigenvalues are exact for a system which is a small perturbation of the
original matrix system.
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Notes

Matrices a, b and z are expected to be in the format produced by the allocation function
fsquare.

Test

The test program is contained in rggt.c file. The example matrices are contained in
qzl.xpd, qz2.xpd files.

References

C. B. Moler, G. W. Stuart, STAM Journal of Numerical Analysis, Vol. 10, pp.241-256, 1973.
R. C. Ward, Technical Note NASA, TN D-7305 (1973).
R. C. Ward, STAM Journal of Numerical Analysis, Vol. 12, pp.835-853, 1975.

B. S. Garbow, et. all, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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3.1.4 QZVEC Generalized Eigenvectors

Name

sqzvec — Forms generalized eigenvectors, single precision
dqzvec — Forms generalized eigenvectors, double precision

Synopsis

#include <ceispack.h>

void sqzvec (n, a, b, alfa, beta, z, rv)
int n;

float **a, *x*Db;

fcomplex *alfa;

float *beta, **z, *rv;

void dqzvec (n, a, b, alfa, beta, z, rv)
int n;

double *x*a, *x*b;

dcomplex *alfa;

double *beta, **z, *rv;

n — order of input/output matrices
a — square input array containing upper quasi-triangular matrix
b — square input array containing upper triangular matrix
alfa — length n input array containing n numerators of eigenvalues
beta — length n input array containing n denominators of eigenvalues
z — input transposed transformation/output transposed (row) eigenvector matrix
rv — temporary storage array of length n
Description

Function qzvec performs the fourth phase of the QZ algorithm for solving the generalized
matrix eigenvalue problem:

Az = \Bx

Function qzvec accepts a pair of real matrices, one of them in quasi-triangular form in
which each 2 x 2 block corresponds to a pair of complex eigenvalues, and the other in
upper triangular form. Then gzvec computes the eigenvectors of the triangular problem by
the back substitution process and transforms the results back to the eigenvectors of the
original matrix system.

The input matrix z contains the transposed transformation matrix produced in the
reduction by the functions qzhes, qzit and qzval, if they have been performed. If the
eigenvectors of the triangular problem are required, z must contain the identity matrix.
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The real and imaginary parts of the generalized eigenvectors are stored transposed
(row-wise) in the array z. If Im(c;) = 0, the i'" eigenvalue is real and the " row of 2
contains the corresponding eigenvector. If Im(c;) # 0 the i*® eigenvalue would be complex
and two cases arise:

If the imaginary part of an eigenvalue is positive, i.e. Im(q;) > 0, then the eigenvalue is
the first of a conjugate pair of eigenvalues. The " row of matrix z would contain the
real part, while the (i + 1) row would contain the imaginary part of the
corresponding eigenvector.

If the imaginary part of an eigenvalue is negative, i.e. Im(c;) < 0, then the eigenvalue is
the second of a complex pair and the (i — 1)™ and *® rows contain correspondingly
the real and the imaginary parts of its eigenvector conjugate.

All the eigenvectors are normalized so that the absolute value of each vector’s largest
component is equal to 1.

Performance

The computed eigenvectors are exact for a system which is a small perturbation of the
original matrix system.

Notes

Arrays a, b and z are expected to be in the format produced by the allocation function
fsquare.

The function preserves the input matrix a. Its subdiagonal elements provide the
information about the storage of the complex eigenvectors. The vectors o and [ are also

unaltered.

The matrix b has been modified.

Test

The test program is contained in rggt.c file. The example matrices are contained in
qzl.xpd, qz2.xpd files.

References

C. B. Moler, G. W. Stuart, STAM Journal of Numerical Analysis, Vol. 10, pp.241-256, 1973.
R. C. Ward, Technical Note NASA, TN D-7305 (1973).

R. C. Ward, SIAM Journal of Numerical Analysis, Vol. 12, pp.835-853, 1975.
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B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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Chapter 4

Real General Eigenproblem

4.1 Matrix Balancing

4.1.1 BALANC Balancing

Name

sbalanc — Balances real matrix, single precision
dbalanc — Balances real matrix, double precision

Synopsis

#include <ceispack.h>

void sbalanc (n, a, low, igh, scale)
int n;

float x**a;

int *low, *igh,;

float *scale;

void dbalanc (n, a, low, igh, scale)
int n;

double **a;

int *low, *igh,;

double *scale;

n — order of input/output matrices

a — unbalanced input/balanced output matrix

low  — address of output variable containing lower index of balanced submatrix

igh  — address of output variable containing higher index of balanced submatrix

scale — length n output array containing scaling factors and permutation indices
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Description
Function balanc balances a real square general matrix and extracts the eigenvalues of the

original matrix when they can be found exact.

The reduction performed as follows. At first the matrix is converted to block-triangular
form (if it is possible):

R W X
PAP=| o : B ‘ Y [,
o : 0 = T

by applying the permutation similarity transformations P. The matrix B is of order

(igh — low + 1) and located in the rows and columns from low to igh. B has the property
such that if By is equal to B with its diagonal elements set to zero, then the By does not
have any rows or columns of zero 1-norm. Matrices R and T are upper triangular. The
other matrices are rectangular of the respective dimensions. The diagonal elements of
matrices R and 7" are the eigenvectors of the original matrix that are found exact.

There are two boundary cases arise. The first one is occur when B is of order 0. In such a
case, the function sets the output variables low and igh both to 0. The second case occurs

when B is of order n and all the other submatrices are empty. In this case, P = I, and the
function sets low = 0 and igh =n — 1.

At the next step the elements of B are transformed by the diagonal similarity
transformation:

B; = D7'BD,

such that the 1-norms of the rows and, corresponding to them, the columns in the By are
nearly equal. The entries of the diagonal matrix D (that are scaling factors) are chosen to
be integer powers of the base of the machine arithmetic, so that the transformation does
not produce any rounding errors. The whole matrix has the form:

R ' WD X
D'PAPD=| ¢ : p-'BD : Dy |,
0 0 LT

The 1-norm of the original matrix also is reduced by the diagonal transformation when
1-norms of the columns and, corresponding to them, the rows of the original matrix are
significantly different. Generally reducing the 1-norm of a matrix improves the accuracy in
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determining eigenvalues and eigenvectors.

The similarity transformations applied keep the eigenvalues of the balanced matrix equal to
those of the original matrix.

Having returned from the function, the array scale contains the information about
permutations and diagonal transformations used by the function balanc and should be
interpreted as follows:

1. The rows and columns j and scale; have been interchanged for indices j € [0, low — 1]
and j € [igh+ 1,n — 1]. The interchanges are performed in indices first from (n — 1)
to (igh + 1), then from 0 to (low — 1).

2. The elements from low to igh of the diagonal matrix D are stored in the locations

scalej, where j € [low,igh].

Performance

Since the non-unitary entries in the diagonal matrix D are integer powers of the base of
machine arithmetic, the function balanc produces no rounding errors.

Notes

Array a is expected to be in the format produced by the allocation function fsquare.

The function balbak should be performed after the computation of eigenvectors of balanced
matrix in order to reconstruct the eigenvectors of the original (unbalanced) matrix.

Test

The test programs are contained in rgt.c, elmbakt.c, ortbakt.c, ortrant.c files. The
example matrices are contained in rmatrixl.xpd, rmatrix2.xpd, rmatrix3.xpd files.

References

B. N. Parlett, C. Reinsch, Numerical Mathematics, Vol. 13, pp.293-304, 1969.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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4.2 Reduction to Hessenberg form

4.2.1 ORTHES Reduction by Orthogonal Transformations

Name

sorthes — Reduction by orthogonal transformations, single precision
dorthes — Reduction by orthogonal transformations, double precision

Synopsis

#include <ceispack.h>

void sorthes (n, low, igh, a, ort, rv)
int n, low, igh;

float **a, *ort, *rv;

void dorthes (n, low, igh, a, ort, rv)
int n, low, igh;
double **a, *ort, *rv;

n — order of input/output matrices
low — input variable set to lower index of balanced submatrix
igh — input variable set to higher index of balanced submatrix
a — balanced input/upper Hessenberg output and transformations matrix
ort — output array containing rest of information about transformations
rv  — temporary storage array of length n
Description

Function orthes reduces a submatrix located in the rows and columns from low to igh of
given complex general matrix to upper Hessenberg form using and accumulating
orthogonal similarity transformations.

The above submatrix is derived usually from balancing the original general matrix using
the function balanc, that reduces the original matrix into the block-triangular form:

R : W : X
o : B : Y |
o : 0 : T

where matrix B is of order (igh — low + 1) and located in the rows and columns from low
to igh, matrices R and T are upper triangular, and the other matrices are rectangular of
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the respective dimensions.

The reduction is performed as follows. At first, the elements in the i*" column below the
principal diagonal are scaled to avoid possible underflow that would result in destroying
the orthogonality of the transformation.

At the next phase, the element in the (¢ + 1,7) location is expanded by adding the square
root of the sum of the squares S; of scaled elements. Then the elements of the i*" column
below the principal diagonal form a vector w, that defines Householder reflection:

Q =TI —ww”/h, where h = w"w/2,

I is the identity matrix, and () is orthogonal and symmetric. The transformation QF'Q)
eliminates the elements in i*" column below the first subdiagonal.

As described above, Hessenberg reflections are applied successively to eliminate elements
below the subdiagonal in the columns from low to igh of the input matrix.

The product of the Householder reflections is accumulated in the strict lower triangle below
the upper Hessenberg matrix in the array o and in the vector ort.

Having returned from the function the array a contains the upper Hessenberg matrix.
Information about the orthogonal transformations used in the reduction is stored in the
strict lower triangle below the Hessenberg matrix.

The output vector ort contains the rest of information about the transformations.

Performance

The reduction process is numerically stable. The computed eigenvalues and eigenvectors
would be exact for a matrix which is a small perturbation of the original matrix. The
upper bound for the norm of the perturbation matrix is commensurate to the relative
machine precision times the norm of original matrix.

The whole reduction process involves about §m3 multiplications, where m = igh — low + 1.

Notes

Matrix a is expected to be in the format produced by the allocation function fsquare.

Array ort should be allocated as a real array of length at least ¢gh. The function references
only the entries in [low + 1,igh| locations of the array ort.

If the function balanc has not been used to balance the original matrix, the input
parameters low and igh must be set to 0 and (n — 1) respectively.
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Test

The test programs are contained in ortbakt.c, ortrant.c files. The example matrices
are contained in rmatrixl.xpd, rmatrix2.xpd, rmatrix3.xpd files.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.349-368, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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4.2.2 ORTRAN Accumulation of Orthogonal Transformations

Name

sortran — Accumulation of orthogonal transformations, single precision
dortran — Accumulation of orthogonal transformations, double precision

Synopsis

#include <ceispack.h>

void sortran (n, low, igh, a, ort, z, rv)
int n, low, igh;

float **a, **xz, *ort, *rv;

void dortran (n, low, igh, a, ort, z, rv)
int n, low, igh;
double **a, **z, *ort, *rv;

n — order of input/output matrices
low — input constant set to lower index of balanced submatrix
igh — input constant set to higher index of balanced submatrix
a — upper Hessenberg and transformations input matrix
ort — input array containing rest of information about transformations
z — square output array containing transformation matrix
rv  — temporary storage array of length n
Description

Function ortran accumulates the orthogonal similarity transformations used in the
reduction of a real general matrix to upper Hessenberg form by the function orthes.

If submatrix B, stored in the input array a has been reduced to upper Hessenberg form by
the orthogonal similarity transformations:

H=Q"BQ,

where () is the product of the orthogonal transformations that has been stored in array ort
and in the strict lower triangle below upper Hessenberg matrix, then the function ortran
accumulates the transformations in the output matrix z for later use in computation of
eigenvectors of the original matrix.

Having returned from the function the input array ort has been modified.

Performance

This function is numerically stable. The computed eigenvalues and eigenvectors would be
exact for a matrix which is a small perturbation of the original matrix. The upper bound
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for the norm of the perturbation matrix is commensurate to the relative machine precision
times the norm of original matrix.

Notes

Arrays a and z are expected to be in the format produced by the allocation function
fsquare.

Array ort should be allocated as a real array of length at least ¢gh. The function references
only the entries in [low + 1,igh| locations of the array ort.

If the function balanc has not been used to balance the original matrix, the input
parameters low and igh must be set to 0 and (n — 1) respectively.

Test

The test program is contained in ortrant.c file. The example matrices are contained in
rmatrixl.xpd, rmatrix2.xpd, rmatrix3.xpd files.

References

G .Peters, J .H .Wilkinson, Numerical Mathematics, Vol. 16, pp.181-204, 1970.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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4.2.3 ELMHES Reduction by Elementary Transformation

Name

selmhes — Reduction by stabilized elementary transformations, single precision
delmhes — Reduction by stabilized elementary transformations, double precision

Synopsis

#include <ceispack.h>

void selmhes (n, low, igh, a, iperm)
int n, low, igh;

float x**a;

int *iperm;

void delmhes (n, low, igh, a, iperm)
int n, low, igh;

double **a;

int *iperm;

n — order of input/output matrices

low — input constant set to lower index of balanced submatrix

igh — input constant set to higher index of balanced submatrix

a — balanced input/upper Hessenberg and transformations output matrix

iperm — output integer array of length at least ¢gh containing permutation indices
Description

Function elmhes reduces a submatrix located in the rows and columns from low to igh of a
given complex general matrix to upper Hessenberg form using and accumulates elementary
similarity transformations stabilized by permutation transformations.

The above submatrix is derived usually from balancing the original general matrix
performed by the function balanc, that reduces the original matrix into the
block-triangular form:

R : W : X
0o : B : Y [,
o : 0 = T

where B is of order (igh — low + 1) and located in the rows and columns from low to igh,
R and T are upper triangular, and the other matrices are rectangular of the respective
dimensions.
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The reduction is performed as follows. The element having the maximum absolute value is
searched for in the 7™ column below the principal diagonal and moved to the (i + 1,7)
location by the permutation transformations to stabilize the reduction process. Then the
elements of the i*® column below the first subdiagonal are annihilated by the elementary
row transformations.

Column transformations are applied to both of the permutation and elementary
transformations to accomplish the similarity transformation. The information about the
permutation transformations is stored in the vector ¢perm while the multipliers that define
the elementary transformations are stored in place of the eliminated elements of the matrix.

The steps described above are performed successively on the columns from low to (igh — 2).
Having returned from the function, the submatrix B of the input matrix a has been
reduced to upper Hessenberg form. The information about permutation transformations is
stored into the locations from low to igh of vector iperm. The other entries of the array
are not used. The multipliers that have been used in the elementary transformations are
stored into the strict lower triangle below the upper Hessenberg submatrix in the matrix a.

Performance

The reduction process is numerically stable. The computed eigenvalues and eigenvectors
would be exact for a matrix which is a small perturbation of the original matrix. The
upper bound for the norm of the perturbation matrix is commensurate to the relative
machine precision times the norm of original matrix.

The whole reduction process involves about %m3 multiplications, where m = igh — low + 1.

This function is generally faster than the function orthes, since it involves fewer number of
arithmetic operations. The disadvantage of the function elmhes is in the fact that the
transformations used are not orthogonal and possibly may increase the norm of reduced
matrix, therefore affecting the precision of the computed eigenvalues and eigenvectors. In
practice, such a matrices are rarely arise.

Notes

Array a is expected to be in the format produced by the allocation function fsquare.
The function references only the entries in [low + 1,igh — 1] locations of the array iperm.

If the function balanc has not been used to balance the original matrix, the input
parameters low and igh must be set to 0 and (n — 1) respectively.

Test

The test programs are contained in rgt.c, elmbakt.c files. The example matrices are
contained in rmatrixl.xpd, rmatrix2.xpd, rmatrix3.xpd files.
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References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.349-368, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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4.2.4 ELTRAN Accumulation of Elementary Transformations

Name

seltran — Accumulation of elementary transformations, single precision
deltran — Accumulation of elementary transformations, double precision

Synopsis

#include <ceispack.h>

void seltran (n, low, igh, a, iperm, z)
int n, low, igh;

float *x*a, *x*xz;

int *iperm;

void deltran (n, low, igh, a, iperm, z)
int n, low, igh;

double *x*a, *x*z;

int *iperm;

n — order of input/output matrices
low — input constant set to lower index of balanced submatrix
igh — input constant set to higher index of balanced submatrix
a — upper Hessenberg and transformations input matrix
iperm — integer input array of length at least ¢gh containing permutation indices
z — square output array containing the transformation matrix
Description

Function eltran accumulates the stabilized elementary similarity transformations that have
been used by the function elmhes in the reduction of a real general matrix to upper
Hessenberg form.

If submatrix B, stored in the input array a has been reduced to upper Hessenberg form by
the permutation and stabilized elementary similarity transformations:

H = S"'BS,

where S is the product of the permutation matrices and elementary transformations, that
has been stored in array iperm and in the strict lower triangle below the upper Hessenberg
matrix, then the function eltran transfers the multipliers stored in the matrix a into the
output matrix z for later use in computation of eigenvectors of the original matrix.

Having returned from the function, the array z contains the transformation matrix
produced in the reduction process by the function elmhes.
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Performance

Since the function performs only a copying of the elements of the strict lower triangle of
the matrix ¢ into matrix z and interchanges the rows and columns of z determined by
vector iperm it produces no rounding errors.

Notes

Matrices ¢ and z are expected to be in the format produced by the allocation function
fsquare.

The function references only the entries in [low + 1,igh — 1] locations of the array iperm.

If the function balanc has not been used to balance the original matrix, the input
parameters low and igh must be set to 0 and (n — 1) respectively.

Test

The test program is contained in rgt.c file. The example matrices are contained in
rmatrixl.xpd, rmatrix2.xpd, rmatrix3.xpd files.

References

G .Peters, J .H .Wilkinson, Numerical Mathematics, Vol. 16, pp.181-204, 1970.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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4.3 Eigenvalues and Eigenvectors

4.3.1 HQR Eigenvalues, QR Algorithm

Name

shqr — Forms eigenvalues by QR algorithm, single precision
dhqr — Forms eigenvalues by QR algorithm, double precision

Synopsis

#include <ceispack.h>

void shqr (n, low, igh, h, w, ierr)
int n, low, igh;

float **h;

fcomplex *w;

int *ierr;

void dhqr (n, low, igh, h, w, ierr)
int n, low, igh;

double **h;
dcomplex *w;
int *ierr;
n — order of input matrix
low — input constant set to lower index of balanced submatrix
igh — input constant set to higher index of balanced submatrix
h — input matrix in upper Hessenberg form
w  — length n output array containing eigenvalues
ierr  — address of output variable containing error completion code
Diagnostics

On output, the variable *ierr is set to 0 for normal return. If the limit of MAXITER*n
iterations is exceeded while the i*" eigenvalue is being computed, the error flag *ierr is set
to (¢ + 1). Eigenvalues corresponding to indices j € [*ierr,n — 1] would be correct.

Description

Function hqr computes all the eigenvalues of a real matrix in upper Hessenberg form by the
QR algorithm. This algorithm iterates a sequence of upper Hessenberg matrices that are
orthogonally similar to the original matrix. The sequence of upper Hessenberg matrices
converges to an upper quasi-triangular form, such that its principal diagonal contains only
blocks of first and second order. The eigenvalues of such a matrix are those of the principal
1 x 1 and 2 x 2 diagonal blocks.
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A shift of origin before the next iteration generally improves the rate of convergence. The
current upper Hessenberg form is tested before the next iteration for possible splitting to
submatrices. The tolerance for the test is proportional to relative machine precision. If the
matrix splits, the next iterations continue with the lower submatrix.

The value of the origin shift is chosen be equal to the eigenvalues of the 2 x 2 lowermost
principal minor of the currently iterating submatrix. Iterations proceed until the whole
matrix has finally split into minors of first and second order.

If an eigenvalue has not converged within 10 consecutive iterations, the additional shift of
origin is applied to improve convergence.

The arithmetic used in function hqr is kept real during the whole computation process by
using a double QR step and two real or a pair of complex conjugate shifts of origin.

The hqr function iterates the submatrix which is located in the rows and columns low
through igh (see the description of the balanc function for more details about the variables
low and igh) and concerns the diagonal elements of the submatrices located in the rows and
columns 0 through low and (igh + 1) through (n — 1) as the eigenvalues of original matrix.
These eigenvalues are computed exact. If the balanc function has not been used, the input
variables low and igh must be set to 0 and (n — 1) respectively.

Having returned from the function, the array w contains the eigenvalues of the original
matrix. The complex conjugate pairs of eigenvalues are stored such that the eigenvalue
having the positive imaginary part is stored first.

The eigenvalues of a real general matrix can also be found if the functions elmhes or
orthes have been used to reduce the original general matrix into upper Hessenberg form.
Generally it is recommended to use the function balanc to balance the original general
matrix before the reduction to upper Hessenberg form.

Performance

It is expected that the QR algorithm converges in most the cases. Appropriate shift of
origin makes the convergence rate very fast.

The computed eigenvalues are exact for a matrix which is a small perturbation of the
original matrix. The upper bound for the norm of the perturbation matrix is
commensurate to the relative machine precision times the norm of the original matrix.

Notes

Matrix h is expected to be in the format produced by the allocation function fsquare.
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On input, the lower triangle below the first subdiagonal of the input matrix A contains the
information about the orthogonal transformations used in the reduction of a general matrix
to upper Hessenberg form by the functions orthes or elmhes if they have been used.

The upper Hessenberg part and two adjacent subdiagonals of the input matrix h are
modified by the function hqr.

Test

The test programs are contained in hqrt.c, elmbakt.c, ortbakt.c files. The example
matrices are contained in rmatrixl.xpd, rmatrix2.xpd, rmatrix3.xpd and
rhessenl.xpd, rhessen2.xpd, rhessen3.xpd, rhessen4.xpd, rhessenb.xpd,
rhessen6.xpd files.

References

J. G. F. Francis, Computer Journal, Vol. 4, pp.332-345, 1962.

R. S. Martin, G .Peters, J. H. Wilkinson, Numerical Mathematics, Vol. 14, pp.219-231,
1970.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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4.3.2 HQR?2 Eigenvalues and Eigenvectors, QR Algorithm

Name

shqr2 — Forms eigenvalues and eigenvectors, single precision
dhqr2 — Forms eigenvalues and eigenvectors, double precision

Synopsis

#include <ceispack.h>

void shqr2 (n, low, igh, h, w, z, ierr)
int n;

int low, igh;

float **h, **z;

fcomplex *w;

int *ierr;

void dhqr2 (n, low, igh, h, w, z, ierr)
int n; int low, igh;

double **h, *x*z;

dcomplex *w;

int *ierr;

n — order of input/output matrices

low — input constant set to lower index of balanced submatrix

igh — input constant set to higher index of balanced submatrix

h — input matrix in upper Hessenberg form

w  — length n output array containing eigenvalues

z — input transformations (identity)/output column eigenvectors matrix

ierr — address of output variable containing error completion code
Diagnostics

On output, the variable *ierr is set to 0 for normal return. If the limit of MAXITER*n
iterations is exceeded while the i*" eigenvalue is being computed, the error flag *ierr is set
to (i + 1). Eigenvalues corresponding to the indices [xierr,n — 1] would be correct. None of
the eigenvectors have yet been determined.

Description

Function hqr2 computes all the eigenvalues and corresponding eigenvectors of a real matrix
in upper Hessenberg form by the Q)R algorithm. This algorithm iterates a sequence of
upper Hessenberg matrices that are orthogonally similar to the original matrix. The
sequence of upper Hessenberg matrices converges to an upper quasi-triangular form, such
that its principal diagonal contains only blocks of first and second order. The eigenvalues
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of such a matrix are those of the principal 1 x 1 and 2 x 2 diagonal blocks.

A shift of origin before the next iteration generally improves the rate of convergence. The
current upper Hessenberg form is tested before the next iteration for possible splitting to
submatrices. The tolerance for the test is proportional to relative machine precision. If the
matrix splits, the next iterations continue with the lower submatrix.

The value of the origin shift is chosen be equal to the eigenvalues of the 2 x 2 lowermost
principal minor of the currently iterating submatrix. Iteration proceeds until the whole
matrix has finally split into minors of first and second order.

If an eigenvalue has not converged within 10 consecutive iterations, the additional shift of
origin is applied to improve the convergence rate.

The arithmetic used in function hqr2 is kept real during the whole computation process by
using a double QR step and two real or a pair of complex conjugate shifts of origin.

The hqr2 function iterates the submatrix which is located in the rows and columns low
through igh (see the description of the balanc function for more details about the variables
low and igh) and concerns the diagonal elements of the submatrices located in the rows and
columns 0 through low and (igh + 1) through (n — 1) as the eigenvalues of the original
matrix. These eigenvalues are computed exact. If the balanc function has not been used,
the input variables low and igh must be set to 0 and (n — 1) respectively.

The eigenvectors of the finally converged quasi-triangular matrix are computed by the back
substitution process and multiplied by the transformation matrix to be back transformed
into the eigenvectors of the original matrix.

The eigenvalues and eigenvectors of a real general matrix can also be found if the functions
elmhes or orthes have been used to reduce the original general matrix into upper
Hessenberg form and the functions eltran or ortran have been used to accumulate the
similarity transformations in the array z.

Generally, it is recommended to use the function balanc to balance the original general
matrix before the reduction to upper Hessenberg form. Note that the function balbak
must follow hqr2 if balanc has been used.

Having returned from the function, the array w contains the eigenvalues of the original
matrix. The complex conjugate pairs of eigenvalues are stored such that the eigenvalue
having the positive imaginary part is stored first.

On input, matrix z contains the transformation matrix produced by the function eltran
after the reduction by the function elmhes, or by the function ortran after the reduction
by the function orthes if they have been used. If the eigenvectors of the Hessenberg
matrix are required, z must contain the identity matrix.
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On output, the columns of matrix z contains the real and imaginary parts of the
eigenvectors. If the i'" eigenvalue is real, the i*® column of matrix z contains its eigenvector.

If the i*" eigenvalue is complex then two cases arise: if the imaginary part of an eigenvalue
is positive, the i*! column of array z would contain the real part, while the (i + 1)*® column
of z contains the imaginary part of the corresponding eigenvector. The conjugate of this
vector is the eigenvector for the conjugate eigenvalue. The eigenvectors are unnormalized.
Performance

It is expected that the QR algorithm converges in most the cases. Appropriate shift of

origin makes the convergence rate very fast.

The computed eigenvalues and eigenvectors are exact for a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of the original
matrix.

Notes

Matrices h and z are expected to be in the format produced by the allocation function
fsquare.

The upper Hessenberg part of the input matrix A is modified by the function hqr2.

Test

The test programs are contained in hqr2t.c, ortrant.c files. The example matrices are
contained in rmatrixl.xpd, rmatrix2.xpd, rmatrix3.xpd and rhessenl.xpd,
rhessen2.xpd, rhessen3.xpd, rhessen4.xpd, rhessen5.xpd, rhessen6.xpd files.

References

J. G. F. Francis, Computer Journal, Vol. 4, pp.332-345, 1962.
G .Peters, J. H. Wilkinson, Numerical Mathematics, Vol. 16, pp.181-204, 1971.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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4.3.3 INVIT Eigenvectors Corresponding to Specified
Eigenvalues

Name

sinvit — Finds eigenvectors corresponding to specified eigenvalues, single precision
dinvit — Finds eigenvectors corresponding to specified eigenvalues, double precision

Synopsis

#include <ceispack.h>

void sinvit (n, a, w, select, mm, m, mz, z, ierr, rm, rvl, rv2)
int n;

float **a, *x*xz;

fcomplex *w;

int *select, mm, *m, mz, *ierr;

float **rm, *rvl, *rv2;

void dinvit (n, a, w, select, mm, m, mz, z, ierr, rm, rvl, rv2)
int n;

double **a, *x*z;

dcomplex *w;

int *select, mm, *m, mz, *ierr;

double **rm, *rvl, *rv2;

n — order of input matrix e and number of rows in eigenvector matrix
a — input matrix in upper Hessenberg form
w — length n input array containing n eigenvalues
select — length n input array which specifies required eigenvectors
mm  — input constant specifying upper bound for number of required eigenvectors
m — address of output variable containing number of eigenvectors actually computed
mz — number of columns in eigenvector matrix z
z — rectangular output matrix containing column eigenvectors
ierr — address of output variable containing error completion code
rm — order n temporary storage square matrix
rvl — temporary storage array of length n
rv2 — temporary storage array of length n
Diagnostics

The function returns 0 for normal return or 1 if an error exit has been made. The output
error flag *ierr is set to:

e ( for normal return.
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e —(2n+ 1) if more than mm eigenvectors have been specified. The output variable *m
is set to either mm or mm — 1 and specifies the number of eigenvectors that have
been found.

e —/ if the iteration corresponding to the £ eigenvalue failed.

e —(n+ k) if both the error situations occurred.

Description

Function invit computes the eigenvectors of a real matrix in upper Hessenberg form, which
corresponds to the specified eigenvalues, using the inverse iteration technique. Computed
eigenvectors are normalized so that the component of the largest magnitude is set equal to
1.

The function invit solves the linear system

Uy = yo

in order to obtain the eigenvector corresponding to the i*" eigenvalue, where U is the upper
triangular multiplier in the LU decomposition of the matrix

F=B-ul

where B is the leading order p submatrix of the input upper Hessenberg matrix. u; is the

approximate eigenvalue of the matrix A. Starting from an initial vector, the approximate

eigenvector is obtained by the back substitution process. The solution vector y is accepted
as the eigenvector of the F'if its norm satisfies the following acceptance test:

Yolloo
VBEIF ol > 120l

If the acceptance test failed, up to p orthogonal initial vectors are tried successively to
obtain an appropriate norm growth. The accepted vector is transformed to the eigenvector
of the original matrix by adding (n — p) zeros after its last component.

If all the initial vectors have not produce an accepted eigenvector, the function invit sets
the error flag ierr to —i, where 7 is the index of corresponding eigenvalue, terminates the
iterations for this eigenvector and continue the computation process for the next
eigenvalue. Components of the unaccepted eigenvector are set to zero. If such a situation
occurs more than once, the output error flag would contain the last index of the eigenvalue
for which the computation of an eigenvector failed.

The real parts of multiple eigenvalues or a group of close eigenvalues are perturbed by
adding small multiples of ¢||BJ| in order to obtain linearly independent eigenvectors.

The input array w contains eigenvectors of the input upper Hessenberg matrix. They are
stored unordered except that complex conjugate pairs must be stored successively, and
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eigenvalues of any submatrix of the input upper Hessenberg matrix must have indices in
the array w between the boundary indices of this submatrix. If hqr function has been used
to find eigenvalues of an upper Hessenberg matrix, its output array of eigenvectors is
arranged in the required order.

The entries of the input vector select specify the eigenvectors to be found. The entry
corresponding to the i*" eigenvalue must be set to a non-zero value if the " eigenvector is
required or to 0 otherwise.

Having returned from the function, the real parts of multiple eigenvalues or a group of
close eigenvalues may have been perturbed a little in order to compute linearly
independent eigenvectors.

The output vector select may have been altered. If the entries of the vector corresponding
to a pair of complex conjugate eigenvalues were each initially set to a non-zero value, the
function invit resets the second of the two elements to 0.

The output variable m is set to the number of columns actually used to store the
eigenvectors. Note that an eigenvector corresponding to a complex eigenvalue require two
columns to store its real and imaginary parts.

The columns of output matrix z contains the real and imaginary parts of the eigenvectors.
If the next selected eigenvalue is real then the next column of matrix z contains its
eigenvector. If the eigenvalue is complex, the next two columns of z contain the real and
imaginary parts of its eigenvector. The eigenvectors are normalized so that the component
of the largest magnitude is 1. Any vector which does not satisfy the acceptance test is set
to zero.

Performance

The rate of convergence of the inverse iterations is linear. Computed eigenvectors are the
exact ones of the perturbed original matrix. The value of the perturbation is proportional
to the machine precision times the norm of original matrix.

Notes

Matrices a and rm are expected to be in the format produced by the allocation function
fsquare.

Matrix z of dimension n x mz is expected to be in the format produced by the allocation
function fmatrix.

The input matrix «a is preserved by the function invit.
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Test

The test programs are contained in hqrt.c, elmbakt.c, ortbakt.c files. The example
matrices are contained in rmatrixl.xpd, rmatrix2.xpd, rmatrix3.xpd and
rhessenl.xpd, rhessen2.xpd, rhessen3.xpd, rhessen4.xpd, rhessenb.xpd,
rhessen6.xpd files.

References
J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. N. Parlett, The Symmetric Eigenvalue Problem, Published by: Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 07632, 1980.
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4.3.4 ORTBAK Eigenvectors of Original Matrix

Name

sortbak — Forms eigenvectors of original matrix, single precision
dortbak — Forms eigenvectors of original matrix, double precision

Synopsis

#include <ceispack.h>

void sortbak (n, low, igh, a, ort, m, z, rv)
int n, low, igh;

float **a, *ort;

int m;

float **z, *rv;

void dortbak (n, low, igh, a, ort, m, z, rv)
int n, low, igh;

double **a, *ort;

int m;

double *x*z, *rv;

n — order of input array ¢ and number of rows in eigenvector array
low — input constant set to lower index of balanced submatrix
igh — input constant set to higher index of balanced submatrix
a — input upper Hessenberg and transformations matrix
ort — input array containing rest of information about transformations
m  — number of columns in eigenvector array
zZ — input/output eigenvector array
rv  — temporary storage array of length n
Description

Function ortbak forms the eigenvectors of a real general matrix by back transforming the
eigenvectors of the corresponding upper Hessenberg matrix determined by the function
orthes.

If submatrix B, stored in the input array a has been reduced to upper Hessenberg form by
orthogonal similarity transformations:

H = Q"BQ,

where @) is the product of the orthogonal transformations, that has been stored in array ort
and in the strict lower triangle below upper Hessenberg matrix, then the function ortbak
computes for each eigenvector x; of the upper Hessenberg matrix the product:

z; = Qu;, where i € [0,m — 1]
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thus forming the eigenvectors of the original matrix B. The transformed eigenvectors are
stored column-wise in the matrix 2, overwriting the input eigenvectors of the upper
Hessenberg matrix.

Performance

The computed eigenvectors are exact for a matrix which is a small perturbation of the
original matrix. The upper bound for the norm of the perturbation matrix is
commensurate to the relative machine precision times the norm of the original matrix.

Notes

Array a is expected to be in the format produced by the allocation function fsquare.

Rectangular n x m matrix z is expected to be in the format produced by the allocation
function fmatrix.

It is not required by the function that the real and imaginary parts of an eigenvector are
stored in the sequential columns of the matrix z.

Array ort should be allocated as a real array of length at least igh.

If the function balanc has not been used to balance the original matrix, the input
parameters low and igh must be set to 0 and (n — 1) respectively.

Test
The test program is contained in ortbakt.c file. The example matrices are contained in

rmatrixl.xpd, rmatrix2.xpd, rmatrix3.xpd files.

References

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.349-368, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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4.3.5 ELMBAK Eigenvectors of Original Matrix

Name

selmbak — Forms eigenvectors of original matrix, single precision
delmbak — Forms eigenvectors of original matrix, double precision

Synopsis

#include <ceispack.h>

void selmbak (n, low, igh, a, iperm, m, z)
int n, low, igh;

float x**a;

int *iperm, m;

float *x*z;

void delmbak (n, low, igh, a, iperm, m, z)
int n, low, igh;

double **a;

int *iperm, m;

double **z;

n — order of input matrix ¢ and number of rows in eigenvector matrix
low — input constant set to lower index of balanced submatrix
igh — input constant set to higher index of balanced submatrix
a — upper Hessenberg and transformations input matrix
iperm  — length n input integer array containing permutation indices
m — number of columns in eigenvector matrix
z — column eigenvector input/output matrix
Description

Function elmbak forms the eigenvectors of a real general matrix by back transforming the
eigenvectors of the corresponding upper Hessenberg matrix determined by the function
elmhes.

If submatrix B, stored in the input array a has been reduced to upper Hessenberg form by
permutation and stabilized elementary similarity transformations:

H = S"'BS,

where S is the product of the permutation matrices and elementary transformations, that
have been stored in array iperm and in the strict lower triangle below upper Hessenberg
matrix, then the function elmbak computes for each eigenvector x; of the upper Hessenberg
matrix the product:

z; = Sx;, where ¢ € [0,m — 1]
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thus forming the eigenvectors of the original matrix B. The transformed eigenvectors are
stored column-wise in the matrix 2, overwriting the input eigenvectors of the upper
Hessenberg matrix.

Performance

The computed eigenvectors are exact for a matrix which is a small perturbation of the
original matrix. The upper bound for the norm of the perturbation matrix is
commensurate to the relative machine precision times the norm of the original matrix.

Notes

Matrix a is expected to be in the format produced by the allocation function fsquare.

Rectangular n x m matrix z is expected to be in the format produced by the allocation
function fmatrix.

It is not required by the function that the real and imaginary parts of an eigenvector are
stored in the sequential columns of the matrix z.

The function references only the entries in [low + 1,igh — 1] locations of the array iperm.

If the function balanc has not been used to balance the original matrix, the input
parameters low and igh must be set to 0 and (n — 1) respectively.

Test
The test program is contained in elmbakt.c file. The example matrices are contained in

rmatrixl.xpd, rmatrix2.xpd, rmatrix3.xpd files.

References

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.349-368, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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4.3.6 BALBAK Eigenvectors of Non-balanced Matrix

Name

sbalbak — Forms eigenvectors of non-balanced matrix, single precision
dbalbak — Forms eigenvectors of non-balanced matrix, double precision

Synopsis

#include <ceispack.h>

void sbalbak (n, low, igh, scale, m, z)
int n, low, igh;

float *scale;

int m;

float *x*z;

void dbalbak (n, low, igh, scale, m, z)
int n, low, igh;

double *scale;

int m;

double **z;

n — number of rows in eigenvector matrix
low  — input constant set to lower index of balanced submatrix
igh  — input constant set to higher index of balanced submatrix
scale — length n input array containing scaling factors and permutation indices
m — number of columns in eigenvector matrix
z — column eigenvector input/output matrix
Description

Function balbak forms the eigenvectors of a real general matrix by back transforming the
corresponding eigenvectors of the balanced matrix that has been determined by the
function balanc.

The function balanc transforms the original matrix A into the balanced block-triangular
matrix A, applying the similarity transformations:

A, =D 'PTAPD,

where P is the product of permutation transformations. D is the diagonal matrix of scaling
factors, such that its locations within the indices j € [low, igh] are integer powers of the
base of machine arithmetic and all other locations are 1.

Function balbak back transforms the eigenvectors of the balanced matrix to the
eigenvectors of the original matrix by forming the product:
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Zi = PDJIZ,

where x; is the i*® eigenvector of the balanced matrix, and z; is the corresponding
eigenvector of the original matrix.

The back transformed eigenvectors are stored column-wise in the matrix z, overwriting the
input eigenvectors of the balanced matrix.

Performance

Since the non-unitary entries in the diagonal matrix D are integer powers of the base of
machine arithmetic, the function balbak produces no rounding errors.

Notes

Rectangular n x m matrix z is expected to be in the format produced by the allocation
function fmatrix.

It is not required by the function that the real and imaginary parts of an eigenvector are
stored in the sequential columns of the matrix z.

Test

The test programs are contained in rgt.c, elmbakt.c, ortbakt.c, ortrant.c files. The
example matrices are contained in rmatrixl.xpd, rmatrix2.xpd, rmatrix3.zxpd files.

References

B. N. Parlett, C. Reinsch, Numerical Mathematics, Vol. 13, pp.293-304, 1969.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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4.3.7 BALBKL Left-hand Eigenvectors of Non-balanced Matrix

Name

sbalbkl — Forms left-hand eigenvectors of non-balanced matrix, single precision
dbalbkl — Forms left-hand eigenvectors of non-balanced matrix, double precision

Synopsis

#include <ceispack.h>

void sbalbkl (n, low, igh, scale, m, z)
int n, low, igh;

float *scale;

int m;

float *x*z;

void dbalbkl (n, low, igh, scale, m, z)
int n, low, igh;

double *scale;

int m;

double **z;

n — number of rows in left-hand eigenvector matrix
low  — input constant set to lower index of balanced submatrix
igh  — input constant set to higher index of balanced submatrix
scale — length n input array containing scaling factors and permutation indices
m — number of columns in left-hand eigenvector matrix
z — column left-hand eigenvector input/output matrix
Description

Function balbkl forms the left-hand eigenvectors of a real general matrix by back
transforming corresponding left-hand eigenvectors of balanced matrix that have been
determined by the function balanc.

The function balanc transforms the original matrix A into the balanced block-triangular
matrix A, applying the similarity transformations:

A, =D 'PTAPD,

where P is the product of permutation transformations. D is the diagonal matrix of scaling
factors, such that its locations within the indices j € [low, igh] are integer powers of the
base of machine arithmetic and all other locations are 1.

Function balbkl back transforms the left-hand eigenvectors of the balanced matrix to the
left-hand eigenvectors of the original matrix by forming the product:
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Zi = PD_IJIZ',

where z; is the i*" left-hand eigenvector of the balanced matrix, and z; is the corresponding
left-hand eigenvector of the original matrix.

The back transformed left-hand eigenvectors are stored column-wise in the matrix z,
overwriting the input left-hand eigenvectors of the balanced matrix.

Performance

Since the non-unitary entries in the diagonal matrix D are integer powers of the base of
machine arithmetic, the function balbkl produces no rounding errors.

Notes

Rectangular n x m matrix z is expected to be in the format produced by the allocation
function fmatrix.

It is not required by the function that the real and imaginary parts of an eigenvector are
stored in the sequential columns of the matrix z.

Function balbkl is a modification of the C function balbak.

References

B. N. Parlett, C. Reinsch, Numerical Mathematics, Vol. 13, pp.293-304, 1969.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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Chapter 5

Symmetric (Generalized
Eigenproblem

5.1 Reduction to Standard Symmetric Eigenproblem

5.1.1 REDUC Reduction Using Cholesky Factorization

Name

sreduc — Reduction to standard symmetric eigenproblem, single precision
dreduc — Reduction to standard symmetric eigenproblem, double precision

Synopsis

#include <ceispack.h>

void sreduc (n, a, b, dl, ierr)
int n;

float **a, *xb, *xdl;

int *ierr;

void dreduc (n, a, b, dl, ierr)

int n;
double **a, **xb, *dl;
int *ierr;
n — order of matrices; flag which prevents from computation of Cholesky factor
a — symmetric input/reduced output symmetric matrix
b — positive definite input matrix/output Cholesky factor
dl  — length n output array containing diagonals of Cholesky factor
ierr — address of output variable containing error completion code
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Diagnostics
The output error flag *ierr is set to:
e ( for normal return.

e (7n 4+ 1) if matrix b is not positive definite. In such a case, the Cholesky
decomposition of the matrix is not exist.

Description

Function reduc reduces the generalized symmetric eigenproblem:
Ax = ABu,
where B is positive definite, to the standard symmetric eigenproblem:
Gz = Az,
where G is the matrix product:
G=L"'ALT,
using Cholesky factorization of the matrix B. Vector z is defined as z = L.

At first, the function estimates the Cholesky decomposition:
B=LL"

where L is lower triangular. If the Cholesky factor L of B is already known (this is
specified by setting the input parameter n to be negative), it can be passed to the function
in place of matrix B, therefore the first phase of the function reduc is omitted.

At the second phase, the function calculates the matrix product G, that has the same
eigenvalues as the original system. The eigenvectors of the reduced system can be back
transformed into the eigenvectors of the original system, using the function rebak.

The input constant n is set to the order of the matrices a and b. If the Cholesky factor of
matrix b is already available then n should be negative.

The input matrix a contains the symmetric input matrix. Only the full upper triangle of
the matrix need be supplied.

The input matrix b contains the symmetric positive input matrix. Only the full upper
triangle of the matrix need be supplied. If the input n is negative, the strict lower triangle
of matrix b contains the strict lower triangle of its Cholesky factor. In this case, the input
vector dl contains the diagonal elements of the Cholesky factor.
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Having returned from the function, matrix a contains, in its full lower triangle, the em full
lower triangle of the symmetric matrix derived from the reduction to the standard form.
The strict upper triangle of the matrix is unaltered.

In its strict lower triangle, matrix b contains the strict lower triangle of its Cholesky factor.
The full upper triangle of the matrix is unaltered.

Array dl contains the diagonal elements of the Cholesky factor of b.

Performance

The computed Cholesky factor is exact for a matrix which is a small perturbation of the
original matrix. The upper bound for the norm of the perturbation matrix is
commensurate to the relative machine precision times the norm of the original matrix.

1

6n3 multiplications required in computation of the Cholesky factor.

There are

The matrix product G formed by the function reduc also is computed within very small
error level. There are about %n?’ (due to the symmetry property) multiplications required
in the computation of the lower triangle of the product.

Notes

Matrices a and b are expected to be in the format produced by the allocation function
fsquare.

Test

The test program is contained in rsgt.c file. The example matrices are contained in

rgensym. xpd file.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 11, pp.99-110, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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5.1.2 REDUC2 Reduction Using Cholesky Factorization

Name

sreduc2 — Reduction to standard symmetric eigenproblem, single precision
dreduc2 — Reduction to standard symmetric eigenproblem, double precision

Synopsis

#include <ceispack.h>

void sreduc2 (n, a, b, dl, ierr)
int n;

float **a, *xb, *xdl;

int *ierr;

void dreduc2 (n, a, b, dl, ierr)

int n;
double **a, **xb, *dl;
int *ierr;
n — order of matrices; flag which prevents from computation of Cholesky factor
a — symmetric input/reduced symmetric output matrix
b — positive definite input matrix/output Cholesky factor
dl  — length n output array containing diagonals of Cholesky factor
ierr — address of output variable containing error completion code
Diagnostics

The output error flag *ierr is set to:

e () for normal return.

e (7n+ 1) if matrix b is not positive definite. In such a case, the Cholesky
decomposition of the matrix is not exist.

Description

Function reduc2 reduces either the generalized symmetric eigenproblems:

ABx = Ax or BAx = Az,

where B is positive definite, to the standard symmetric eigenproblem:

Gz = Az,
where G is the matrix product:
G=L"AL,
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using Cholesky factorization of matrix B. Vector z is defined as
z=L"vorz=L""x,
respectively.
At first, the function estimates the Cholesky decomposition:
B=LL"

where L is lower triangular. If the Cholesky factor L of matrix B is already known (this is
specified by setting the input parameter n to be negative), it can be passed to the function
in place of B, therefore the first phase of the function reduc2 is omitted.

At the second phase, the function calculates the matrix product G, that has the same
eigenvalues as the original system. The eigenvectors of the reduced system can be back
transformed into the eigenvectors of the original system, using the functions rebak or
rebakb.

The input constant n is set to the order of the matrices a and b. If the Cholesky factor of
matrix b is already available then n should be negative.

The input matrix a contains the symmetric input matrix. Only the full upper triangle of
the matrix need be supplied.

The input matrix b contains the symmetric positive input matrix. Only the full upper
triangle of the matrix need be supplied. If the input n is negative, the strict lower triangle
of matrix b contains the strict lower triangle of its Cholesky factor. In this case the input
vector dl contains the diagonal elements of the Cholesky factor.

Having returned from the function, matrix a contains, in its full lower triangle, the full
lower triangle of the symmetric matrix derived from the reduction to the standard form.
The strict upper triangle of the matrix is unaltered.

In its strict lower triangle, matrix b contains the strict lower triangle of its Cholesky factor.
The full upper triangle of the matrix is unaltered.

Array dl contains the diagonal elements of the Cholesky factor of b.

Performance

The computed Cholesky factor is exact for a matrix which is a small perturbation of the
original matrix. The upper bound for the norm of the perturbation matrix is
commensurate to the relative machine precision times the norm of the original matrix.
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1

6n3 multiplications required in computation of the Cholesky factor.

There are

The matrix product G formed by the function reduc2 also is computed within very small
error level. There are about %n?’ (due to the symmetry property) multiplications required
in the computation of the lower triangle of the product.

Notes

Matrices ¢ and b are expected to be in the format produced by the allocation function
fsquare.

Test

The test programs are contained in rsgabt.c, rsgbat.c files. The example matrices are
contained in rgensym.xpd file.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 11, pp.99-110, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. S. Garbow, et. all, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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5.2 Generalized Eigenvectors

5.2.1 REBAK Eigenvectors of Original Matrix System

Name

srebak — Forms generalized eigenvectors, single precision
drebak — Forms generalized eigenvectors, double precision

Synopsis

#include <ceispack.h>

void srebak (n, b, dl, m, z)
int n;

float **b, *dl;

int m;

float *x*z;

void drebak (n, b, dl, m, =z)
int n;

double *xb, *dl;

int m;

double **z;

n — order of matrix b and number of columns in eigenvector matrix

b — input Cholesky factor

dl — length n input array containing diagonals of Cholesky factor

m — number of eigenvectors to be back transformed

z — input eigenvector/output transposed (row) generalized eigenvectors matrix
Description

Function rebak computes the eigenvectors of either the generalized symmetric eigensystems:

Az = ABx or ABx = \z

by back transforming the eigenvectors of the reduced symmetric matrix determined by
either functions reduc or reduc2.

If the first generalized symmetric eigensystem with the positive definite matrix B has been
reduced to the standard symmetric eigenproblem:

Gz = M\z

by the transformation G = L' AL"T and the second generalized eigensystem has been
reduced by the transformation G = LT AL, where L is the Cholesky factor of the positive
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definite matrix B, then the function rebak back transforms the eigenvectors of the reduced
eigensystem to those of the original system. The eigenvectors of the original system are
obtained by calculating the product:

r=LT;

If the input eigenvectors are normalized having their Euclidean norms equal to 1, then the
back transformed eigenvectors would satisfy the generalized normalization:

2'Br=1

In its strict lower triangle,input matrix b contains information about the transformation
(namely, the Cholesky factor of B) used in the reduction by the either functions reduc or
reduc?.

The input vector dl contains the diagonals of the Cholesky factor.
The input matrix z contains the m transposed (row) eigenvectors to be back transformed.

Having returned from the function, matrix z contains the transformed (transposed)
orthogonal eigenvectors in its first m rows.

Performance

The computed eigenvectors are close to the exact eigenvectors of a system which is small
perturbation of the original matrix system. Occasionally they may be ill-conditioned, if the
positive definite matrix of the original system is ill-conditioned. In practice such a situation
is very rare.

Notes

Matrix b is expected to be in the format produced by the allocation functions fsquare,
trngl fmatrix or fsym. If the matrix is allocated by the function trngl_fmatrix the
lower triangle must be specified.

Rectangular m x n matrix z is expected to be in the format produced by the allocation
function fmatrix. The number of rows in the matrix must not be less than m.

Test

The test programs are contained in rsgt.c, rsgabt.c files. The example matrices are
contained in rgensym.xpd file.
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5.2.2 REBAKB Eigenvectors of Original Matrix System

Name

srebakb — Forms generalized eigenvectors, single precision
drebakb — Forms generalized eigenvectors, double precision

Synopsis

#include <ceispack.h>

void srebakb (n, b, dl, m, z)
int n;

float **b, *dl;

int m;

float *x*z;

void drebakb (n, b, dl, m, z)
int n;

double *xb, *dl;

int m;

double **z;

n — order of matrix b and number of columns in eigenvector matrix

b — input Cholesky factor

dl — length n input array containing diagonals of Cholesky factor

m — number of eigenvectors to be back transformed

z — input eigenvector/output transposed (row) generalized eigenvectors matrix
Description

Function rebakb computes the eigenvectors of the generalized symmetric eigensystem:
BAx = Az,

with the positive definite matrix B, by back transforming the eigenvectors of the reduced
symmetric matrix determined by function reduc2.

If the above generalized symmetric eigensystem has been reduced to the standard
symmetric eigenproblem:

Gz = Az,

by the transformation G = LT AL, where L is the Cholesky factor of the symmetric positive
definite matrix B, then the function rebakb back transforms the eigenvectors of the
reduced eigensystem to those of the original system. The eigenvectors of the original
system are obtained by calculating the product
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z =Lz

If the input eigenvectors are normalized having their Euclidean norms equal to 1, then the
back transformed eigenvectors would satisfy the generalized normalization:

2'B7lr =1

In its strict lower triangle, the input matrix b contains information about the
transformation (namely, the Cholesky factor of matrix B) used in the reduction by the
function reduc?.

The input vector dl contains the diagonals of the Cholesky factor.
The input matrix z contains the m transposed (row) eigenvectors to be back transformed.

Having returned from the function, matrix z contains the transformed (transposed)
orthogonal eigenvectors in its first m rows.

Performance

The computed eigenvectors are close to the exact eigenvectors of a system which is small
perturbation of the original matrix system. Occasionally they may be ill-conditioned, if the
positive definite matrix of original system is ill-conditioned. In practice such a situation is
very rare.

Notes

Matrix b is expected to be in the format produced by the allocation functions fsquare,
trngl fmatrix or fsym. If the matrix is allocated by the function trngl_fmatrix the
lower triangle must be specified.

Rectangular m x n matrix z is expected to be in the format produced by the allocation
function fmatrix. The number of rows in the matrix must not be less than m.

Test

The test program is contained in rsgbat.c file. The example matrices are contained in
rgensym. xpd file.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.
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Chapter 6

Symmetric Eigenproblem

6.1 Reduction to Symmetric Tridiagonal Form

6.1.1 TRED1 Reduction by Orthogonal Transformations

Name

stredl — Reduction to symmetric tridiagonal form, single precision
dtredl — Reduction to symmetric tridiagonal form, double precision

Synopsis

#include <ceispack.h>

void stredl (n, a, d, e, e2)
int n;

float **a, *d, xe, *e2;

void dtredl (n, a, d, e, e2)
int n;
double **a, *d, *e, *e2;

n — order of input Hermitian/output symmetric tridiagonal matrices

a  — symmetric input matrix (lower triangle)/transformation output matrix

d — output vector of length n containing diagonal elements of output matrix

e — output vector of length n containing subdiagonal elements of output matrix

e2 — length n output array of squares of subdiagonal elements of output matrix
Description

Function tredl reduces a real symmetric matrix to a symmetric tridiagonal form using
orthogonal similarity transformations.

The function performs a sequence of (n — 2) Householder reflections:

Copyright (©1993-2003 GDDI 109 Reference manual

+



CHAPTER 6. SYMMETRIC EIGENPROBLEM

P; =1 — u;ul /h, where h = ul'u;/2

The sequence is applied to the input matrix row-wise, starting with the last row and
continuing from bottom to top:

Aj=PA;_\P,ic[l,n—2]

Post-multiplications annihilates the elements in the (n — 7)™ row (rows are numbered
starting with 0 from top to bottom) to the left from the principal subdiagonal.
Pre-multiplications would annihilate the (n — i)™ column (columns are numbered in similar
manner) elements, but they are not actually applied.

The calculations proceed as follows. At first, the elements in the (n — 7)™ row to the left
from the principal subdiagonal are scaled to avoid possible underflow that would result in
destroying the orthogonality of the transformation. The sum of the squares S; of the scaled
elements is taken as the square of the i*" subdiagonal element of the symmetric tridiagonal
form. A square root Sil/2 with the sign set opposite to a transformed subdiagonal element
of the original matrix a is then taken as the value of this subdiagonal element.

At last, the i*" reflection eliminates these elements in the (n — i)™ row. The symmetric
elements in the corresponding column of the matrix would also be eliminated if the
pre-multiplication were applied.

Function tredl references only the lower triangle of the input matrix and the diagonal and
subdiagonal elements of the resulted symmetric tridiagonal matrix. The transformed
diagonal and subdiagonal elements are stored in the vectors d and e, therefore preserving
the full upper triangle of the matrix a.

The information about the Householder transformations used in the reduction process is
stored in the strict lower triangle of the original matrix a. The rest of the information is
represented by the elements of the output vector e.

Having returned from the function, the output vectors d and e contain respectively the
diagonal and subdiagonal elements of resulted symmetric tridiagonal matrix. The
subdiagonal elements has been stored in the last (n — 1) locations of the vector e. The first
entry of the array has been set to 0.

The array e2 contains the squares of the corresponding subdiagonal elements of resulted
symmetric tridiagonal matrix in its last (n — 1) locations. The entry e2[0] has been set to
0.

Performance

The whole reduction (taking into account the symmetry property) is required 2n?
multiplication and n square roots.
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The reduction process is numerically stable because it is based on orthogonal
transformations. The resultant symmetric tridiagonal matrix is orthogonally similar to a
matrix which is a small perturbation of the original matrix. The upper bound for the norm
of the perturbation matrix is commensurate to the relative machine precision times the
norm of the original matrix.

Notes

Matrix a is expected to be in the format produced by the allocation functions fsquare,
trngl fmatrix or fsym. If the matrix is allocated by the function trngl_fmatrix the
lower triangle must be specified.

Arrays e and e2 may coincide if the squares are not required.

Test

The test program is contained in rsmt.c file. The example matrices are contained in
rsymmetl.xpd, rsymmet2.xpd, rsymmet3.xpd files.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

R. S. Martin, C. Reinsch, J. H. Wilkinson, Numerical Mathematics, Vol. 11, pp.181-195,
1968.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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6.1.2 TRED2 Reduction and Accumulation of Transformations

Name

stred2 — Reduction and accumulation of the transformations, single precision
dtred2 — Reduction and accumulation of the transformations, double precision

Synopsis

#include <ceispack.h>

void stred2 (n, a, d, e, z, rv)
int n;

float **a, *d, *e, **z;

float *rv;

void dtred2 (n, a, d, e, z, rv)
int n;

double **a, *d, *e, *xz;

double *rv;

n — order of input Hermitian/output symmetric tridiagonal matrices
a  — symmetric input matrix (lower triangle)
d — output vector of length n containing diagonal elements of output matrix
e — output vector of length n containing subdiagonal elements of output matrix
z  — square output matrix containing transposed transformations
rv — temporary storage array of length n
Description

Function tred2 reduces a real symmetric matrix to a symmetric tridiagonal matrix using
orthogonal similarity transformations.

At first, the lower triangle of matrix a is copied into the lower triangle of output matrix z.
The transformations are applied to the matrix 2.

The function performs a sequence of (n — 2) Householder reflections:
P; =1 — u;ul /h, where h = ul'u;/2

The sequence is applied to the matrix row-wise, starting with the last row and continues
from bottom to top:

Aj=PA_Fie[l,n—2]
Post-multiplications eliminates the elements in the (n — )" row (rows are numbered
starting with 0 from top to bottom) to the left from the principal subdiagonal.
Pre-multiplications would annihilate the (n — i)™ column (columns are numbered in similar
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manner) elements, but they are not actually applied.

The calculations proceed as follows. The elements in the (n — i)™ row to the left from the
principal subdiagonal are scaled to avoid possible underflow that would result in destroying
the orthogonality of the transformation. The sum of the squares S; of the scaled elements
is taken as the square of the i** subdiagonal element of the symmetric tridiagonal form. A
square root Sil/Q with the sign set opposite to a transformed subdiagonal element of the
original matrix a is taken then as the value of this subdiagonal element.

At last, the i reflection eliminates these elements in the (n — )" row. The symmetric
elements in the corresponding column of the matrix would also be eliminated if the
pre-multiplication were applied.

Function tred2 references only the lower triangle of the input matrix and the diagonal and
subdiagonal elements of the resulted symmetric tridiagonal matrix.

The transformations used in the reduction process are accumulated transposed in the
output matrix z by forming the product of (n — 2) Householder reflections.

Having returned from the function, the output vectors d and e contain respectively the
diagonal and subdiagonal elements of resulted symmetric tridiagonal matrix. The
subdiagonal elements has been stored in tha last (n — 1) locations of the vector e. The first
entry of the array has been set to 0.

Performance

The whole reduction (taking into account the symmetry property) irequires §n3

multiplications and n square roots.

The reduction process is numerically stable because it is based on orthogonal
transformations. The resultant symmetric tridiagonal matrix is orthogonally similar to a
matrix which is a small perturbation of the original matrix. The upper bound for the norm
of the perturbation matrix is commensurate to the relative machine precision times the
norm of the original matrix.

Notes

Matrix a is expected to be in the format produced by the allocation functions fsquare,
trngl _fmatrix or fsym. If the matrix is allocated by the function trngl _fmatrix the
lower triangle must be specified. If the matrix a is allocated by the function fsquare, it
may coincide with the square array z.

Square array zis expected to be in the format produced by the allocation function fsquare.

The output matrix a is unchanged, unless it coincide with the matrix z.
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Test

The test programs are contained in rstest.c, rsgt.c, rsgabt.c, rsgbat.c files. The
example matrices are contained in rgensym.xpd, rsymmetl.xpd, rsymmet2.xpd,
rsymmet3.xpd files.

References
J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

R. S. Martin, C. Reinsch, J. H. Wilkinson, Numerical Mathematics, Vol. 11, pp.181-195,
1968.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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6.2 Eigenvectors

6.2.1 TRBAKI1 Eigenvectors of Original Matrix

Name

strbakl — Forms eigenvectors of symmetric matrix, single precision
dtrbakl — Forms eigenvectors of symmetric matrix, double precision

Synopsis

#include <ceispack.h>

void strbakl (n, a, e, m, z)
int n;

float **a, *e;

int m;

float *x*z;

void dtrbakl (n, a, e, m, z)
int n;

double **a, x*e;

int m;

double **z;

n — order of input matrices, number of columns in eigenvector matrix

a — orthogonal transformation input matrix

e — length n input array of subdiagonals of reduced symmetric tridiagonal matrix
m — number of eigenvectors to be back transformed

z ~— input/output matrix containing m transposed (row) eigenvectors

Description

Function trbakl computes the eigenvectors of a real symmetric matrix by back
transforming the eigenvectors of the corresponding symmetric tridiagonal matrix
determined by the function tredi.

The function calculates the matrix product PZ, where P is the product of (n — 2)
Householder reflections, accumulated in the reduction of a real symmetric matrix A to a
symmetric tridiagonal form 7":

T =PAP

by the function tredl.

The input matrix ¢ contains information about orthogonal transformation used in the
reduction by the function tredl in its strict lower triangle.
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The input vector e contains the subdiagonal elements of the derived symmetric tridiagonal
matrix in its last (n — 1) locations. The entry e[0] is arbitrary.

Input matrix z contains the m transposed (row) eigenvectors to be back transformed.

Having returned from the function, matrix z contains transformed eigenvectors of the
symmetric matrix. They are stored row-wise in place of the eigenvectors of derived
symmetric tridiagonal matrix. Since the transformations used by the function trbakl are
orthogonal, the Euclidean norm of the eigenvectors is kept unchanged.

Performance

The computed eigenvectors are close to the exact eigenvectors of a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of the original
matrix.

Notes

Matrix a is expected to be in the format produced by the allocation functions fsquare,
trngl _fmatrix or fsym. If the matrix is allocated by the function trngl_fmatrix the
lower triangle must be specified.

Rectangular m x n array zis expected to be in the format produced by the allocation
function fmatrix. The number of rows in the array must not be less than m.

Test

The test program is contained in rsmt.c file. The example matrices are contained in
rsymmetl.xpd, rsymmet2.xpd, rsymmet3.xpd files.

References

R. S. Martin, C. Reinsch, J. H. Wilkinson, Numerical Mathematics, Vol. 11, pp.181-195,
1968.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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Chapter 7

Symmetric Band Eigenproblem

7.1 Reduction to Symmetric Tridiagonal Form

7.1.1 BANDR Reduction and Accumulation of Transformations

Name

sbandr — Reduction and accumulation of transformations, single precision
dbandr — Reduction and accumulation of transformations, double precision

Synopsis

#include <ceispack.h>

void sbandr (n, mb, a, d, e, e2, matz, z)
int n, mb;

float **a, *d, *e, *e2;

int matz;

float *x*z;

void dbandr (n, mb, a, d, e, e2, matz, z)
int n, mb;

double **a, *d, *e, *e2;

int matz;

double **z;
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n — order of input band symmetric/output symmetric tridiagonal matrices
n — order of input/output matrices
mb — number of subdiagonals in input matrix
a — band symmetric input matrix
d — output vector of length n containing diagonal elements of output matrix
e — output vector of length n containing subdiagonal elements of output matrix
e2 — length n output array of squares of subdiagonal elements of output matrix
matz — input flag which causes accumulation of transformations
z — output square matrix containing transposed transformations
Description

Function bandr reduces a real symmetric band matrix to a symmetric tridiagonal form
using and optionally accumulating the orthogonal similarity transformations.

The original matrix A is reduced to a symmetric tridiagonal form 7" by a sequence of fast
Givens rotations:

T =QVAQ
where () is the product of elementary plane rotation matrices.

The reduction process begins with the first column of the original matrix. The non-zero
matrix elements in the column below the main subdiagonal are eliminated from bottom to
top, starting with the element in last non-zero subdiagonal and the process continues
successively on the next columns.

Each rotation annihilating an element inside the band simultaneously introduces a
non-zero element outside the band. This element is eliminated by a sequence of ”‘m—lb_k
additional rotations, while the a;;; matrix element is eliminated.

The process of reduction is illustrated for a matrix with m;, = 4. Only the full lower part of
band takes part in the computations:

X X
X X

W

The off-band non-zero elements that appear in the reduction are not shown.
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If specified by the flag matz, the transformations used in the reduction are accumulated in
the output array z.

On input, matrix ¢ contains symmetric band matrix to be reduced.

The input parameter mb specifies the number of non-zero subdiagonals below the principal
diagonal of the original matrix. The total number of diagonals in the original matrix is
equal to (2m, + 1).

The input flag matz specifies whether the transformations should accumulated or not. It
should be set to any non-zero value if the transformation matrix is to be accumulated, and
to 0 otherwise.

Having returned from the function, matrix ¢ has been modified. Its principal diagonal and
the first subdiagonal contain a copy of the reduced symmetric tridiagonal matrix.

The output vectors d and e contain respectively the diagonal and subdiagonal elements of
resultant symmetric tridiagonal matrix. The subdiagonal elements has been stored in the
last (n — 1) locations of the vector e. The first entry of the array has been set to 0.

The array e2 contains the squares of the corresponding subdiagonal elements of resulted
symmetric tridiagonal matrix in its last (n — 1) locations. The entry e2[0] has been set to
0.

If specified by the input flag matzr matrix z contains the orthogonal transformations matrix
accumulated in the reduction process.

Performance

The number of rotations required to reduce the band-width from my to (m, — 1) is about
2 .. T .
o and this involves about 4(my + 1)n? /m multiplications.

The reduced matrix is orthogonally similar to a matrix that is close to the original matrix.

Notes

Matrix a is expected to be in the format produced by the allocation functions
trngl_band_fmatrix or fsymband. If the matrix is allocated by the function
trngl_band_fmatrix the lower part of band must be specified.

Array zis expected to be in the format produced by the allocation function fsquare.

If matz has been set to 0 then the matrix z is not referenced by the function.
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Test

The test program is contained in rsbt.c file. The example matrices are contained in
bsm01.xpd, bsm02.xpd and bsm03.xpd files.

References

H. R. Schwarz, Communications of the ACM, Vol. 6, pp.315-316, 1963.
H. R. Schwarz, Numerical Mathematics, Vol. 12, pp.231-241, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

W. M. Gentleman, Journal Inst. Maths. Applic., Vol. 12, pp.329-336, 1973.

B. S. Garbow, et. all, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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7.1.2 BQR Eigenvalue of Smallest Magnitude, QR Algorithm

Name

sbqr — Forms eigenvalue of smallest magnitude, single precision
dbqr — Forms eigenvalue of smallest magnitude, double precision

Synopsis

#include <ceispack.h>

void sbqr (n, mb, a, t, r, ierr, rv)
int n, mb;

float *x*a, *t, *r;

int *ierr;

float *rv;

void dbqr (n, mb, a, t, r, ierr, rv)
int n, mb;

double **a, *t, *r;

int *ierr;

double *rv;

n — order of input matrix

mb — number of sub and super diagonals in input matrix

a — band symmetric input matrix

t — address of input constant containing shift value/output eigenvalue

r — address of input zero constant/output tolerance value

ierr — address of output variable containing error completion code

v — temporary storage array of length at least 2(my, + 1)* + 4(my + 1) — 3
Diagnostics

Function bqr returns the output parameter *ierr set to 0 for normal return or to n if the
eigenvalue has not been determined after MAXITER iterations.

Description

Function bqr computes the smallest magnitude eigenvalue of a real band symmetric matrix
using the QR algorithm with shifts of origin.

The function can be applied to find the eigenvalue of smallest magnitude of the matrix
A+tl, where t is a constant value and [ is the identity matrix. Therefore the eigenvalue of
A is found which is nearest to the constant ¢.

The QR algorithm iterates a sequence of band symmetric matrices, which are orthogonally
similar to the original matrix with a shifted origin. The sequence converges to a matrix
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having last row and column of zero. Matrix bandwidth is not widened during the iterations.

The shift of origin is postponed until the sum of the absolute values of the off-diagonal
elements of the last row (and column) of the original matrix becomes less than the one
quarter of the tolerance quantity r. Such a strategy is applied to ensure the computation of
the required nearest to zero eigenvalue and keep the rate of convergence of the iteration
process as fast as possible.

On return, the tolerance value 7 is reset to the maximum of the sum of the absolute values
of the off-diagonal elements of the current last row and the current value of r. If the matrix
has elements of widely varying magnitudes, it is recommended to place the largest entries
in the upper left corner of the matrix, thus allowing the criterion of shifting to be more
effective.

The shift of origin is taken as the eigenvalue of the lowermost 2 x 2 principal minor, closer
to the second diagonal element of the minor. When the last row (and the last column)
becomes negligible, then the sum of the origin shifts is added to the input value of ¢ and
the function returns this number as the desired eigenvalue of the matrix A 4+ ¢I. The
matrix is deflated by purging (zeroing) its last row.

Having returned from the function, the matrix a contains the transformed band symmetric
matrix. The matrix A’ 4 ¢'I, derived from the output parameters, is similar to the input
A+ tI to within rounding errors. Its last row and column are null if the output flag *ierr
is zero. The variable *t contains the computed eigenvalue of A + [ if *ierr is zero. The
output value of *r contains the maximum of its input value and the norm of the last row of
the input matrix a.

Function bqr can be invoked subsequently to find the next eigenvalue nearest to the
previous one. In such a case the output values of variables *r, *t and deflated matrix a
should be passed to the function. The order of matrix n should be decreased by 1,
neglecting the situation when it becomes even smaller than the bandwidth m, of the
original matrix. The bandwidth value mb parameter should not be modified on subsequent
calls.

To find the eigenvectors corresponding to the computed eigenvalues, the function bandv
should be invoked. The original matrix a and the eigenvalue in ¢ should be preserved for
later use by the function bandv.

The input parameter mb specifies the number of non-zero subdiagonals below the principal
diagonal of the original matrix. The total number of diagonals in the original matrix is
equal to (2my + 1).
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Performance

Appropriate shift of the origin makes the rate of convergence cubic in almost all the cases.
The computed eigenvalue is exact for a perturbed original matrix. The value of the
perturbation is proportional to the machine precision times the norm of the original matrix.
The algorithm is not guaranteed a high relative accuracy for the small eigenvalues of a band

symmetric matrix, although if the row norms of the matrix decrease from top to bottom of
the matrix, then such a small eigenvalues would be computed having low relative errors.

Notes

Matrix a is expected to be in the format produced by the allocation functions
trngl_band_fmatrix or fbandsym. If the first function is being used, the lower part of
band must be specified.

The input matrix is modified by the function bqr.

Function bqr references only the non-zero lower part of the band and only the lower
non-zero part of half band width of the matrix need be supplied. Other elements of the
matrix are not referenced. On a subsequent call, its output contents from the previous call
should be passed to the function.

The variable *r should be set to zero on the first call and as its output value from the
previous call on a subsequent call.

Test

The test program is contained in bqrt.c file. The example matrices are contained in
bsm01.xpd, bsm02.xpd and bsm03.xpd files.

References

R. S. Martin, J. H. Wilkinson, C. Reinsch, Numerical Mathematics, Vol16, pp.85-93, 1970.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.

B. N. Parlett, The Symmetric Eigenvalue Problem, Published by: Prentice-Hall, Inc.,
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7.2 Eigenvectors

7.2.1 BANDYV Eigenvectors Corresponding to Specified
Eigenvalues

Name

sbandv — Forms eigenvectors or solves linear equations, single precision
dbandv — Forms eigenvectors or solves linear equations, double precision

Synopsis

#include <ceispack.h>

int sbandv (n, mb, a, e21, m, w, z, index, rv, rve6)
int n, mb, m;

float e21, *x*xa, *w, *xz;

int *index;

float *rv, *rv6;

int dbandv (n, mb, a, e21, m, w, z, index, rv, rve6)
int n, mb, m;

double e21, *xx*a, *w, **xz;

int *index;

double *rv, *rv6;

n — order of input matrix and number of columns in matrix z
mb — number of sub/super diagonals in input matrix
a — band symmetric/non-symmetric input matrix
e21 — input flag specifying ordering of eigenvalues/symmetry of coefficient matrix
m — input variable which specifies number of eigenvalues/linear systems
w — input array containing m eigenvalues/constant values
z — input row constant vector/output row solution vector/eigenvector matrix
index — address of output variable containing error completion code
rv — temporary storage array of length n(2my + 1)
rv6 — temporary storage array of length n
Diagnostics

The function returns 0 for normal return or 1 if an error exit has been made. The output
error flag *index is set to:

e () for normal return.

e —i if the eigenvector corresponding to the i" eigenvalue failed to converge, or if the
™" system of linear equations is close to be singular.
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Description

Function bandv computes the eigenvectors of a real band symmetric matrix which
correspond to specified the eigenvalues, using the inverse iteration technique.

The function can also be used to solve systems of linear equations
(A —wil)x; = 2z where i € [0,m — 1]

with a band symmetric or non-symmetric coefficient matrix. Matrix I is the identity
matrix, and w, are constant values.

When function bandv is applied to find the eigenvectors of a real band symmetric matrix,
the computation proceed as follows. At first, the original matrix is modified by shifting its
diagonal elements by the negative of the i*" eigenvalue w;. Next, the LU decomposition of
the modified matrix is calculated by Gaussian elimination with partial pivoting. The upper
triangular matrix U of the decomposition is saved in the array rv. Starting from an initial
vector, the approximate eigenvector is obtained by the back substitution process. Its norm
is compared with the matrix norm to test if the growth of the norm is large enough to
terminate process and accept the vector to be an approximate eigenvector. If the vector is
accepted, its [y norm is set equal to 1. Up to n orthogonal initial vectors are attempted in
order to obtain an appropriate norm growth. If no vector is accepted, an error flag is set
and bandv continues to iterate the next eigenvector. The components of unaccepted
eigenvector are set to zero. If such a situation occurs more than once, the output error flag
*ierr would contain the last index of the eigenvalue for which the computation of the
eigenvector fails.

The eigenvectors corresponding to separated eigenvalues would be computed orthogonal,
while eigenvectors corresponding to a close or multiple eigenvalues may not be satisfactory
orthogonal. To ensure the orthogonal set of the eigenvectors, each approximate vector
corresponding to an eigenvalue of a group of close eigenvalues is orthogonalized with
respect to earlier computed eigenvectors of the group. The test for norm growth is
performed after the orthogonalization. Eigenvalues identical within the machine precision
are perturbed by multiplies of the relative machine precision in order to obtain linearly
independent eigenvectors. The perturbed values are not stored to the eigenvalue array w.

When the function bandv is applied to find a solution of a linear systems with a band
symmetric or non-symmetric coefficient matrix, the above steps are performed except for
the vector orthogonalization procedure and growth test. Having returned from bandv, the
determinant

det(A — wm_lf)

can be calculated within sign precision, as the product of the first n elements of vector rv.
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The input constant mb contains the number m,; of diagonals below or above the main
diagonal of the input band matrix.

The input flag e21 specifies the ordering of the eigenvalues and should be set to:

0 if the eigenvalues are stored in ascending order.

2 if the eigenvalues are stored in descending order.
If the function is being applied to solve systems of linear equations, e21 should be set to:

1 if the coefficient matrix is symmetric.

—1 if the coefficient matrix is non-symmetric.

The input vector w contains m eigenvalues of the original matrix stored in ascending or
descending order. In general, the absolute error in the eigenvalues should be on order of
the product of the relative machine precision times the norm of the original matrix. Some
matrices require more precision in the eigenvalues, sometimes as small as the relative
machine precision times the eigenvalue of the smallest magnitude.

If the function is applied to solve systems of linear equations the input array w contains m
constant values. Usually they are zeros.

If the function is being applied to solve systems of linear equations, then the input matrix z
contains m transposed (row) constant vectors.

Having returned from the function, matrix z contains the associated set of transposed
(row) orthogonal eigenvectors. Any vector which failed to converge is set to zero. If the
function is applied to solve systems of linear equations, z contains the associated set of
transposed (row) solution vectors.

Performance

The rate of convergence of the inverse iterations is linear.

The computed eigenvectors (and solution vectors) are close to the exact ones of a matrix
which is a small perturbation of the original matrix. The upper bound for the norm of the
perturbation matrix is commensurate to the relative machine precision times the norm of
the original matrix.

Notes

Band symmetric matrix a is expected to be in the format produced by the allocation
functions trngl_band_fmatrix or fbandsym. If the first function is being used, the lower
part of band must be specified. Only the lower part (half band width) of the input matrix
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need be supplied.

Band non-symmetric matrix a is expected to be in the format produced by the allocation
functions band_fmatrix or fband. The number of sub- and super-diagonals must be the
same.

In both the cases the total number of diagonals in the input matrix is equal to (2m, + 1).

General m x n matrix zis expected to be in the format produced by the allocation function
fmatrix.

The input matrix ¢ and vector w are preserved by the function bandv.

Test

The test program for eigenvectors computation is contained in bqrt.c file. The example
matrices are contained in bsm01.xpd, bsm02.xpd, bsm03.xpd files.

The test programs for solving of linear systems is contained in bandvt.c file. The example
linear systems are contained in bls01.xpd, bls02.xpd, bls03.xpd files.

References
J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.

B. N. Parlett, The Symmetric Eigenvalue Problem, Published by: Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 07632, 1980.
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Chapter 8

Real Special Tridiagonal
Eigenproblem

8.1 Reduction to Symmetric Tridiagonal Form

8.1.1 FIGI Reduction by Diagonal Transformations

Name

sfigi — Reduction to symmetric tridiagonal form, single precision
dfigi — Reduction to symmetric tridiagonal form, double precision

Synopsis

#include <ceispack.h>

void sfigi (n, a, d, e, e2, ierr)
int n;

float **a, *d, xe, *e2;

int *ierr;

void dfigi (n, a, d, e, e2, ierr)

int n;

double **a, *d, *e, *e2;

int *ierr;
n — order of input special/output symmetric tridiagonal matrix
a — special tridiagonal input matrix
d — output vector of length n containing diagonal elements of output matrix
e — output vector of length n containing subdiagonal elements of output matrix
e2  — length n output array of squares of subdiagonal elements of output matrix
ierr  — output variable address containing error completion code
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Diagnostics
The output error flag *ierr is set to:
e 0 for normal return.
e (n+1) if a product a;;-1a;-1,; is negative.

e —(3n+1) if a product a;;_1a;_1,; is zero with one factor non-zero. In such a case the
eigenvectors of reduced symmetric tridiagonal matrix are not simply related to the
eigenvectors of original matrix and should not be computed.

Description

Function figi reduces a special tridiagonal matrix to symmetric tridiagonal form using
diagonal similarity transformations.

If the original tridiagonal matrix has its elements such that the product of the
corresponding off-diagonal entries is positive:

@ii—10i-1; > 0, where i € [1,n — 1]

and this product is equal to zero if and only if both the multipliers are zero, then the
matrix can be reduced to symmetric tridiagonal form by the non-singular diagonal
similarity transformation:

T=D"'AD
The diagonal elements of the derived symmetric tridiagonal matrix are:
ti; = ay, where i € [0,n — 1]
and its subdiagonal elements are:

ti,ifl = /@i 10514, where ¢ € [1, n— 1]

The diagonal transformation is defined by the following formuli when both subdiagonal
and superdiagonal entries are not zero:

doo = 1 and dj; = di—l,i—l\/ai—l,i/ai,i—l

In the case where both elements a;_;; and a;;_; are equal to zero, the corresponding
element of the diagonal transformation matrix is:

dii =1

If the product of a pair of corresponding off-diagonal elements is zero, while one of the
multipliers is not equal to zero, then the resultant symmetric tridiagonal matrix still has
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the same eigenvalues as the original matrix, but the eigenvectors of the transformed matrix
cannot be obtained easily by back transforming those of corresponding symmetric
tridiagonal matrix.

On return from the function the output vectors d and e contain the diagonal and
subdiagonal elements of the resultant symmetric tridiagonal matrix. The subdiagonal
elements has been stored in the last (n — 1) locations of the vector e. The first entry of the
array has been set to 0.

The array e2 contains the squares of the corresponding subdiagonal elements of the
resultant symmetric tridiagonal matrix in its last (n — 1) locations. The entry e2[0] has
been set to 0.

Performance

The reduced matrix is similar to a small perturbation of the original matrix. The upper
bound for the norm of the perturbation matrix is commensurate to the relative machine
precision times the norm of original matrix.

Notes

Matrix @ is in the format produced by the allocation functions band fmatrix, fband or
f3diag.

Arrays e and e2 may coincide if the squares are not required.

The input matrix « is preserved by the function.

Test

The test program is contained in bakvect.c file. The example matrices are contained in
trispcl.xpd, trispc2.xpd files.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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8.1.2 FIGI2 Reduction and Accumulation of Transformations

Name

sfigi2 — Reduction and accumulation of transformations, single precision
dfigi2 — Reduction and accumulation of transformations, double precision

Synopsis

#include <ceispack.h>

void sfigi2 (n, a, d, e, z, ierr)
int n;

float **a, *d, *e, **z;

int *ierr;

void dfigi2 (n, a, d, e, z, ierr)
int n;

double *x*a, *d, *e, **z;

int *ierr;

n — order of input/output matrices

a — special tridiagonal input matrix

d — output vector of length n containing diagonal elements of output matrix

e — output vector of length n containing subdiagonal elements of output matrix
z — square output matrix containing transposed transformations

ierr  — output variable address containing error completion code

Diagnostics
The output error flag *ierr is set to:
e 0 for normal return.
e (n+1) if a product a;; 1a;_1,; is negative.

e (2n +1) if a product a;,;-1a;_1, is zero with one factor non-zero.

Description

Function figi2 reduces a special tridiagonal matrix to symmetric tridiagonal form by using
and accumulating diagonal similarity transformations.

If the original tridiagonal matrix has its elements such that the product of the
corresponding off-diagonal entries is positive:

aii—16i-1; > 0, where i € [1,n — 1]
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and this product is equal to zero if and only if both the multipliers are zero, then the
matrix can be reduced to symmetric tridiagonal form by the non-singular diagonal
similarity transformation:

T=D"'AD
The diagonal elements of the derived symmetric tridiagonal matrix are:
tii = Uy, where i € [0, n — ]_]

and its subdiagonal elements are:

ti,ifl = /@i 10514, where ¢ € [1, n— 1]

The diagonal transformation is defined by the following formuli when both subdiagonal
and superdiagonal entries are not zero:

doo = 1 and dj; = di—l,i—l\/ai—l,i/ai,i—l

In the case where both the elements a;_;; and a;;_; are equal to zero, the corresponding
element of diagonal transformation matrix is:

di =1

If the product of a pair of corresponding off-diagonal elements is zero, while one of the
multipliers is not equal to zero, then the resultant symmetric tridiagonal matrix still has
the same eigenvalues as the original matrix, but the eigenvectors of the transformed matrix
cannot be obtained easily by back transforming those of corresponding symmetric
tridiagonal matrix.

The diagonal similarity transformations used in the reduction are accumulated in the
diagonal entries of the output matrix z for later use in eigenvector computations.

On return from the function the output vectors d and e contain respectively the diagonal
and subdiagonal elements of the resulted symmetric tridiagonal matrix. The subdiagonal
elements has been stored in the last (n — 1) locations of the vector e. The first entry of the
array has been set to 0.

The array e2 contains the squares of the corresponding subdiagonal elements of the
resultant symmetric tridiagonal matrix in its last (n — 1) locations. The entry e2[0] has
been set to 0.

Matrix z contains the diagonal transformations.

Performance

The reduced matrix is similar to a matrix which is a small perturbation of the original
matrix. The upper bound for the norm of the perturbation matrix is commensurate to the
relative machine precision times the norm of original matrix.
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Notes

Matrix a is in the format produced by the allocation functions band_fmatrix, fband or
f3diag.

Arrays e and e2 may coincide if the squares are not required.
Matrix z is in the format produced by the allocation function fsquare.

The input matrix « is preserved by the function.

Test

The test program is contained in rtt.c file. The example matrices are contained in
trispcl.xpd, trispc2.xpd files.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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8.2 Eigenvectors

8.2.1 BAKVEC Eigenvectors of Original Matrix

Name

sbakvec — Forms eigenvectors of original matrix, single precision
dbakvec — Forms eigenvectors of original matrix, double precision

Synopsis

#include <ceispack.h>
void sbakvec (n, a, e, m, z, ierr)

int n;

float **a, *e;
int m;

float *x*z;

int *ierr;

void dbakvec (n, a, e, m, z, ierr)

int n;

double *x*a, *e;
int m;

double **z;

int *ierr;

— order of input/output matrices
— special tridiagonal input matrix

— number of eigenvectors to be back transformed

n
a
e — length n input array of subdiagonals of reduced symmetric tridiagonal matrix
m
Z

— input/output matrix containing m transposed (row) eigenvectors
ierr — output variable address containing error completion code

Diagnostics

The output error flag *ierr is set to:

e ( for normal return.

e (2n+1) if e; is zero when matrix elements a;;_; or a;_;, is not zero. In such a case
the symmetric matrix is not similar to the original matrix, and the eigenvectors
cannot be found by the function bakvec.
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Description

Function bakvec computes the eigenvectors of the non-symmetric tridiagonal matrix by
back transforming the eigenvectors of the corresponding symmetric matrix determined by
the function figi.

If a non-symmetric tridiagonal matrix A has been transformed to a symmetric tridiagonal
matrix 71" using the diagonal similarity transformation D:

T =D7'AD,
where the diagonal transformation matrix D has been defined by the function figi, then

the function bakvec transforms the eigenvectors of the transformed matrix 7" into those of
the original matrix by computing the product:

X, = DZ;, where i € [0,m — 1].

The back transformed eigenvectors overwrite the eigenvectors of the symmetric tridiagonal
matrix.

The input vector e contains the subdiagonal elements of the derived symmetric tridiagonal
matrix in its last (n — 1) locations. The entry e[0] is arbitrary.

The input matrix z contains the eigenvectors to be back transformed in its first m rows.

On return from the function the matrix z contains the transformed eigenvectors in its first
m TOWS.
Performance

The computed eigenvectors are close to the exact eigenvectors of a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of original matrix.

Notes

Matrix a is in the format produced by the allocation functions band fmatrix, fband or
f3diag.

The rectangular m X n matrix 2 is in the format produced by the allocation function
fmatrix. The number of rows in the matrix must not be less than m.

The matrix a is preserved by the function.

The function bakvec modifies the vector e.
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Test

The test program is contained in bakvect.c file. The example matrices are contained in
trispcl.xpd, trispc2.xpd files.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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Chapter 9

Symmetric Tridiagonal Eigenproblem

9.1 Sturm Sequence

9.1.1 NEIGN3 Number of Eigenvalues in an Interval

Name

sneign3 — Determines number of eigenvalues that lie in a specified interval, single precision
dneign3 — Determines number of eigenvalues that lie in a specified interval, double
precision

Synopsis

#include <ceispack.h>

int sneign3 (n, d, e, e2, 1b, ub)
int n;

float *d, *e, *e2, 1b, ub;

int dneign3 (n, d, e, €2, 1b, ub)
int n;
double *d, *e, *e2, 1lb, ub;

n — order of symmetric tridiagonal input matrix
d — input vector of length n containing diagonal elements of input matrix
e — input vector of length n containing subdiagonal elements of input matrix
e2 — length n input array of squares of subdiagonal elements of input matrix
Ib  — input constant specifying lower bound of interval
lu — input constant specifying upper bound of interval

Diagnostics

The function returns number of eigenvalues that lie in the specified interval [ly, up). If input
values [, > uy then the function returns 0.
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Description

Function neign3 estimates the number of eigenvalues which belong to the specified interval
[lb, Ub).

The calculations proceed as follows. First the function determines negligible subdiagonal
elements of the original matrix and sets to zero the corresponding entries of array e2, the
original matrix is split into the direct sum of submatrices.

The Sturm sequence gives the number or eigenvalues of a symmetric tridiagonal matrix
that are less than the specified value x:

{qg(x):c[)—x

¢i(z) = (ci — o) = b [qi1(x), i € [1,n — 1]

equal to the number of negative values in the sequence of n polynomials ¢;(z). Above
factors ¢; and b; are the diagonals and subdiagonals of the matrix respectively . In the
computation process any value of the polynomial g; ;(z) may be zero. If this situation
occurs zeros may be replaced by the value of the relative machine precision.

At the next step, the function calculates the Sturm sequence at both the interval
boundaries and estimates the number of eigenvalues within the interval as a difference
between the values of Sturm sequences at the upper and lower bounds wu;, and [,.

The input constants [b and ub determine the interval containing the eigenvalues the
number of which is to be determined.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

The input vector e2 contains the squares of the subdiagonal elements of the original matrix
in its last (n — 1) locations. The entry e2[0] is arbitrary. On return from the function the
entries of vector e2 corresponding to the negligible subdiagonal elements of input matrix
are set to zero. The entry e2[0] is also set to 0.

Performance

The computed number of eigenvalues is exact within the machine precision.

Notes

The input vectors of diagonal and subdiagonal elements d and e of the original matrix are
preserved by the function neign3.

The function neign3 is the subset of the C' function tsturm.
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References
J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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9.2 Eigenvalues and Eigenvectors

9.2.1 TQL1 Eigenvalues, QL Algorithm

Name

stqll — Forms eigenvalues by QL algorithm, single precision
dtqll — Forms eigenvalues by QL algorithm, double precision

Synopsis

#include <ceispack.h>

int stqll (n, d, e, index)
int n;

float *d, *e;

int *index;

int dtqll (n, d, e, index)
int n;

double *d, *e;

int *index;

n — order of symmetric tridiagonal input matrix
d — length n input vector of diagonal elements/output n ascending eigenvalues
e — length n input vector containing subdiagonal elements of input matrix
index — output variable address containing error completion code

Diagnostics

Function returns 0 for normal return or 1 if an error exit has been made. The output
variable *index is set to:

e ( for normal return.

e i if the i'" eigenvalue has not been determined after MAXITER iterations. The
eigenvalues corresponding to indices j € [0,i — 1] would be correct and ordered, but
they may not be the smallest eigenvalues.

Description

Function tqll computes all the eigenvalues of a real symmetric tridiagonal matrix using the
QL algorithm with shift of origin.

The QL algorithm iterates the sequence of symmetric tridiagonal matrices that are
orthogonally similar to the original matrix. The sequence converges to a diagonal matrix.
A shift of origin is applied to improve the rate of convergence.
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Before the next iteration the currently iterated submatrix is tested for possible splitting to
submatrices. If the matrix is split only the uppermost submatrix takes part in the next
iterations. The shift of origin on each iteration is taken to be the eigenvalue of the
uppermost 2 x 2 principal minor, closer to the upper diagonal element of this minor. When
the uppermost 1 x 1 principal minor has split from the rest of the matrix, its value is taken
as an eigenvalue of the original matrix and the iterations continue on the remaining
submatrix until the whole matrix finally split on minors of order 1. The tolerance of the
test for splitting is commensurate to the relative machine precision.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

The eigenvalues are ordered in ascending order as they are computed, and stored in the
output vector d.

Performance

Appropriate shift of the origin makes the convergence of the algorithm global. The rate of
convergence is cubic in almost all the cases.

The computed eigenvalues are close to those of the exact matrix. Also they are exact for a
matrix which is a small perturbation of the original matrix. The upper bound for the norm
of the perturbation matrix is proportional to the machine precision times the norm of the
original matrix at least in a case when the successive row norms are increasing from top to
bottom of the original matrix.

Notes

If the original matrix has its row norms widely varying and not strictly decreasing
downward, it is recommended to use implicit ()L algorithm for eigenvalue computation or
to permute the original matrix to obtain the successive row norms increasing from top to
bottom of the matrix.

Test
The test program is contained in tqlit.c file. The example matrices are contained in

trisyml.xpd, trisym2.xpd, trisym3.xpd and trisym4.xpd files.

References

H. Boulder, R. S. Martin, C. Reinsch, J. H. Wilkinson, Numerical Mathematics, Vol. 11,
pp.293-306, 1968.
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Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
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9.2.2 IMTQL1 Eigenvalues, Implicit QL Algorithm

Name

simtqll — Forms eigenvalues by implicit ()L algorithm, single precision
dimtqll — Forms eigenvalues by implicit ()L algorithm, double precision

Synopsis

#include <ceispack.h>

int simtqll (n, d, e, index)
int n;

float *d, *e;

int *index;

int dimtqll (n, d, e, index)
int n;

double *d, *e;

int *index;

n — order of symmetric tridiagonal input matrix
d — length n input vector of diagonal elements/output n ascending eigenvalues
e — length n input vector containing subdiagonal elements of input matrix
index — output variable address containing error completion code

Diagnostics

Function returns 0 for normal return or 1 if an error exit has been made. The output
variable *index is set to:

e () for normal return.

e i if the i** eigenvalue has not been determined after MAXITER iterations. The
eigenvalues corresponding to indices j € [0,i — 1] would be correct and ordered, but
they may not be the smallest eigenvalues.

Description

Function imtqll computes all the eigenvalues of a real symmetric tridiagonal matrix using
the QL algorithm with implicit shifts.

The implicit QL algorithm iterates a sequence of symmetric tridiagonal matrices that are
orthogonally similar to the original matrix. The sequence converges to a diagonal matrix.
A shift of origin is applied implicitly to improve the rate of convergence.

Before the next iteration the currently iterated submatrix is tested for possible splitting to
submatrices. If the matrix split only the uppermost submatrix takes part in the next
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iterations. The shift of origin on each iteration is taken to be the eigenvalue of the
uppermost 2 x 2 principal minor, closer to the upper diagonal element of this minor. When
the uppermost 1 x 1 principal minor has split from the rest of the matrix, its value is taken
as an eigenvalue of the original matrix and iterations continue on the remaining submatrix
until the whole matrix finally split on minors of order 1. The tolerance of the test for
splitting is commensurate to the relative machine precision.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

The eigenvalues are ordered in ascending order as the are computed, and stored in the
output vector d.

Performance

Appropriate shift of the origin makes the convergence of the algorithm global. The rate of
convergence is cubic in almost all the cases.

The computed eigenvalues are close to those of the exact matrix. Also they are exact for a
matrix which is a small perturbation of the original matrix. The upper bound for the norm
of the perturbation matrix is proportional to the machine precision times the norm of the
original matrix.

As opposed to the QL algorithm with the explicit shifts, the implicit modification is not
sensitive to the matrix structure with its row norms widely varying and not strictly
decreasing downward.

Test

The test program is contained in imtqllt.c file. The example matrices are contained in
trisyml.xpd, trisym2.xpd, trisym3.xpd and trisym4.xpd files.

References

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.377-383, 1968.

A. Dubrulle, Numerical Mathematics, Vol. 15, p.450, 1970.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. N. Parlett, The Symmetric Eigenvalue Problem, Published by: Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 07632, 1980.
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9.2.3 IMTQLV Eigenvalues, Implicit QL Algorithm

Name

simtqlv — Forms eigenvalues and corresponding submatrix indices, single precision
dimtqlv — Forms eigenvalues and corresponding submatrix indices, double precision

Synopsis

#include <ceispack.h>

int simtqlv (n, d, e, e2, w, ind, index, rv)
int n;

float *d, *e, *e2, *w;

int *ind;

int *index;

float *rv;

int dimtqlv (n, d, e, e2, w, ind, index, rv)
int n;

double *d, *e, *e2, *w;

int *ind;

int *index;

double *rv;

n — order of symmetric tridiagonal input matrix
d — input vector of length n containing diagonal elements of input matrix
e — input vector of length n containing subdiagonal elements of input matrix
e2 — length n input array of squares of subdiagonal elements of input matrix
W — length n output array containing n eigenvalues in ascending order
ind — length n output array containing n submatrix indices of eigenvalues
index — output variable address containing error completion code
rv — temporary storage array of length n

Diagnostics

Function returns 0 for normal return or 1 if an error exit has been made. The output
variable *index is set to:

e () for normal return.

e i if the 7" eigenvalue has not been determined after MAXITER iterations. The
eigenvalues corresponding to indices j € [0,i — 1] would be correct and ordered, but
they may not be the smallest eigenvalues.
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Description

Function imtqlv computes all the eigenvalues of a real symmetric tridiagonal matrix using
the QL algorithm with implicit shifts and associates with the computed eigenvalues their
corresponding submatrix indices.

The implicit QL algorithm iterates a sequence of symmetric tridiagonal matrices that are
orthogonally similar to the original matrix. The sequence converges to a diagonal matrix.
A shift of origin is applied implicitly to improve the rate of convergence.

Before the next iteration the currently iterated submatrix is tested for possible splitting to
submatrices. If the matrix is split only the uppermost submatrix takes part in the next
iterations. The shift of origin on each iteration is taken to be the eigenvalue of the
uppermost 2 X 2 principal minor, closer to the upper diagonal element of this minor. When
the uppermost 1 x 1 principal minor has split from the rest of the matrix, its value is taken
as an eigenvalue of the original matrix and iterations continue on the remaining submatrix
until the whole matrix finally split on minors of order 1. The tolerance of the test for
splitting is commensurate to the relative machine precision.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

The input array e2 contains the squares of the subdiagonal elements of the original matrix
in its last (n — 1) locations. The entry e2[0] is arbitrary. On return from the function the
entries of vector €2, corresponding to negligible subdiagonal elements of the original matrix
are set to zero. The element e2[0] is also set to zero.

The eigenvalues are ordered in ascending order as the are computed, and stored in the
vector w.

The output vector ind contains the submatrix indices associated with the corresponding
eigenvalues in w array. An entry of array ind is set to 1 for eigenvalues belonging to the
first submatrix from the top, 2 for those belonging to the second submatrix, etc.

Performance

Appropriate shift of the origin makes the convergence of the algorithm global. The rate of
convergence is cubic in almost all the cases.

The computed eigenvalues are close to those of the exact matrix. Also they are exact for a
matrix which is a small perturbation of the original matrix. The upper bound for the norm
of the perturbation matrix is proportional to the machine precision times the norm of the
original matrix.
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As opposed to the QL algorithm with the explicit shifts, the implicit modification is not
sensitive to the matrix structure with its row norms widely varying and not strictly
decreasing downward.

Notes

The input vectors of diagonal and subdiagonal elements d and e of the original matrix are
preserved by the function imtqlv.

Test

The test programs are contained in bakvect.c, rsmt.c, imtqllt.c, imtqlvt.c,
tqllt.c, tqlratt.c files. The example matrices are contained in trisyml.xpd,
trisym2.xpd, trisym3.xpd and trisym4.xpd files.

References

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.377-383, 1968.
A. Dubrulle, Numerical Mathematics, Vol. 15, p.450, 1970.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. N. Parlett, The Symmetric Eigenvalue Problem, Published by: Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 07632, 1980.
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9.2.4 TQLRAT Eigenvalues, Rational QL Algorithm

Name

stqlrat — Forms eigenvalues by rational ()L algorithm, single precision
dtqlrat — Forms eigenvalues by rational ()L algorithm, double precision

Synopsis

#include <ceispack.h>

int stqlrat (n, d, e, e2, index)
int n;

float *d, *e, *e2;

int *index;

int dtqlrat (n, d, e, e2, index)
int n;

double *d, *e, *e2;

int *index;

n — order of symmetric tridiagonal input matrix
d — length n input vector of diagonal elements/output n ascending eigenvalues
e — length n input vector containing subdiagonal elements of input matrix
e2 — length n input array of squares of subdiagonal elements of input matrix
index — output variable address containing error completion code

Diagnostics

Function returns 0 for normal return or 1 if an error exit has been made. The output
variable *index is set to:

e ( for normal return.

e i if the i'" eigenvalue has not been determined after MAXITER iterations. The
eigenvalues corresponding to indices j € [0,i — 1] would be correct and ordered, but
they may not be the smallest eigenvalues.

Description

Function tglrat computes all the eigenvalues of a real symmetric tridiagonal matrix using
the rational QL algorithm with shift of origin.

The rational ()L algorithm iterates a sequence of symmetric tridiagonal matrices that are
orthogonally similar to the original matrix. The sequence converges to a diagonal matrix.
A shift of origin is applied to improve the rate of convergence.
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Before the next iteration the currently iterated submatrix is tested for possible splitting to
submatrices. If the matrix is split only the uppermost submatrix takes part in the next
iterations. The shift of origin on each iteration is taken to be the eigenvalue of the
uppermost 2 x 2 principal minor, closer to the upper diagonal element of this minor. When
the uppermost 1 x 1 principal minor has split from the rest of the matrix, its value is taken
as an eigenvalue of the original matrix and the iterations continue on the remaining
submatrix until the whole matrix finally split on minors of order 1. The tolerance of the
test for splitting is commensurate to the relative machine precision.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

On input the array e2 contains the squares of the subdiagonal elements of the original
matrix in its last (n — 1) locations. The entry e2[0] is arbitrary.

On return from the function the elements of vector e2, corresponding to negligible
subdiagonal elements of the original matrix are set to zero. The element e2[0] is also set
to 0.

The eigenvalues are computed sequentially in ascending order and stored in the output
vector d.

Performance

Appropriate shift of the origin makes the convergence of the algorithm global. The rate of
convergence is cubic in almost all the cases.

The computed eigenvalues are close to those of the exact matrix. Also they are exact for a
matrix which is a small perturbation of the original matrix. The upper bound for the norm
of the perturbation matrix is proportional to the machine precision times the norm of the
original matrix at least in a case when the successive row norms are increase from top to
bottom of the original matrix.

Notes

If the original matrix has its row norms widely varying and not strictly decreasing
downward, it is recommended to use implicit ()L algorithm for eigenvalue computation or
to permute the original matrix to obtain the successive row norms increasing from top to
bottom of the matrix.

Test

The test program is contained in tqlratt.c file. The example matrices are contained in
trisyml.xpd, trisym2.xpd, trisym3.xpd and trisym4.xpd files.
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9.2.5 BISECT Eigenvalues within Specified Interval

Name

sbisect — Forms eigenvalues which lie in a specified interval, single precision
dbisect — Forms eigenvalues which lie in a specified interval, double precision

Synopsis

#include <ceispack.h>

void sbisect (n, epsl, d, e, e2, 1lb, ub, mm, m, w, ind, ierr, rv4, rvb)
int n;

float *epsl, *d, *xe, *e2, *w, 1lb, ub;

int mm, *m;

int *ind, *ierr;

float *rv4, *rvb;

void dbisect (n, epsl, d, e, e2, 1lb, ub, mm, m, w, ind, ierr, rv4, rvb)
int n;

double *epsl, *d, *e, *e2, *w, 1lb, ub;

int mm, *m;

int *ind, *ierr;

double *rvé4, *rvb;

n — order of input symmetric tridiagonal matrix
epsl — input/output variable address containing absolute error tolerance
d — input vector of length n containing diagonal elements of input matrix
e — input vector of length n containing subdiagonal elements of input matrix
e2 — length n input array of squares of subdiagonal elements of input matrix
b — input constant specifying lower bound of interval
lu — input constant specifying upper bound of interval
mm — input variable, estimate of number eigenvalues in interval
m — output variable address containing number of eigenvalues actually found
w — length mm output array containing m eigenvalues
ind — length mm output array containing m submatrix indices of eigenvalues
ierr  — output variable address containing error completion code
rvd  — temporary storage array of length n
rvb  — temporary storage array of length n
Diagnostics

The output error flag *ierr is set to:

e ( for normal return.
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e (3n+ 1) if the actual number of eigenvalues which lie in a specified interval m is
greater than the specified number mm. In such a case no eigenvalues have been
computed.

Description

Function bisect computes the eigenvalues of a real symmetric tridiagonal matrix which
belong to a specified interval using the bisection technique applied to the Sturm sequence
and associates the computed eigenvalues with their corresponding submatrix indices.

For more details about the bisection algorithm see the description of the function tsturm.
The function bisect is the subset of the C' function tsturm.

The input variable mm should be set to an expected upper bound for the number of
eigenvalues that lie in the interval. If more than mm eigenvalues lie in the interval, an error
is returned indicating no eigenvalues found.

The variable *eps1 on input contains an absolute error tolerance for the computation of
the eigenvalues. If the input value €; is non-positive, it is reset for each submatrix to a
default value, namely to the negative of the product of the relative machine precision and
the larger magnitude Gershgorin bound of the submatrix. The variable is unchanged on
output if it has not been reset to its last default value.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

The input vector e2 contains the squares of the subdiagonal elements of the original matrix
in its last (n — 1) locations. The entry e2[0] is arbitrary. On return from the function the
entries of vector e2 corresponding to the negligible subdiagonal elements of input matrix
are set to zero. The entry e2[0] is also set to zero.

The input constants [b and ub determine the interval containing required eigenvalues. If
[b > ub then no eigenvalues are found.

On return from the function the variable *m contains the actual number of eigenvalues
found to lie in the interval [l,, uy).

The output array w contains m computed eigenvalues. They are arranged in ascending
order.

The output vector ¢nd contains the submatrix indices associated with the corresponding
eigenvalues in w array. An entry of array ind is set to 1 for eigenvalues belonging to the
first submatrix from the top, 2 for those belonging to the second submatrix, etc.
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Performance

The rate of convergence of bisection method is commensurate to the value of the absolute
error tolerance for computed eigenvalues.

The computed eigenvalues are close to those of the exact matrix. Also they are exact for a
matrix which is a small perturbation of the original matrix. The upper bound for the norm
of the perturbation matrix is commensurate to the relative machine precision times the
norm of original matrix.

The theoretical upper bound for the errors in computed eigenvalues is defined by the
following formula:

d = 0.5¢1 + 7e max(|Zmin|, [Tmax|)

where ¢ is the relative machine precision, zpyi, and xy., are lower and upper margins for
Gershgorin interval.

Notes

The input vectors of diagonal and subdiagonal elements d and e of the original matrix are
preserved by the function bisect.

Test
The test program is contained in bisectt.c file. The test matrices are contained in

trisyml.xpd, trisym2.xpd, trisym3.xpd and trisym4.xpd files.
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9.2.6 TRIDIB Eigenvalues within Specified Boundary Indices

Name

stridib — Forms eigenvalues within a specified boundary indices, single precision
dtridib — Forms eigenvalues within a specified boundary indices, double precision

Synopsis

#include <ceispack.h>

void stridib (n, epsl, d, e, e2, 1b, ub, mll, m, w, ind, ierr, rv4, rvb)
int n;

float *epsl, *d, *xe, *e2, *1b, *ub, *w;

int ml1, m;

int *ind, *ierr;

float *rv4, *rvb;

void dtridib (n, epsl, d, e, e2, 1b, ub, mll, m, w, ind, ierr, rv4, rvb)
int n;

double *epsl, *d, *e, *e2, *lb, *ub, *w;

int mll, m;

int *ind, *ierr;

double *rv4, *rvb;

n — order of input symmetric tridiagonal matrix
epsl — input/output variable address containing absolute error tolerance
d — input vector of length n containing diagonal elements of input matrix
e — input vector of length n containing subdiagonal elements of input matrix
e2 — length n input array of squares of subdiagonal elements of input matrix
b — output variable address containing lower bound of exact interval
lu — output variable address containing upper bound of exact interval
mll — input variable containing lower boundary index for required eigenvalues
m — input variable containing number of required eigenvalues
w — length m output array containing m eigenvalues
ind — length m output array containing m submatrix indices of eigenvalues
ierr  — output variable address containing error completion code
rvd  — temporary storage array of length n
rvb  — temporary storage array of length n
Diagnostics

The output error flag *ierr is set to:

e ( for normal return.

e (3n + 1) if multiple eigenvalue associated with index m11 makes unique selection
impossible,
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e (3n 4+ 2) if multiple eigenvalue associated with index m22 = m11l + m — 1 makes
unique selection impossible.

Description

Function tridib computes the eigenvectors of a real symmetric tridiagonal matrix using the
bisection technique as described for the function tsturm. The only difference from the
tsturm function is that tridib first establishes the exact half-open interval [ly, up)
containing the required eigenvalues:

Ai, where i € [mqy, mas]

The eigenvalue upper boundary index msys is equal to mqy; +m — 1.

First, tridib evaluates the Gershgorin bounds containing all the eigenvalues of the matrix.
At the next stage tridib calculates the Gershgorin bounds using the bisection technique
and refines the exact interval to contain the required eigenvalues.

The variable *eps1 contains an absolute error tolerance for the computation of the
eigenvalues. If the input value €, is non-positive, it is reset for each submatrix to a default
value, namely the negative of the product of the relative machine precision and the larger
in magnitude Gershgorin bound of the submatrix. On output the variable is unchanged if
it has not been reset to its last default value.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

The input vector e2 contains the squares of the subdiagonal elements of the original matrix
in its last (n — 1) locations. The entry e2[0] is arbitrary. On return from the function the
entries of vector e2 corresponding to the negligible subdiagonal elements of input matrix
are set to zero. The entry e2[0] is also set to zero.

The output variables *1b, *ub define the interval exactly containing the required
eigenvalues.

The output array w contains the computed eigenvalues within indices ¢ € [mq1, mas] in its
first m positions. They are arranged in ascending order.

The output vector ¢nd contains the submatrix indices associated with the corresponding
eigenvalues in w array. An entry of array ind is set to 1 for eigenvalues belonging to the
first submatrix from the top, 2 for those belonging to the second submatrix, etc.
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Performance
The rate of convergence of bisection method is commensurate to the value of the absolute

error tolerance for computed eigenvalues.

The computed eigenvalues are close to those of the exact matrix. Also they are exact for a
matrix which is a small perturbation of the original matrix. The upper bound for the norm
of the perturbation matrix is commensurate to the relative machine precision times the
norm of original matrix.

Theoretical upper bound for the errors in computed eigenvalues is defined by the following
formula:

d = 0.5¢1 + 7e max(|Zmin|, [Tmax|)

where ¢ is the relative machine precision, zyi, and xy,., are lower and upper margins for
Gershgorin interval.

Notes

The input vectors of diagonal and subdiagonal elements d and e of the original matrix are
preserved by the function tridib.

Test

The test program is contained in tridibt.c file. The example matrices are contained in

trisyml.xpd, trisym2.xpd, trisym3.xpd and trisym4.xpd files.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

Barth, R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 9, pp.386-393, 1967.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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9.2.7 RATQR Smallest or Largest Eigenvalue, Rational QR
Algorithm

Name

sratqr — Finds algebraically smallest or largest eigenvalue, single precision
dratqr — Finds algebraically smallest or largest eigenvalue, double precision

Synopsis

#include <ceispack.h>

void sratqr (n, epsl, d, e, €2, m, w, ind, bd, type, idef, ierr)
int n, m;

float *epsli;

float *d, *e, *e2, *xw, *bd;

int *ind, type, idef, *ierr;

void dratqr (n, epsl, d, e, €2, m, w, ind, bd, type, idef, ierr)
int n, m;

double *epsl;

double *d, *e, *e2, *w, *bd;

int *ind, type, idef, *ierr;

n — order of symmetric tridiagonal input matrix
epsl — input/output variable address containing absolute error tolerance
d — input vector of length n containing diagonal elements of input matrix
e — input vector of length n containing subdiagonal elements of input matrix
e2 — length n input array of squares of subdiagonal elements of input matrix
m — input variable containing number of eigenvalues required
w — length n output array containing m eigenvalues in ascending/descending order
ind — length n output array containing m submatrix indices of eigenvalues
bd  — length n output array containing refined bounds for theoretical errors
type — input flag which causes computation of smallest or largest eigenvalues
idef — input flag specifying whether input matrix is positive definite or not
ierr  — output variable address containing error completion code

Diagnostics

The output error flag *ierr is set to

e () for normal return.

e (6n+ 1) if idefis set to 1 and type to 1, and the matrix is found to be not positive
definite; or if idef is set to -1 and type to 0, and the matrix is found to be not
negative definite. No eigenvalues have been computed.
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o (5n + k) if successive iterate to the k™ eigenvalue are not strictly monotone
increasing. The sum of all the shifts applied up to the moment is taken as an
eigenvalue and the function continues with the next eigenvalue. If this error occurs
more than once, the value of k refers the last failure.

Description

Function ratqr determines the algebraically smallest or largest eigenvalues of a symmetric
tridiagonal matrix by the rational Q)R algorithm using Newton method for shift
computations.

The rational Q)R algorithm iterates a sequence of symmetric tridiagonal matrices that are
orthogonally similar to the original matrix with shifted origin. The sequence converges to a
matrix having diagonal elements set to zero. The rate of convergence is improved using the
shift of origin.

At first, the diagonals of the original matrix are copied into vector w. If the input flag type
indicates that the largest eigenvalues are to be found, the signs of the elements of the
vector w are inverted as well as the sign of an internal variable where the input flag idef
has been stored to indicate that the matrix definiteness is inverted. This is done because
the algorithm is arranged to find the algebraically smallest eigenvalues. In this case, on
output the signs of computed eigenvalues will be back reversed.

At the next step the subdiagonal entries are verified for negligibility. The tolerance for the
test is proportional to the machine precision. If an element is found to be negligible, the
original matrix is split to a direct sum of submatrices and the square of corresponding
subdiagonal element is set to zero in the vector e2.

The internal representation of the input matrix is shifted if the matrix is negative
semi-definite or if it is positive definite and the Gershgorin lower bound for the smallest
eigenvalue is greater than zero. The shifted matrix has a Gershgorin lower bound equal to
zero.

The QR iterations begin with the originally shifted origin. At each iteration the function
performs QR decomposition, calculates the Newton shift and again performs a QR step
with the computed shift of the origin. This process is repeated until one of the diagonal
elements of iterated matrix becomes negligible. When a diagonal element becomes
negligible, the sum of shifts applied is taken as an eigenvalue, the original matrix is
deflated by deleting the row and column that contain this negligible element and the
process described above is again applied to the deflated matrix.

The input value of *eps1 specifies a theoretical absolute error tolerance for computed
eigenvalues. It may be set to a non-positive value. If at any iteration is becomes smaller
than the machine precision times the sum of shifts it is reset to this product. On output it
contains the maximum of its input value and the product of the relative machine precision
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and the maximum magnitude of an eigenvalue iterate. The theoretical absolute error in the
i*® eigenvalue is usually not greater than the output value £, of the variable *eps1 times i.

The input flag idef should be set to 1 if the input matrix is known to be positive definite,
to —1 if the input matrix is known to be negative definite, and to 0 otherwise.

The input flag type should be set to non-zero if the smallest eigenvalues are to be
computed, and to 0 if the largest eigenvalues are required.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

The input array e2 contains the squares of the subdiagonal elements of the original matrix
in its last (n — 1) locations. The entry e2[0] is arbitrary. On return from the function the
entries of vector e2, corresponding to the negligible subdiagonal elements of original matrix
are set to zero. The element e2[0] is also set to 0.

On return from the function the m eigenvalues are stored in the first locations of the w
array in ascending order if the smallest eigenvalues have been found or in descending order
if the largest eigenvalues have been found. The original matrix is unchanged.

The output vector bd contains refined bounds for the theoretical errors in the
corresponding eigenvalues stored in array w. These bounds are usually more precise than
the tolerance specified by the output value ¢;.

The output vector i¢nd contains in its first m positions the submatrix indices associated
with the corresponding eigenvalues in w array. An entry of array ind is set to 1 for
eigenvalues belonging to the first submatrix from the top, 2 for those belonging to the
second submatrix, etc.

Performance

The Newton scheme for shift computation makes the convergence of the algorithm global
and stable. The rate of convergence is of second order, therefore the algorithm is best
applied when a relatively high accuracy of the eigenvalues is required and they are not
multiple or close to each other. The Bisection method can significantly reduce time for the
computation of close eigenvalues. The computed eigenvalues are close to those of the exact
matrix. They are also exact for a matrix which is a small perturbation of the original
matrix. The upper bound for the norm of the perturbation matrix is proportional to the
relative machine precision.
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Notes

Array bd may coincide with array e2. If it is distinct from the array e2, then on output the
element e2[0] is set to 0 if the smallest eigenvalues have been found or to 2 if the largest
eigenvalues have been found.

The input arrays d and e are preserved by the function ratqr.

Test
The test program is contained in ratqrt.c file. The example matrices are contained in

trisyml.xpd, trisym.xpd, trisym3.xpd files.

References

C. Reinsch, F. L. Bauer, Numerical Mathematics, Vol. 11, pp.264-272, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. N. Parlett, The Symmetric Eigenvalue Problem, Published by: Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 07632, 1980.
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9.2.8 TINVIT Eigenvectors Corresponding to Specified
Eigenvalues

Name

stinvit — Forms eigenvectors corresponding to specified eigenvalues, single precision
dtinvit — Forms eigenvectors corresponding to specified eigenvalues, double precision

Synopsis

#include <ceispack.h>

int stinvit (n, d, e, e2, m, w, ind, z, index, rvl, rv2, rv3, rv4, rv6)
int n, m;

float *d, *e, *e2, *w, *xz;

int *ind, *index;

float *rvl, *rv2, *rv3, *rv4d, *rv6;

int dtinvit (n, 4, e, e2, m, w, ind, z, index, rvl, rv2, rv3, rvd, rv6)
int n, m;

double *d, *e, *e2, *w, **z;

int *ind, *index;

double *rvl, *rv2, *xrv3, *rvéd, *rv6;

n — order of symmetric tridiagonal input matrix
d — input vector of length n containing diagonal elements of input matrix
e — input vector of length n containing subdiagonal elements of input matrix
e2 — length n input array of squares of subdiagonal elements of input matrix
m — input variable containing number of eigenvectors required
w — length m input array containing eigenvalues in ascending/descending order
ind — length m input array containing submatrix indices of eigenvalues
z — output matrix containing m transposed (row) orthonormal eigenvectors
index — output variable address containing error completion code
rvl — temporary storage array of length n
rv2 — temporary storage array of length n
rv3 — temporary storage array of length n
rv4 — temporary storage array of length n
rv6 — temporary storage array of length n
Diagnostics

The function returns 0 for normal return or 1 if an error exit has been made. The output
variable *index is set to:

e ( for normal return.
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e -k if the eigenvector corresponding to the k' eigenvalue has not converge after 5
iterations. If this failure occurs more than once then *index contains the negative of
the last index. The rows of matrix z corresponding to such eigenvalues contain zero
vectors.

Description

Function tinvit computes the eigenvectors of a real symmetric tridiagonal matrix
corresponding to the eigenvalues stored in the first m locations of the input array w, using
an inverse iteration technique.

For more details about the inverse iteration algorithm see the description of the function
tsturm. The function tinvit is the subset of the C' function tsturm.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

The input vector e2 contains the squares of the corresponding subdiagonal elements of the
original matrix, where the negligible subdiagonal elements have been replaced with zeros.
An element ¢;;_; is considered negligible if it is not larger than the product of the relative
machine precision and the sum of the magnitudes of consecutive diagonal elements
tiiti—1i—1. The element e2[0] must contain 0 if the eigenvalues are stored in ascending
order, or 2 if they are stored in descending order. If the functions bisect, tridib, or imtqlv
have been used to find the eigenvalues, the output array e2 is set to exactly what is
required by the function tinvit.

The input vector w contains m eigenvalues stores in ascending or descending order.

The input vector ind contains the submatrix indices associated with the corresponding
eigenvalues in w array. An entry of array ind is set to 1 for eigenvalues belonging to the
first submatrix from the top, 2 for those belonging to the second submatrix, etc.

On return from the function matrix z contains m transposed (row) orthonormal
eigenvectors. Eigenvectors which failed to converge are set to zero.

Performance

The rate of convergence of the inverse iterations is linear. In most cases the appropriate
accuracy of an eigenvector is achived in about 1-2 iterations.

The computed eigenvectors are close to exact eigenvectors of a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of original matrix.
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Notes
The m x n matrix z is expected to be in the format produced by the allocation function

fmatrix. The number of rows of the matrix may be greater than m.

The input arrays d, e e2, w, ind are preserved by the function tinvit.

Test

The test programs are contained in bakvect.c, imtqllt.c, imtqlvt.c, ratqrt.c,
tqllt.c, tqlratt.c, bisectt.c, tridibt.c files. The example matrices are contained
in trispcl.xpd, trispc2.xpd and trisyml.xpd, trisym2.xpd, trisym3.xpd,
trisym4.xpd files.

References
J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. N. Parlett, The Symmetric Eigenvalue Problem, Published by: Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 07632, 1980.
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9.2.9 TQL2 Eigenvalues and Eigenvectors, QL Algorithm

Name

stql2 — Forms eigenvalues and corresponding eigenvectors, single precision
dtql2 — Forms eigenvalues and corresponding eigenvectors, double precision

Synopsis

#include <ceispack.h>

int stql2 (n, d, e, z, index)
int n;

float *d, *e, *x*xz;

int *index;

int dtql2 (n, d, e, z, index)
int n;

double *d, *e, *x*z;

int *index;

n — order of symmetric tridiagonal input /output eigenvector matrices

d — length n input vector of diagonal elements/output n ascending eigenvalues
e — length n input vector containing subdiagonal elements of input matrix

z — output matrix containing n transposed (row) orthonormal eigenvectors
index — output variable address containing error completion code

Diagnostics

The function returns 0 for normal return or 1 if an error exit has been made. The output
variable *index is set to:

e () for normal return.

e i if the i" eigenvalue has not been determined after MAXITER iterations. The
eigenvalues corresponding to indices j € [0,i — 1] would be correct but unordered.
The eigenvectors corresponding to them are correct and stored in the first k& rows of
matrix z.

Description
Function tql2 computes all the eigenvalues and corresponding eigenvectors of a real

symmetric tri-diagonal matrix using the QL algorithm with shift of origin.

The QL algorithm iterates the sequence of symmetric tridiagonal matrices that are
orthogonally similar to the original matrix. The sequence converges to a diagonal matrix.
A shift of origin is applied to improve the rate of convergence.
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Before the next iteration the currently iterated submatrix is tested for possible splitting to
submatrices. If the matrix is split only the uppermost submatrix takes part in the next
iterations. The shift of origin on each iteration is taken to be the eigenvalue of the
uppermost 2 x 2 principal minor, closer to the upper diagonal element of this minor. When
the uppermost 1 x 1 principal minor has split from the rest of the matrix, its value is taken
as an eigenvalue of the original matrix and the iterations continue on the remaining
submatrix until the whole matrix finally split on minors of order 1. The tolerance of the
test for splitting is commensurate to the relative machine precision.

The information about orthogonal similarity transformation used in the )L decomposition
is stored into matrix z, thus forming the orthogonal eigenvectors.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

On input matrix z should contain the transformation matrix produced in the reduction to
symmetric tridiagonal form by either the functions tred2, htridi or htrida3, if they have
been performed. If the eigenvectors of the tridiagonal matrix are desired, matrix z should
be set to the identity matrix.

On return from the function matrix z contains transposed (row) orthonormal eigenvectors
of the original matrix.

When all the eigenvalues and eigenvectors are computed the eigenvalues are ordered in
ascending order, and stored in the output vector d. The eigenvectors are interchanged
respectively.

Performance

Appropriate shift of the origin makes the convergence of the algorithm global. The rate of
convergence is cubic in almost all the cases.

The computed eigenvalues are close to those of the exact matrix. Also they are exact for a
matrix which is a small perturbation of the original matrix. The upper bound for the norm
of the perturbation matrix is proportional to the machine precision times the norm of the
original matrix at least in a case when the successive row norms are increase from top to
bottom of the original matrix.

The computed eigenvectors are close to exact eigenvectors of such a perturbed matrix.

Notes

Array zis in the format produced by the allocation function fsquare.
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If the original matrix has its row norms widely varying and not strictly decreasing
downward, it is recommended to use implicit ()L algorithm for eigenvalue computation or
to permute the original matrix to obtain the successive row norms increasing from top to
bottom of the matrix.

Test

The test programs are contained in cht.c, ch3t.c, rsgt.c, rsgabt.c, rgbat.c,
tql2t.c, rsbt.c, rstest.c files. The example matrices are contained in
chermitiO.xpd, chermitil.xpd, chermit30.xpd, chermit31.xpd, rgensym.xpd,
rsymmetl.xpd, rsymmet2.xpd, rsymmet3.xpd and trisyml.xpd, trisym2.xpd,
trisym3.xpd, trisymé4.xpd files.

References
H. Boulder, R. S. Martin, C. Reinsch, J. H. Wilkinson, Numerical Mathematics, Vol. 11,
pp.293-306, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. N. Parlett, The Symmetric Eigenvalue Problem, Published by: Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 07632, 1980.
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9.2.10 IMTQL2 Eigenvalues and Eigenvectors, Implicit QL
Algorithm

Name

simtql2 — Forms eigenvalues and corresponding eigenvectors, single precision
dimtql2 — Forms eigenvalues and corresponding eigenvectors, double precision

Synopsis

#include <ceispack.h>

int simtql2 (n, d, e, z, index)
int n;

float *d, *e, *x*xz;

int *index;

int dimtql2 (n, d, e, z, index)
int n;

double *d, *e, *x*z;

int *index;

n — order of symmetric tridiagonal input /output eigenvector matrices

d — length n input vector of diagonal elements/output n ascending eigenvalues
e — length n input vector containing subdiagonal elements of input matrix

zZ — output matrix containing n transposed (row) orthonormal eigenvectors
index — output variable address containing error completion code

Diagnostics

The function returns 0 for normal return or 1 if an error exit has been made. The output
variable *index is set to:

e () for normal return.

e i if the i" eigenvalue has not been determined after MAXITER iterations. The
eigenvalues corresponding to indices j € [0,i — 1] would be correct but unordered.
The eigenvectors corresponding to them are correct and stored in the first k£ rows of
matrix z.

Description

Function imtql2 computes all the eigenvalues and corresponding eigenvectors of a real
symmetric tridiagonal matrix using the ()L algorithm with implicit shifts of origin.

The implicit QL algorithm iterates a sequence of symmetric tridiagonal matrices that are
orthogonally similar to the original matrix. The sequence converges to a diagonal matrix.
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A shift of origin is applied implicitly to improve the rate of convergence.

Before the next iteration the currently iterated submatrix is tested for possible splitting to
submatrices. If the matrix is split only the uppermost submatrix takes part in the next
iterations. The shift of origin on each iteration is taken to be the eigenvalue of the
uppermost 2 x 2 principal minor, closer to the upper diagonal element of this minor. When
the uppermost 1 x 1 principal minor has split from the rest of the matrix, its value is taken
as an eigenvalue of the original matrix and iterations continue on the remaining submatrix
until the whole matrix finally split on minors of order 1. The tolerance of the test for
splitting is commensurate to the relative machine precision.

The information about orthogonal similarity transformation used in the )L decomposition
is stored into matrix z, thus forming the orthogonal eigenvectors.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

On input matrix z should contain the transformation matrix produced in the reduction to
symmetric tridiagonal form by either the functions tred2, htridi or htrid3, if they have
been performed. If the eigenvectors of the tridiagonal matrix are desired, matrix z should
be set to the identity matrix.

On return from the function matrix z contains transposed (row) orthonormal eigenvectors
of the original matrix.

When all the eigenvalues and eigenvectors are computed the eigenvalues are ordered in
ascending order, and stored in the output vector d. The eigenvectors are interchanged
respectively.

Performance

Appropriate shift of the origin makes the convergence of the algorithm global. The rate of
convergence is cubic in almost all the cases.

The computed eigenvalues are close to those of the exact matrix. Also they are exact for a
matrix which is a small perturbation of the original matrix. The upper bound for the norm
of the perturbation matrix is proportional to the machine precision times the norm of the
original matrix.

The computed eigenvectors are close to exact eigenvectors of such a perturbed matrix.
As opposed to the QL algorithm with the explicit shifts, the implicit modification is not

sensitive to the matrix structure with its row norms widely varying and not strictly
decreasing downward.
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Notes

Array zis in the format produced by the allocation function fsquare.

Test

The test programs are contained in rtt.c, rstt.c, imtql2t.c files. The example

matrices are contained in trisyml.xpd, trisym2.xpd, trisym3.xpd and trisym4.xpd
files.

References
R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.377-383, 1968.
A. Dubrulle, Numerical Mathematics, Vol. 15, p.450, 1970.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. N. Parlett, The Symmetric Eigenvalue Problem, Published by: Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 07632, 1980.
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9.2.11 TSTURM Eigenvalues and Eigenvectors, Bisection
Technique

Name

ststurm — Forms some eigenvalues and corresponding eigenvectors, single precision
dtsturm — Forms some eigenvalues and corresponding eigenvectors, double precision

Synopsis

#include <ceispack.h>

void ststurm (n,epsl,d,e,e2,lb,ub,mm,m,w,z,ierr,rvl,rv2,rv3,rvd,rv5,rv6)
int n;

float *epsl, *d, *e, *e2, 1lb, ub;

int mm, *m;

float *w, **z;

int *ierr;

float *rvl, *rv2, *rv3, *xrvé4, *rvb, *rv6;

void dtsturm (n,epsl,d,e,e2,lb,ub,mm,m,w,z,ierr,rvl,rv2,rv3,rvd,rv5,rvé)
int n;

double *epsl, *d, *e, *e2, 1lb, ub;

int mm, *m;

double *w, **xz;

int *ierr;

double *rvl, *rv2, *xrv3, *rv4, *rvb, *rv6;

n — order of symmetric tridiagonal input matrix
epsl — input/output variable address containing eigenvalue absolute error tolerance
d — input vector of length n containing diagonal elements of input matrix
e — input vector of length n containing subdiagonal elements of input matrix
e2 — length n input array of squares of subdiagonal elements of input matrix
b — input constant specifying lower bound of interval
lu — input constant specifying upper bound of interval
mm — input variable, estimate number of eigenvalues in interval
m — output variable address containing number of eigenvalues actually found
w — length mm output array containing m eigenvalues
z — output array containing m transposed (row) eigenvectors
ierr  — output variable address containing error completion code
rvl  — temporary storage array of length n
rv2  — temporary storage array of length n
rvd  — temporary storage array of length n
rvd  — temporary storage array of length n
rvd  — temporary storage array of length n
rv6  — temporary storage array of length n
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Diagnostics

The output error flag *ierr is set to:

e () for normal return.

e (3n + 1) if the actual number of eigenvalues m exceeds the specified number mm. In
this case no eigenvalues and eigenvectors have been computed. The output variable
*m contains the actual number of the eigenvalues lie on the interval specified.

e (4n +1) if the eigenvector corresponding to the i*" eigenvalue has not converged in 5
iterations. The eigenvalues and eigenvectors should be correct for indices j € [0,7 —1].

Description

Function tsturm computes the eigenvalues of a real symmetric tridiagonal matrix which
belong to the specified interval, using the bisection technique applied to the Sturm
sequence. Eigenvectors corresponding to obtained eigenvalues are computed using an
inverse iteration method.

First the function tsturm determines negligible subdiagonal elements of the original matrix
and set to zero the corresponding entries of array e2, therefore splitting the original matrix
into the direct sum of submatrices.

At the next step, the function calculates the Sturm sequence at both the interval
boundaries and estimates the number of eigenvalues within the interval as a difference
between the values of Sturm sequences at the upper and lower bounds wu;, and [,.

The function then performs the computation of the eigenvalues of a the submatrices. The
half-open input interval [ly, up) is refined by the Gershgorin interval containing all the
eigenvalues. The subintervals comprising the eigenvalues are squeezed by the bisection
process until the bounds of the subinterval become close enough each other. The measure
of the closeness is chosen as:

xo — Ty < €1 + 26(|xo| + |24]),

where xg, x, are current upper and lower bounds of the subinterval, ¢ is the relative
machine precision. If the input value of eigenvalue absolute error tolerance ¢ is
non-positive it is reset to the negative of the relative precision times the /; norm of the
current submatrix:

ey = —¢||Tell,

When all the eigenvalues of current submatrix have been evaluated, the corresponding
eigenvectors are computed. The LU decomposition of the submatrix is performed by
Gaussian elimination with partial pivoting. The information about the decomposition is
stored into working arrays, thus avoiding repetitive decomposition for the next eigenvector

Copyright (©1993-2003 GDDI 173 Reference manual



CHAPTER 9. SYMMETRIC TRIDIAGONAL EIGENPROBLEM

iterations of current submatrix. Starting from an initial vector, the approximate eigenvector
is obtained by the back substitution process. Up to five successive iterations for the
different initial vectors are tried in order to obtain an acceptable growth of the eigenvector
iterate norm. The accepted vector is normalized so that its Euclidean norm is made 1.

The eigenvectors which correspond to separated eigenvalues should be orthogonal, while
those corresponding to the group of close eigenvalues or multiple ones may be weakly
orthogonal. To provide orthogonal eigenvectors, each eigenvector iterate is orthogonalized
with respect to the eigenvectors of the group of close eigenvalues. The multiple eigenvalues
are perturbed by the multiple of the related machine precision to obtain linearly
independent eigenvectors. The output values of these eigenvalues is stored unperturbed.

The process described above is applied for all the submatrices from top to bottom of the
original matrix, until all the eigenvalues and corresponding eigenvectors on the interval are
computed.

The input variable mm should be set to an expected upper bound for the number of
eigenvalues lie in the interval. If more than mm eigenvalues are determined to belong in the
interval, an error return is made with no eigenvalues found.

The variable *eps1 on input contains an absolute error tolerance for the computation of
the eigenvalues. If the input value €; is non-positive, it is reset for each submatrix to a
default value, namely to the negative of the product of the relative machine precision and
the larger magnitude Gershgorin bound of the submatrix. The variable is unchanged on
output if it has not been reset to its last default value.

The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

The input vector e2 contains the squares of the subdiagonal elements of the original matrix
in its last (n — 1) locations. The entry e2[0] is arbitrary. On return from the function the
entries of vector e2 corresponding to the negligible subdiagonal elements of input matrix
are set to zero. The entry e2[0] is also set to zero.

The input constants [b and ub determine the interval containing required eigenvalues. If
[b > ub then no eigenvalues would be found.

On return from the function the variable *m contains the actual number of eigenvalues
found to lie in the interval [l,, uy).

The output array w contains m computed eigenvalues. They are arranged in ascending
order.

The output vector ind contains the submatrix indices associated with the corresponding

ECC_EISPACK 174 Copyright ©1993-2003 GDDI

+



9.2. EIGENVALUES AND EIGENVECTORS

eigenvalues in w array. An entry of array ind is set to 1 for eigenvalues belonging to the
first submatrix from the top, 2 for those belonging to the second submatrix, etc.

On return from the function matrix z contains m transposed (row) eigenvectors, associated
with the corresponding eigenvalues. The eigenvectors are orthogonal and normalized.

Performance

The rate of convergence of bisection method is commensurate to the value of the absolute
error tolerance for computed eigenvalues.

The computed eigenvalues are close to those of the exact matrix. Also they are exact for a
matrix which is a small perturbation of the original matrix. The upper bound for the norm
of the perturbation matrix is commensurate to the relative machine precision times the
norm of original matrix.

Theoretical upper bound for the errors in computed eigenvalues is defined by the following
formula:

d = 0.5e; + 7e max(|Tmin|, [Tmax]|)

where ¢ is the relative machine precision, zyi, and xy,., are lower and upper margins for
Gershgorin interval.

The rate of convergence of the inverse iterations is linear. In the most cases the
appropriate accuracy of an eigenvector is achieved in about 1-2 iterations.

The computed eigenvectors are exact for a matrix which is a small perturbation of the
original matrix. They are orthogonal within a high precision, even if the matrix has a
multiple or a group of close eigenvalues.

Notes

The rectangular mm x n array z is in the format produced by the allocation function
fmatrix. The number of rows in the array may be greater than mm.

The input vectors of diagonal and subdiagonal elements d and e of the original matrix are
preserved by the function tsturm.

Test

The test program is contained in tsturmt.c file. The example matrices are contained in
trisyml.xpd, trisym2.xpd, trisym3.xpd and trisym4.xpd files.
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Chapter 10

Complex General Eigenproblem

10.1 Matrix Balancing

10.1.1 CBAL Balancing

Name

ccbal — Balances complex matrix, single precision
zcbal — Balances complex matrix, double precision

Synopsis

#include <ceispack.h>

void ccbal (n, a, low, igh, scale)
int n;

fcomplex **a;

int *low, *igh,;

float *scale;

void zcbal (n, a, low, igh, scale)
int n;

dcomplex *x*a;

int *low, *igh,;

double *scale;

n — order of input/output matrices

a — unbalanced input matrix /balanced output matrix

low  — output variable address containing lower index of balanced submatrix

igh  — output address variable containing higher index of balanced submatrix

scale — length n output array containing scaling factors and permutation indices
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Description
Function cbal balances a complex square general matrix and extracts the eigenvalues of

the original matrix when they can be found exactly.

The reduction is performed as follows. First the matrix is rendered to block-triangular
form (if it is possible):

R W X
PAP=| o : B : Y [,
o : 0 = T

by applying permutation similarity transformations P. The matrix B is of order

(igh — low + 1) and located in rows and columns from low to igh. Matrix B has the
property such that if matrix By is equal to matrix B with its diagonal elements set to zero,
then the matrix By does not have any row or column of zero 1-norm. The matrices R and
T are upper triangular, other matrices of respective dimensions are rectangular. The
diagonal elements of matrices R and 7" are the eigenvectors of the original matrix.

Two boundary cases arise. The first one occurs when matrix B is of order 0. In such a case
the function sets the output variables low and igh both to 0. The second case occurs when
matrix B is of order n and all other submatrices are empty. In this case the product of
permutations P = [ and the function sets low = 0 and igh = n — 1.

At the next step the elements of matrix B are transformed by the diagonal similarity
transformation:

B; = D7'BD,

such that the 1-norms of rows and corresponding columns in the matrix By are nearly
equal. The entries of diagonal matrix D (that are scaling factors) are chosen be integer
powers of the base machine arithmetic, so that the transformation does not produce any
rounding errors. The whole matrix has the form:

R ' WD : X
D'PAPD=| ¢ : p-'BD : Dy |,
0 0 LT

The 1-norm of the original matrix also is reduced by the diagonal transformation when
1-norms of columns and corresponding rows of the original matrix are significantly
different. Generally reducing the 1-norm of a matrix improves the accuracy in determining

ECC_EISPACK 178 Copyright ©1993-2003 GDDI

+



10.1. MATRIX BALANCING

eigenvalues and eigenvectors.

The similarity transformations applied keep the eigenvalues of the balanced matrix equal to
those of the original matrix.

On return from the function array scale contains the information about the permutations
and diagonal transformations used by the function cbal and should be interpreted as
follows:

1. The rows and columns j and scale; have been interchanged for indices j € [0, low — 1]
and j € [igh+ 1,n — 1]. The interchanges are performed in indices first from (n — 1)
to (igh + 1), then from 0 to (low — 1).

2. The elements from low to igh of the diagonal matrix D are stored in the locations
scalej, where j € [low,igh].
Performance
Since the non-unitary entries in the diagonal matrix D are integer powers of the base
machine arithmetic, the function cbal produces no rounding errors.
Notes

Array a is in the format produced by the allocation function fsquare.

The function cbabk?2 should be performed after the computation of eigenvectors of balanced
matrix in order to reconstruct the eigenvectors of the original (unbalanced) matrix.
Test

The test programs are contained in cgt.c, combakt.c, cortbt.c files. The example
matrices are contained in cmatrixl.xpd, cmatrix2.xpd, cmatrix3.xpd,
cmatrix4.xpd, cmatrix5.c files.

References

B. N. Parlett, C. Reinsch, Numerical Mathematics, Vol. 13, pp.293-304, 1969.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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10.2 Reduction to Hessenberg form

10.2.1 COMHES Reduction by Elementary Transformations

Name

ccomhes — Reduction by stabilized elementary transformations, single precision
zcomhes — Reduction by stabilized elementary transformations, double precision

Synopsis

#include <ceispack.h>

void ccomhes (n, low, igh, a, iperm)
int n, low, igh;

fcomplex *x*a;

int *iperm;

void zcomhes (n, low, igh, a, iperm)
int n, low, igh;

dcomplex *x*a;

int *iperm;

n — order of input/output matrices

low — input constant set to lower index of balanced submatrix

igh — input constant set to higher index of balanced submatrix

a — input (balanced)/output upper Hessenberg and transformations matrix

iperm — output integer array of length at least ¢gh containing permutation indices
Description

Function comhes reduces a submatrix located in the rows and columns from low to igh of
given complex general matrix to upper Hessenberg form using and accumulating
elementary similarity transformations stabilized by permutation transformations.

The above submatrix is derived usually from balancing the original general matrix
performed by the function cbal, that reduces the original matrix into the block-triangular
form:

R : W : X
o : B : Y |
o : o0 = T

where matrix B is of order (igh — low + 1) and located in rows and columns from low to
tgh, matrices R and T" are upper triangular, other matrices are rectangular of the
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respective dimensions.

The reduction is performed as follows. At first the element having maximum absolute value
is searched in i*" column below the principal diagonal and moved to the (i + 1,4) location
by the permutation transformations to stabilize the reduction process. Then the elements
of the i*" column below the first subdiagonal are annihilated by the elementary row
transformations.

Column transformations are applied to both the permutation and elementary
transformations to accomplish the similarity transformation. The information about the
permutation transformations is stored in the vector ¢perm while the multipliers that define
elementary transformations are stored in place of the eliminated elements of the matrix.

The steps described above are performed successively on columns from low to (igh — 2).

On return from the function the submatrix of the input matrix a has been reduced to
upper Hessenberg form. The information about the permutation transformations is stored
into locations from low to tgh of vector iperm, other entries of the array are not used. The
multipliers that have been used in the elementary transformations are stored into the strict
lower triangle below the upper Hessenberg submatrix in matrix a.

Performance

The reduction process is numerically stable. The computed eigenvalues and eigenvectors
will be exact for a matrix which is a small perturbation of the original matrix. The upper
bound for the norm of the perturbation matrix is commensurate to the relative machine
precision times the norm of original matrix.

This function is generally faster than the function corth, since it involves fewer number of
arithmetic operations. The disadvantage of the function comhes is the fact that the
transformations used are not unitary and possibly may increase the norm of the reduced
matrix, therefore affecting on the precision of the computed eigenvalues and eigenvectors.
In practice such a matrices rarely arise.

Notes

Array a is in the format produced by the allocation function csquare.
The function references only the entries in [low + 1,igh — 1] locations of the array iperm.

If the function cbal has not been used to balance the original matrix, the input parameters
low and igh must be set to 0 and (n — 1) respectively.
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Test

The test program is contained in combakt.c file. The example matrices are contained in
cmatrixl.xpd, cmatrix2.xpd, cmatrix3.xpd, cmatrix4.xpd, cmatrix5.xpd files.

References

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Published by: Clarendon Press,
Oxford, 1965.

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.349-368, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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10.2.2 CORTH Reduction by Unitary Transformations

Name

ccorth — Reduction by unitary transformations, single precision
zcorth — Reduction by unitary transformations, double precision

Synopsis

#include <ceispack.h>

void ccorth (n, low, igh, a, ort, cv)
int n, low, igh;

fcomplex **xa, *ort, *cv;

void zcorth (n, low, igh, a, ort, cv)
int n, low, igh;
dcomplex **xa, *ort, *cv;

n — order of input/output matrix
low — input constant set to lower index of balanced submatrix
igh — input constant set to higher index of balanced submatrix
a — input (balanced)/output upper Hessenberg and transformations matrix
ort — length n output array containing additional information about transformations
cv  — temporary storage array of length n
Description

Function corth reduces a submatrix located in the rows and columns from low to igh of
given complex general matrix to upper Hessenberg form using and accumulating unitary
similarity transformations.

The above submatrix is derived usually from balancing the original general matrix
performed by the function cbal, that reduces the original matrix into the block-triangular
form:

R : W X
o : B : Y |
o : 0 : T

where matrix B is of order (igh — low + 1) and located in rows and columns from low to
tgh, matrices R and 1" are upper triangular, other matrices are rectangular of the
respective dimensions.
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The reduction is performed as follows. At first the elements in *" column below the
principal diagonal are scaled to avoid possible underflow that would result in destroying
the orthogonality of the transformation.

At the next phase the element in (i + 1,1) location is expanded by adding the square root
of sum of squared magnitudes S; of scaled elements. Then the elements of the i column
below the principal diagonal form a vector w, that defines the Householder reflection:

Q =1 —ww*/h, where h = w*w/2,

I is the identity matrix, matrix () is unitary and Hermitian. The transformation QF'Q)
eliminates the elements in i*" column below the first subdiagonal.

As described above, Hessenberg reflections are applied successively to eliminate elements
below the subdiagonal in columns from low to igh of the input matrix.

The product of Householder reflections is accumulated in the strict lower triangle below the
upper Hessenberg matrix in the array a and in the vector ort.

On return from the function the array a contains the upper Hessenberg matrix.
Information about the orthogonal transformations used in the reduction is stored in the
strict lower triangle below the Hessenberg matrix.

The output vector ort contains the rest of information about the transformations.

Performance

The reduction process is numerically stable. The computed eigenvalues and eigenvectors
would be exact for a matrix which is a small perturbation of the original matrix. The
upper bound for the norm of the perturbation matrix is commensurate to the relative
machine precision times the norm of original matrix.

Notes

Array a is in the format produced by the allocation function csquare.

Array ort should be allocated as a complex array of length at least igh. The function
references only the entries in [low + 1, igh] locations of the array ort.

If the function cbal has not been used to balance the original matrix, the input parameters
low and igh must be set to 0 and (n — 1) respectively.
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Test

The test programs are contained in cgt.c, cortbt.c files. The example matrices are
contained in cmatrixl.xpd, cmatrix2.xpd, cmatrix3.xpd, cmatrix4.xpd,
cmatrixb.c files.

References

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.349-368, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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10.3 Eigenvalues and Eigenvectors

10.3.1 COMLR Eigenvalues, LR Algorithm

Name

ccomlr — Forms eigenvalues by LR algorithm, single precision
zcomlr — Forms eigenvalues by LR algorithm, double precision

Synopsis

#include <ceispack.h>

void ccomlr (n, low, igh, h, w, ierr)
int n, low, igh;

fcomplex *xh, *w;

int *ierr;

void zcomlr (n, low, igh, h, w, ierr)
int n, low, igh;
dcomplex **h, *w;

int *ierr;
n — order of input matrix
low — input constant set to lower index of balanced submatrix
igh — input constant set to higher index of balanced submatrix
h — input matrix in upper Hessenberg form
w  — length n output array containing eigenvalues
ierr  — output variable address containing error completion code
Diagnostics

On output the variable xierr is set to 0 for normal return. If the limit of MAXITER*n
iterations is exceeded while the i'" eigenvalue is being computed, the error flag *ierr is set
to (i + 1). Eigenvalues corresponding to indices j € [xierr,n — 1] would be correct.

Description

Function comlr finds the eigenvalues of a complex upper Hessenberg matrix by the
modified LR method. This algorithm iterates a sequence of upper Hessenberg matrices
that are similar to the original upper Hessenberg matrix. The sequence of upper
Hessenberg matrices converges to an upper triangular form. The permutation similarity
transformations are used, if necessary on each iteration to ensure stability of the iteration
process.

The elementary similarity transformation are stored in the strict lower triangle of the
matrix h together with those were used to reduce the general matrix to upper Hessenberg
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form.

A shift of origin before the next iteration generally improves the rate of convergence. The
current upper Hessenberg form is tested before the next iteration for possible splitting to
submatrices. The tolerance for the test is proportional to relative machine precision. If the
matrix splits, the next iterations continue with the lower submatrix.

The value of the origin shift is chosen to be equal to the eigenvalue of the 2 x 2 lowermost
principal minor of the currently iterating submatrix, which is closer to the second diagonal
element of this minor. When the lowermost 2 X 2 minor of the currently iterating
submatrix has finally split into two 1 x 1 minors, the element of lower minor is taken to be
an eigenvalue of the original matrix. Iteration proceeds until the whole matrix has finally
split into minors of first order.

If an eigenvalue has not converged within 10 consecutive iterations an additional shift of
origin is applied to improve convergence.

The comlr function iterates the submatrix which is located in the rows and columns low
through igh (see the description of the cbal function for more details about the variables
low and igh) and defines the diagonal elements of the submatrices located in rows and
columns 0 through low and (igh + 1) through (n — 1) as the eigenvalues of original matrix.
These eigenvalues are computed exactly. If the cbal function has not been used the input
variables low and igh must be set to 0 and (n — 1) respectively.

On return from the function the array w contains eigenvalues of the original matrix.

The eigenvalues of a complex general matrix can also be found if the function comhes has
been used to reduce the original general matrix into upper Hessenberg form. Generally it is
recommended to use the function cbal to balance the original general matrix before the
reduction to upper Hessenberg form.

Performance

It is expected that the LR algorithm will converge in most the cases. Appropriate shift of
origin makes the convergence to be fast, while the permutation similarity transformations
and additional shifts provide the stability of convergence in almost all the cases.

The computed eigenvalues are exact for a matrix which is a small perturbation of the
original matrix. The upper bound for the norm of the perturbation matrix is
commensurate to the relative machine precision times the norm of original matrix.

The accuracy of computed eigenvalues may decrease by the LR iteration process, which in
turn may increase the norm of a triangularized matrix. Because of a possible loss of
accuracy it is recommended to use the QR algorithm for determining the eigenvalues, in
spite of the fact that the Q)R algorithm requires a larger number of arithmetic operations
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and therefore is slower than the LR one.

Notes

Matrix h is in the format produced by the allocation function csquare.

On input the lower triangle below the main subdiagonal of the input matrix A contains
multipliers which were used in the reduction of a general matrix to upper Hessenberg form
by the function comhes, if it has been used.

Matrix h is modified by the function comlr.

Test

The test programs are contained in combakt.c, comlrt.c files. The example matrices are
contained in cmatrixl.xpd, cmatrix2.xpd, cmatrix3.xpd, cmatrix4.xpd,
cmatrixb5.c and chessenl.xpd, chessen2.xpd, chessen3.xpd files.

References

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.369-376, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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10.3.2 COMAQR Eigenvalues, QR Algorithm

Name

ccomqr — Forms eigenvalues by QR algorithm, single precision
zcomqr — Forms eigenvalues by QR algorithm, double precision

Synopsis

#include <ceispack.h>

void ccomgr (n, low, igh, h, w, ierr)
int n, low, igh;

fcomplex *xh, *w;

int *ierr;

void zcomgr (n, low, igh, h, w, ierr)
int n, low, igh;
dcomplex **h, *w;

int *ierr;
n — order of input matrix
low — input constant set to lower index of balanced submatrix
igh — input constant set to higher index of balanced submatrix
h — input matrix in upper Hessenberg form
w  — length n output array containing eigenvalues
ierr  — output variable address containing error completion code
Diagnostics

On output the variable xierr is set to 0 for normal return. If the limit of MAXITER*n
iterations is exceeded while the i*" eigenvalue is being computed, the error flag *ierr is set
to (i + 1). Eigenvalues corresponding to indices j € [xierr,n — 1] would be correct.

Description

Function comqr computes all the eigenvalues of a complex matrix in upper Hessenberg
form by the Q)R algorithm. This algorithm iterates a sequence of upper Hessenberg
matrices that are unitary similar to the original matrix. The sequence of upper Hessenberg
matrices converges to an upper triangular form.

The unitary similarity transformations are stored in the strict lower triangle of the matrix
h together with those that were used to reduce a general matrix to upper Hessenberg form.

A shift of the origin before the next iteration generally improves the rate of convergence.
The current upper Hessenberg form is tested before the next iteration for possible splitting
to submatrices. The tolerance for the test is proportional to relative machine precision. If

Copyright (©1993-2003 GDDI 189 Reference manual



CHAPTER 10. COMPLEX GENERAL EIGENPROBLEM

the matrix splits, the next iterations continue with the lower submatrix.

The value of the origin shift is chosen to be equal to the eigenvalue of the 2 x 2 lowermost
principal minor of the currently iterating submatrix, which is closer to the second diagonal
element of this minor. When the lowermost 2 X 2 minor of the currently iterating
submatrix has finally split into two 1 x 1 minors, the element of the lower minor is taken to
be an eigenvalue of the original matrix. Iteration proceeds until the whole matrix has
finally split into minors of first order.

If an eigenvalue has not converged within 10 consecutive iterations an additional shift of
origin is applied to improve convergence.

The comqr function iterates the submatrix which is located in rows and columns low
through igh (see the description of the cbal function for more details about the variables
low and igh) and defines the diagonal elements of the submatrices located in rows and
columns 0 through low and (igh + 1) through (n — 1) as the eigenvalues of original matrix.
These eigenvalues are computed exact. If the cbal function has not been used the input
variables low and igh must be set to 0 and (n — 1) respectively.

The subdiagonal elements are transformed real by the diagonal similarity transformation
and kept real during the whole computation process.

On return from the function the array w contains the eigenvalues of the original matrix.

The eigenvalues of a complex general matrix can also be found if the function corth has
been used to reduce the original general matrix into upper Hessenberg form. Generally it is
recommended to use the function cbal to balance the original general matrix before the
reduction to upper Hessenberg form.

Performance

The QR algorithm converges in most cases. Appropriate shift of the origin makes the
convergence to be very fast.

The computed eigenvalues are exact for a matrix which is a small perturbation of the
original matrix. The upper bound for the norm of the perturbation matrix is
commensurate to the relative machine precision times the norm of original matrix.

Notes

Matrix h is in the format produced by the allocation function csquare.

On input the lower triangle below the first subdiagonal of the input matrix A contains the
information about the unitary transformations used in the reduction of a general matrix to
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upper Hessenberg form by the function corth if it has been used.

Matrix h is modified by the function comqr.

Test

The test programs are contained in cortbt.c, comqrt.c files. The example matrices are
contained in cmatrixl.xpd, cmatrix2.xpd, cmatrix3.xpd, cmatrix4.xpd,
cmatrixb5.c and chessenl.xpd, chessen2.xpd, chessen3.xpd files.

References

J. G. F. Francis, Computer Journal, Vol. 4, pp.332-345, 1962.
R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.369-376, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.
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10.3.3 COMLR?2 Eigenvalues and Eigenvectors, LR Algorithm

Name

ccomlr2 — Forms eigenvalues and eigenvectors, single precision
zcomlr2 — Forms eigenvalues and eigenvectors, double precision

Synopsis

#include <ceispack.h>

void ccomlr2 (n, low, igh, iperm, h, w, z, ierr)
int n, low, igh;

int *iperm;

fcomplex *xh, *w, **z;

int *ierr;

void zcomlr2 (n, low, igh, iperm, h, w, z, ierr)
int n, low, igh;

int *iperm;

dcomplex *xh, *w, **z;

int *ierr;
n — order of input/output matrices
low — input constant set to lower index of balanced submatrix
igh — input constant set to higher index of balanced submatrix
iperm — input array of length n containing permutation indices
h — input matrix in upper Hessenberg form
w — length n output array containing eigenvalues
zZ — square output matrix containing n column eigenvectors
ierr — output variable address containing error completion code
Diagnostics

On output the variable xierr is set to 0 for normal return. If the limit of MAXITER*n
iterations is exceeded while the i*" eigenvalue is being computed, the error flag *ierr is set
to (i + 1). Eigenvalues corresponding to indices j € [xierr,n — 1] would be correct. None of
the eigenvectors have been determined yet.

Description

Function comlr2 finds the eigenvalues and corresponding eigenvectors of a complex upper
Hessenberg matrix by the modified LR method. This algorithm iterates a sequence of
upper Hessenberg matrices that are similar to the original upper Hessenberg matrix. The
sequence of upper Hessenberg matrices converges to an upper triangular form. The
permutation similarity transformations are used, if necessary on each iteration to ensure
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stability of the iteration process.

The elementary similarity transformation are stored in the strict lower triangle of the
matrix h together with those used to reduce general matrix to upper Hessenberg form.

A shift of origin before the next iteration generally improves the rate of convergence. The
current upper Hessenberg form is tested before the next iteration for possible splitting to
submatrices. The tolerance for the test is proportional to relative machine precision. If the
matrix splits, the next iterations continue with the lower submatrix.

The value of the origin shift is chosen to be equal to the eigenvalue of the 2 x 2 lowermost
principal minor of the currently iterating submatrix, which is closer to the second diagonal
element of this minor. When the lowermost 2 x 2 minor of the currently iterating
submatrix has finally split into two 1 X 1 minors, the element of lower minor is taken to be
an eigenvalue of the original matrix. Iteration proceeds until the whole matrix has finally
split into minors of first order.

If an eigenvalue has not converged within 10 consecutive iterations an additional shift of
origin is applied to improve convergence.

The comlr2 function iterates the submatrix which is located in rows and columns low
through igh (see the description of the cbal function for more details about the variables
low and igh) and defines the diagonal elements of the submatrices located in rows and
columns 0 through low and (igh + 1) through (n — 1) as the eigenvalues of original matrix.
These eigenvalues are computed exact. If the cbal function has not been used the input
variables low and igh must be set to 0 and (n — 1) respectively.

The eigenvectors of the finally converged triangular matrix are computed by the back
substitution process and multiplied by the transformation matrix to be back transformed
into the eigenvectors of the original matrix.

The eigenvalues and eigenvectors of a real general matrix can also be found if the function
comhes is used to reduce the original general matrix into upper Hessenberg form and
accumulate the similarity transformations in the strict lower triangle of array h.

Generally it is recommended to use the function cbal to balance the original general
matrix before the reduction to upper Hessenberg form. Note that the function cbabk?2
must follow comlr2 if cbal has been used.

On return from the function the array w contains eigenvalues of the original matrix. The
columns of matrix z contains the corresponding eigenvectors. They are unnormalized. The
real part of the element h[0] [0] contains the [; norm of the triangularized matrix.
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Performance

The LR algorithm converges in most the cases. Appropriate shifts of origin make the
convergence fast, while the permutation similarity transformations and additional shifts
provide the stability of convergence in almost all the cases.

The computed eigenvalues and eigenvectors are exact for a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of original matrix.

The accuracy of computed eigenvalues and especially eigenvectors may decrease with the
LR iteration process, which may increase the norm of a triangularized matrix. The /; norm
of converged triangular matrix is stored in the real part of the h[0] [0] entry of output
array h to control the accuracy obtained.

Notes

Matrices h and z are in the format produced by the allocation function csquare.

On input the lower triangle below the main subdiagonal of the input matrix A contains
multipliers which were used in the reduction of a general matrix to upper Hessenberg form
by the function comhes, if it has been used. If the eigenvalues and eigenvectors of the
Hessenberg matrix are desired, the strict lower triangle of the input matrix should be set to
(0 + 0).

Matrix A is modified by the function comlr2.

Input vector iperm contains the information about the permutation similarity
transformations used in the reduction by the function comhes, if it has been used. Only the
entries low through igh are referenced. If the eigenvectors of the Hessenberg matrix are
desired these entries must be set to 0.

Test

The test program is contained in comlr2t.c file. The example matrices are contained in
chessenl.xpd, chessen2.xpd, chessen3.xpd files.

References

G. Peters, J. H. Wilkinson, Numerical Mathematics, Vol. 16, pp.181-204, 1970.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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10.3.4 COMQR?2 Eigenvalues and Eigenvectors, QR Algorithm

Name

ccomqr2 — Forms eigenvalues and eigenvectors, single precision
zcomqr2 — Forms eigenvalues and eigenvectors, double precision

Synopsis

#include <ceispack.h>

void ccomqgr2 (n, low, igh, ort, h, w, z, ierr)
int n, low, igh;

fcomplex *ort, *xh, *w, *xxz;

int *ierr;

void zcomqr2 (n, low, igh, ort, h, w, z, ierr)
int n, low, igh;
dcomplex *ort, *xh, *w, *xxz;

int *ierr;
n — order of input/output matrices
low — input constant set to lower index of balanced submatrix
igh — input constant set to higher index of balanced submatrix
ort — input array of length n containing information about reduction to Hessenberg form
h — input matrix in upper Hessenberg form
w  — length n output array containing eigenvalues
z — output eigenvector matrix
ierr  — output variable address containing error completion code
Diagnostics

On output the variable xierr is set to 0 for normal return. If the limit of MAXITER*n
iterations is exceeded while the i*® eigenvalue is being computed, the error flag *ierr is set
to (i + 1). Eigenvalues corresponding to indices j € [xierr,n — 1] would be correct. None of
the eigenvectors have yet been determined.

Description

Function comqr2 computes all the eigenvalues and corresponding eigenvectors of a complex
matrix in upper Hessenberg form by the Q)R algorithm. This algorithm iterates a sequence
of upper Hessenberg matrices that are unitary similar to the original matrix. The sequence
of upper Hessenberg matrices converges to an upper triangular form.

The unitary similarity transformations are stored in the strict lower triangle of the matrix
h together with those were used to reduce a general matrix to upper Hessenberg form.
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A shift of origin before the next iteration generally improves the rate of convergence. The
current upper Hessenberg form is tested before the next iteration for possible splitting to
submatrices. The tolerance for the test is proportional to relative machine precision. If the
matrix splits, the next iterations continue with the lower submatrix.

The value of the origin shift is chosen to be equal to the eigenvalue of the 2 x 2 lowermost
principal minor of the currently iterating submatrix, which is closer to the second diagonal
element of this minor. When the lowermost 2 x 2 minor of the currently iterating
submatrix has finally split into two 1 X 1 minors, the element of lower minor is taken to be
an eigenvalue of the original matrix. Iteration proceeds until the whole matrix has finally
split into minors of first order.

If an eigenvalue has not converged within 10 consecutive iterations the additional shift of
origin is applied to improve convergence.

The comqr2 function iterates the submatrix which is located in the rows and columns low
through igh (see the description of the cbal function for more details about the variables
low and igh) and defines the diagonal elements of the submatrices located in rows and
columns 0 through low and (igh + 1) through (n — 1) as the eigenvalues of original matrix.
These eigenvalues are computed exactly. If the cbal function has not been used the input
variables low and igh must be set to 0 and (n — 1) respectively.

The subdiagonal elements are transformed real by the diagonal similarity transformation
and kept real during the whole computation process.

The eigenvectors of the final converged triangular matrix are computed by back
substitution and multiplied by the transformation matrix to be back transformed into the
eigenvectors of the original matrix.

The eigenvalues and eigenvectors of a real general matrix can also be found if the function
corth has been used to reduce the original general matrix into upper Hessenberg form and
accumulate the similarity transformations in the strict lower triangle of array h.

Generally it is recommended to use the function cbal to balance the original general
matrix before the reduction to upper Hessenberg form. Note that the function cbabk?2
must follow comqr2 if cbal has been used.

On return from the function the array w contains eigenvalues of the original matrix. The
columns of matrix z contains the corresponding eigenvectors. They are unnormalized.
Performance

The QR algorithm converges in most the cases. Appropriate shifts of origin makes the
convergence to be very fast.

ECC_EISPACK 196 Copyright ©1993-2003 GDDI



10.3. EIGENVALUES AND EIGENVECTORS

The computed eigenvalues and eigenvectors are exact for a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of original matrix.

Notes

Matrices h and z are in the format produced by the allocation function csquare.

On input the lower triangle below the first subdiagonal of the input matrix A contains the

information about the unitary transformations used in the reduction of a general matrix to
upper Hessenberg form by the function corth if it has been used. If the eigenvectors of the
Hessenberg matrix are desired, the strict lower triangle of the input matrix can be arbitrary.

Matrix A is modified by the function comqr2.

Input vector ort contains the rest of information about the unitary transformations used in
the reduction by the function corth, if it has been used. Only the entries low through igh
are referenced. If the eigenvectors of the Hessenberg matrix are desired these entries must
be set to (0 + 40).

Test

The test program is contained in comqr2t.c file. The example matrices are contained in
chessenl.xpd, chessen2.xpd, chessen3.xpd files.

References

J. G. F. Francis, Computer Journal, Vol. 4, pp.332-345, 1962.
G. Peters, J. H. Wilkinson, Numerical Mathematics, Vol. 16, pp.181-204, 1970.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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10.3.5 CINVIT Eigenvectors Coresponding to Specified
Eigenvalues

Name

ccinvit — Finds eigenvectors corresponding to specified eigenvalues, single precision
zcinvit — Finds eigenvectors corresponding to specified eigenvalues, double precision

Synopsis

#include <ceispack.h>

void ccinvit (n, a, w, select, mm, m, mz, z, ierr, cm, CV)
int n;

fcomplex **xa, *w, **z;

int *select, mm, *m, mz, *ierr;

fcomplex **xcm, *cCv;

void zcinvit (n, a, w, select, mm, m, mz, z, ierr, cm, CV)
int n;

dcomplex **xa, *w, **z;

int *select, mm, *m, mz, *ierr;

dcomplex **cm, *Cv;

n — order of input matrix ¢ and number of rows in eigenvector matrix
a — input matrix in upper Hessenberg form
W — length n input array containing n eigenvalues
select — length n input array which specifies required eigenvectors
mm  — input constant specifying upper bound for number of required eigenvectors
m — output variable address containing number of eigenvectors actually computed
mz — number of columns in eigenvector matrix z
z — rectangular output matrix containing column eigenvectors
ierr — output variable address containing error completion code
cm — order n temporary storage square matrix
cv — temporary storage array of length n
Diagnostics

The function returns 0 for normal return or 1 if an error exit has been made. The output
error flag *ierr is set to:

0 for normal return.

—(2n + 1) if more than mm eigenvectors have been specified. The output variable *m
is set to mm and specifies the number of eigenvectors that have been found.

—k if the iteration corresponding to the £ eigenvalue failed.

—(n 4+ k) if both the error situations occurred.
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Description

Function cinvit computes the eigenvectors of a complex matrix in upper Hessenberg form,
which correspond to specified eigenvalues, using an inverse iteration technique. Computed
eigenvectors are normalized so that the component of largest magnitude is set equal to 1.

The function cinvit solves a linear system

Uy =yo

in order to obtain the eigenvector corresponding to i*" eigenvalue, where matrix U is the
upper triangular multiplier in the LU decomposition of the matrix

F =B — p;I, where

matrix B is the leading order p submatrix of the input upper Hessenberg matrix, p; is the
approximate eigenvalue of the matrix A. Starting from an initial vector, the approximate
eigenvector is obtained by the back substitution process. The solution vector y is accepted
as the eigenvector of the matrix F' if its norm is larger than the norm of the initial vector yq:

Yolloo
VBl Fl vl > ole

If the acceptance test failed, up to p orthogonal initial vectors are tried successively to
obtain an appropriate norm growth. The accepted vector is transformed to the eigenvector
of the original matrix by adding (n — p) zeros after its last component.

If all the initial vectors have not produced an acceptable eigenvector, the function cinvit set
the error flag ierr to —i, where ¢ is the index of corresponding eigenvalue, terminates
iterations for this eigenvector and continues the computation process for the next
eigenvalue. Components of the unaccepted eigenvector are set to zero. If such a situation
occurs more than once, the output error flag would contain the last index of the eigenvalue
for which the computation of an eigenvector failed.

The real parts of multiple eigenvalue or a group of close eigenvalues are perturbed by
adding small multiples of ¢||B|| in order to obtain linearly independent eigenvectors.

The input array w contains the eigenvectors of the input upper Hessenberg matrix. They
are stored unordered except that eigenvalues of any submatrix of input upper Hessenberg
matrix must have indices in the array w between the boundary indices of this submatrix. If
the comlr or comgr functions have been used to find eigenvalues of an upper Hessenberg
matrix, their output arrays of eigenvectors are arranged in the required order.

The entries of input vector select specify the eigenvectors to be found. The entry
corresponding to the i eigenvalue must be set to a non-zero value if the i'" eigenvector is
required or set to 0 otherwise.
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On return from the function the real parts of multiple eigenvalues or a group of close
eigenvalues may have been perturbed a little in order to compute linearly independent
eigenvectors.

The output variable m is set to the number of eigenvectors actually found.

The columns of output the matrix z contain the eigenvectors. The eigenvectors are
normalized so that the component of largest magnitude is 1. Any vector which does not
satisfy the acceptance test is set to zero.

Performance

The rate of convergence of the inverse iterations is linear. The computed eigenvectors are
exact for a matrix which is a small perturbation of the original matrix. The upper bound
for the norm of the perturbation matrix is commensurate to the relative machine precision
times the norm of original matrix.

Notes

Matrices a and ¢m are in the format produced by the allocation function csquare.

The matrix z of dimension n X mz is in the format produced by the allocation function
cmatrix.

The input matrix a and array select are preserved by the function cinvit.

Test

The test programs are contained in combakt.c, cortbt.c, comlrt.c, comqrt.c files.
The example matrices are contained in cmatrixl.xpd, cmatrix2.xpd, cmatrix3.xpd,
cmatrix4.xpd, cmatrix5.xpd and chessenl.xpd, chessen2.xpd, chessen3.xpd files.

References
J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. N. Parlett, The Symmetric Eigenvalue Problem, Published by: Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 07632, 1980.
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10.3.6 COMBAK Eigenvectors of Original Matrix

Name

ccombak — Forms eigenvectors of original matrix, single precision
zcombak — Forms eigenvectors of original matrix, double precision

Synopsis

#include <ceispack.h>

void ccombak (n, low, igh, a, iperm, m, z)
int n, low, igh;

fcomplex x*x*a;

int *iperm, m;

fcomplex *x*z;

void zcombak (n, low, igh, a, iperm, m, z)
int n, low, igh;

dcomplex *x*a;

int *iperm, m;

dcomplex **z;

n — order of input matrix ¢ and number of rows in eigenvector array
low — input constant set to lower index of balanced submatrix
igh — input constant set to higher index of balanced submatrix
a — input upper Hessenberg and transformations matrix
iperm  — length n input integer array containing permutation indices
m — number of columns in eigenvector matrix
z — input/output column eigenvector matrix
Description

Function combak forms the eigenvectors of a complex general matrix by back transforming
the eigenvectors of the corresponding upper Hessenberg matrix determined by the function
comhes.

If submatrix B, stored in the input array a has been reduced to upper Hessenberg form by
permutation and stabilized elementary similarity transformations:

H = S"'BS,

where S is the product of the permutation matrices and elementary transformations, that
have been stored in array iperm and in the strict lower triangle below upper Hessenberg
matrix, then the function combak computes for each eigenvector x; of the upper
Hessenberg matrix the product:

z; = Sx;, where ¢ € [0,m — 1]
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thus forming the eigenvectors of the original matrix B. The transformed eigenvectors are
stored column-wise in the matrix 2, overwriting the input eigenvectors of the upper
Hessenberg matrix.

Performance

The computed eigenvectors are exact for a matrix which is a small perturbation of the
original matrix. The upper bound for the norm of the perturbation matrix is
commensurate to the relative machine precision times the norm of original matrix.

Notes

Array a is in the format produced by the allocation function csquare.

The rectangular n X m matrix 2 is in the format produced by the allocation function
cmatrix.

The function references only the entries in [low + 1,igh — 1] locations of the array iperm.

If the function cbal has not been used to balance the original matrix, the input parameters
low and igh must be set to 0 and (n — 1) respectively.

Test
The test program is contained in combakt.c file. The example matrices are contained in

cmatrixl.xpd, cmatrix2.xpd, cmatrix3.xpd, cmatrix4.xpd, cmatrix5.xpd files.

References

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.349-368, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

ECC_EISPACK 202 Copyright ©1993-2003 GDDI

+



10.3. EIGENVALUES AND EIGENVECTORS

10.3.7 CORTB Eigenvectors of Original Matrix

Name

ccortb — Forms eigenvectors of original matrix, single precision
zcortb — Forms eigenvectors of original matrix, double precision

Synopsis

#include <ceispack.h>

void ccortb (n, low, igh, a, ort, m, z, cv)
int n, low, igh;

fcomplex **xa, *ort;

int m;

fcomplex **xz, *cv;

void zcortb (n, low, igh, a, ort, m, z, cv)
int n, low, igh;

dcomplex **xa, *ort;

int m;

dcomplex **z, *Cv;

n — order of input array ¢ and number of rows in eigenvector array
low — input constant set to lower index of balanced submatrix
igh — input constant set to higher index of balanced submatrix
a — input upper Hessenberg and transformations matrix
ort — input array containing rest of information about transformations
m  — number of columns in eigenvector array
z — input/output eigenvector array
cv  — temporary storage array of length n
Description

Function cortb forms the eigenvectors of a complex general matrix by back transforming
the eigenvectors of the corresponding upper Hessenberg matrix determined by the function
corth.

If submatrix B, stored in the input array a has been reduced to upper Hessenberg form by
unitary similarity transformations:

H=Q"BQ,

where () is the product of the unitary transformations, that has been stored in array ort
and in the strict lower triangle below upper Hessenberg matrix, then the function cortb
computes for each eigenvector x; of the upper Hessenberg matrix the product:

z; = Qu;, where i € [0,m — 1]
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thus forming the eigenvectors of the original matrix B. The transformed eigenvectors are
stored column-wise in the matrix 2, overwriting the input eigenvectors of the upper
Hessenberg matrix.

Performance

The computed eigenvectors are exact for a matrix which is a small perturbation of the
original matrix. The upper bound for the norm of the perturbation matrix is
commensurate to the relative machine precision times the norm of original matrix.

Notes

Array a is in the format produced by the allocation function csquare.

The rectangular n X m matrix 2 is in the format produced by the allocation function
cmatrix.

Array ort should be allocated as a complex array of length at least igh.

If the function cbal has not been used to balance the original matrix, the input parameters
low and igh must be set to 0 and (n — 1) respectively.

Test
The test program is contained in cortbt.c file. The example matrices are contained in

cmatrixl.xpd, cmatrix2.xpd, cmatrix3.xpd, cmatrix4.xpd, cmatrix5.xpd files.

References

R. S. Martin, J. H. Wilkinson, Numerical Mathematics, Vol. 12, pp.349-368, 1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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10.3.8 CBABK2 Eigenvectors of Non-balanced Matrix

Name

cchbabk2 — Forms eigenvectors of non-balanced matrix, single precision
zcbabk2 — Forms eigenvectors of non-balanced matrix, double precision

Synopsis

#include <ceispack.h>

void ccbabk2 (n, low, igh, scale, m, z)
int n, low, igh;

float *scale;

int m;

fcomplex *xz;

void zcbabk2 (n, low, igh, scale, m, z)
int n, low, igh;

double *scale;

int m;

dcomplex *x*z;

n — number of rows in eigenvector matrix
low  — input constant set to lower index of balanced submatrix
igh  — input constant set to higher index of balanced submatrix
scale — length n input array containing scaling factors and permutation indices
m — number of columns in eigenvector matrix
z — input/output column eigenvector matrix
Description

Function cbabk2 forms the eigenvectors of a complex general matrix by back transforming
the corresponding eigenvectors of a balanced matrix that has been determined by the
function cbal.

The function cbal transforms the original matrix A into the balanced block-triangular
matrix A, by applying the similarity transformations:

A, =D 'PTAPD,

where matrix P is the product of permutation transformations. Matrix D is the diagonal
matrix of scaling factors, such that its locations within the indices j € [low,igh| are integer
powers of the base machine arithmetic and all other locations are 1.

Function cbabk2 back transforms the eigenvectors of balanced matrix to the eigenvectors of
the original matrix by forming the product:
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Zi = PDJIZ,

where z; is the i*" eigenvector of balanced matrix, z; is the corresponding eigenvector of the
original matrix.

The back transformed eigenvectors are stored column-wise in the matrix z, overwriting the
input eigenvectors of the balanced matrix.

Performance

Since the non-unitary entries in the diagonal matrix D are integer powers of the base
machine arithmetic, the function cbabk2 produces no rounding errors.

Notes

The rectangular n x m matrix z is in the format produced by the allocation function
cmatrix.

Test

The test programs are contained in cgt.c, combakt.c, cortbt.c files. The example
matrices are contained in cmatrixl.xpd, cmatrix2.xpd, cmatrix3.xpd,
cmatrix4.xpd, cmatrixb.c files.

References

B. N. Parlett, C. Reinsch, Numerical Mathematics, Vol. 13, pp.293-304, 1969.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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10.3.9 CBABKL Left-hand Eigenvectors of Non-balanced
Matrix

Name

ccbabkl — Forms left-hand eigenvectors of non-balanced matrix, single precision
zcbabkl — Forms left-hand eigenvectors of non-balanced matrix, double precision

Synopsis

#include <ceispack.h>

void ccbabkl (n, low, igh, scale, m, z)
int n, low, igh;

float *scale;

int m;

fcomplex *xz;

void zcbabkl (n, low, igh, scale, m, z)
int n, low, igh;

double *scale;

int m;

dcomplex *x*z;

n — number of rows in left-hand eigenvector matrix
low  — input constant set to lower index of balanced submatrix
igh  — input constant set to higher index of balanced submatrix
scale — length n input array containing scaling factors and permutation indices
m — number of columns in left-hand eigenvector matrix
z — input/output column left-hand eigenvector matrix
Description

Function cbabkl forms the left-hand eigenvectors of a complex general matrix by back
transforming the corresponding left-hand eigenvectors of the balanced matrix determined
by the function cbal.

The function cbal transforms the original matrix A into the balanced block-triangular
matrix A, by applying the similarity transformations:

A, =D 'PTAPD,
where matrix P is the product of permutation transformations. Matrix D is the diagonal

matrix of scaling factors, such that its locations within the indices j € [low,igh| are integer
powers of the base machine arithmetic and all other locations are 1.
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Function cbabkl back transforms the left-hand eigenvectors of balanced matrix to the
left-hand eigenvectors of the original matrix by forming the product:

Zi = PD_IJIZ',

where x; is the i*® left-hand eigenvector of balanced matrix, 2; is the corresponding
left-hand eigenvector of the original matrix.

The back transformed left-hand eigenvectors are stored column-wise in the matrix z,
overwriting the input left-hand eigenvectors of the balanced matrix.

Performance

Since the non-unitary entries in the diagonal matrix D are integer powers of the base the
machine arithmetic, the function cbabkl produces no rounding errors.

Notes

The rectangular n x m matrix z is in the format produced by the allocation function
cmatrix.

Function cbabkl is a modification of the C function cbabk?2.

References

B. N. Parlett, C. Reinsch, Numerical Mathematics, Vol. 13, pp.293-304, 1969.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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Chapter 11

Hermitian Eigenproblem

11.1 Reduction to Symmetric Tridiagonal Form

11.1.1 HTRID3 Reduction by Unitary Transformations

Name

chtrid3 — Reduction and accumulation of transformations, single precision
zhtrid3 — Reduction and accumulation of transformations, double precision

Synopsis

#include <ceispack.h>

void chtrid3 (n, a, d, e, e2, tau)
int n;

float **a;

float *d, *e, *e2, *x*tau;

void zhtrid3 (n, a, t, e2, tau)
int n;

double **a;

double *d, *e, *e2, *xtau;

n — order of Hermitian input matrix/symmetric tridiagonal output matrix
a  — input Hermitian (lower triangle)/output transformations matrix
d — output vector of length n containing diagonal elements of output matrix
e — output vector of length n containing subdiagonal elements of output matrix
e2 — length n output array of squares of subdiagonal elements of output matrix
tau — output 2 x n diagonal transformation array

Description

Function htrid3 reduces a complex Hermitian matrix, stored as a single real array, to a real
symmetric tridiagonal matrix by unitary similarity transformations.
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The function performs a sequence of (n — 2) Householder reflections:
P, =1 —wuu’/h, where h = ufu;/2

The sequence is applied to the input matrix row-wise, starting with the last row and
continuing from bottom to top:

Aj=PA;_\P,ic[l,n—2]

Post-multiplications annihilates the elements in (n — i)™ row (rows are numbered starting
with 0 from top to bottom) to the left from the principal subdiagonal. Pre-multiplications
would annihilate (n — i)™ column (columns are numbered in similar manner) elements, but
they do not actually applied.

The calculations proceed as follows. At first, the elements in (n — i)®™ row to the left from
the principal subdiagonal are scaled to avoid possible underflow that would result in
destroying the orthogonality of the transformation. The sum of squares S; of scaled
elements is taken as the square of the i*" subdiagonal element of the symmetric tridiagonal
form. A square root Sil/Q with the sign set opposite to a transformed subdiagonal element
of the original matrix a is taken then as the value of this subdiagonal element.

The last i*® reflection eliminates these elements in the (n — i)*™® row. The symmetric
elements in the corresponding column of the matrix would also be eliminated if the
pre-multiplication were applied.

The transformed subdiagonal element is then further transformed by diagonal unitary
similarity transformation to be exactly real. The diagonal transformations are accumulated
in the output array tau.

The information about Householder transformations used in the reduction process is
accumulated in the matrix a.

Function htrid3 references only the diagonal and subdiagonal elements of the resultant
symmetric tridiagonal matrix. Transformed diagonal and subdiagonal elements are stored
into output vectors d and e, therefore preserving the information about the transformations
used in the reduction process.

The input matrix ¢ contains the lower triangle of the complex Hermitian matrix. The real
parts of the matrix elements are stored in the full lower triangle of the array a. The
imaginary parts are stored in the transposed positions of the strict upper triangle of the
array a. There is no storage required for zero imaginary parts of the diagonal elements of
the Hermitian matrix.

Suppose that a Hermitian matrix of order 4 is to be reduced by the function htrid3. Then
the input array a should be set as follows:
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Re(ago) Im(ayp) Im(ag) Im(as)
Re(alo) Re(au) Im(agl) Im(agl)
Re(ago) Re(agl) R,e(CLQQ) Im(a32)
Re(a30) Re(a31) Re(a32) Re(a33)

On return from the function the output vectors d and e contain respectively the diagonal
and subdiagonal elements of resulted symmetric tridiagonal matrix. The subdiagonal
elements has been stored in the last (n — 1) locations of the vector e. The first entry of the
array has been set to 0.

The array e2 contains the squares of the corresponding subdiagonal elements of resulted
symmetric tridiagonal matrix in its last (n — 1) locations. The entry e2[0] has been set to
0.

Array tau contains the information about the diagonal transformations used in the
reduction process.
Performance

The reduction process is numerically stable since it is based on unitary transformations.
The resultant symmetric tridiagonal matrix is unitarily similar to a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of original matrix.

Notes

Array a is in the format produced by the allocation function fsquare.
Arrays e and e2 may coincide if the squares are not required.

The rectangular 2 x n array tauw is in the format produced by the allocation function
fmatrix.

Test

The test program is contained in ch3t.c file. The example matrices are contained in
hermit30.xpd, hermit31.xpd files.

References

D. J. Mueller, Numerical Mathematics, Vol. 8, pp.72-92, 1968.

R. S. Martin, C. Reinsch, J. H. Wilkinson, Numerical Mathematics, Vol. 11, pp.181-195,
1968.
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J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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11.1.2 HTRIDI Reduction by Unitary Transformations

Name

chtridi — Reduction and accumulation of transformations, single precision
zhtridi — Reduction and accumulation of transformations, double precision

Synopsis

#include <ceispack.h>

void chtridi (n, a, d, e, e2, tau)
int n;

fcomplex **a;

float *d, *e, *e2, *xx*xtau;

void zhtridi (n, a, d, e, e2, tau)
int n;

dcomplex **a;

double *d, *e, *e2, *xtau;

n — order of Hermitian input matrix/symmetric tridiagonal output matrix
a  — input Hermitian (lower triangle)/output transformation matrix
d — output vector of length n containing diagonal elements of output matrix
e — output vector of length n containing subdiagonal elements of output matrix
e2 — length n output array of squares of subdiagonal elements of output matrix
tau — output 2 x n diagonal transformation array

Description

Function htridi reduces a complex Hermitian matrix to a real symmetric tridiagonal form
by unitary similarity transformations.

The function performs a sequence of (n — 2) Householder reflections:
P, =1 —wu;/h, where h = ufu;/2

The sequence is applied to the input matrix row-wise, starting with the last row and
continuing from bottom to top:

A =PA_1Fiel,n—2]
Post-multiplications annihilates the elements in (n — i)™ row (rows are numbered starting
with 0 from top to bottom) to the left from the principal subdiagonal. Pre-multiplications
would annihilate (n — i)™ column (columns are numbered in similar manner) elements, but
they do not actually applied.
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The calculations proceed as follows. At first, the elements in (n — i)*™® row to the left from
the principal subdiagonal are scaled to avoid possible underflow that would result in
destroying the orthogonality of the transformation. The sum of squares S; of scaled
elements is taken as the square of the i*" subdiagonal element of the symmetric tridiagonal
form. A square root Sil/2 with the sign set opposite to a transformed subdiagonal element

of the original matrix a is taken then as the value of this subdiagonal element.

The last i*® reflection eliminates these elements in the (n — i)*™® row. The symmetric

elements in the corresponding column of the matrix would also be eliminated if the
pre-multiplication were applied.

The transformed subdiagonal element is then further transformed by diagonal unitary
similarity transformation to be exactly real. The diagonal transformations are accumulated
in the output array tau.

The information about Householder transformations used in the reduction process is stored
in the strict lower triangle and imaginary parts of diagonal elements of the original matrix
a.

Function htridi references only the strict lower triangle and real parts of diagonal elements
of the input matrix. The transformed diagonal and subdiagonal elements are stored in the
vectors d and e, therefore preserving the strict upper triangle and real parts of diagonal
elements of the matrix a.

On return from the function the output vectors d and e contain respectively the diagonal
and subdiagonal elements of resulted symmetric tridiagonal matrix. The subdiagonal
elements has been stored in the last (n — 1) locations of the vector e. The first entry of the
array has been set to 0.

The array e2 contains the squares of the corresponding subdiagonal elements of the
resultant symmetric tridiagonal matrix in its last (n — 1) locations. The entry e2[0] has
been set to 0.

Array tau contains the information about the diagonal transformations used in the
reduction process.

Performance

The reduction process is numerically stable since it is based on unitary transformations.
The resultant symmetric tridiagonal matrix is unitarily similar to a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of original matrix.
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Notes

Matrix a is in the format produced by the allocation functions csquare, trngl_cmatrix or
chermit. If the matrix is allocated by the function trngl_cmatrix the lower triangle must
be specified.

Arrays e and e2 may coincide if the squares are not required.

The rectangular 2 x n array taw is in the format produced by the allocation function
fmatrix.

Test

The test program is contained in cht.c file. The example matrices are contained in
hermitiO.xpd, hermitil.xpd files.

References

D. J. Mueller, Numerical Mathematics, Vol. 8, pp.72-92, 1968.

R. S. Martin, C. Reinsch, J. H. Wilkinson, Numerical Mathematics, Vol. 11, pp.181-195,
1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.
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11.2 Eigenvectors

11.2.1 HTRIB3 Eigenvectors of Original Matrix

Name

chtrib3 — Forms eigenvalues of Hermitian matrix, single precision
zhtrib3 — Forms eigenvalues of Hermitian matrix, double precision

Synopsis

#include <ceispack.h>

void chtrib3 (n, a, tau, m, zr, zi)
int n;

float **a, **xtau;

int m;

float **zr, **zi;

void zhtrib3 (n, a, tau, m, zr, zi)
int n;

double **a, **xtau;

int m;

double **zr, **zi;

n — order of input matrix, number of columns in eigenvector matrices

a — input unitary transformation matrix

tau — input 2 X n diagonal transformation array

m  — number of eigenvectors to be back transformed

zr  — input eigenvectors/output real parts of transformed eigenvector (row) matrix

VAl — output imaginary parts of transformed eigenvector (row) matrix
Description

Function htrib3 forms the eigenvectors of a complex Hermitian matrix by back
transforming the eigenvectors of the corresponding real symmetric tridiagonal matrix
determined by the function htrid3.

The function calculates the matrix product PDZ, where matrix P is the product of (n — 2)

Householder reflections and matrix D is unitary diagonal matrix, that were accumulated in
the reduction of a complex Hermitian matrix A to a symmetric tridiagonal form 7"

T = D*Q*AQD

by the function htrid3.
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The last entry of all the eigenvectors computed by the function htrib3 is rendered real.
Since the transformations used by the function htrib3 are unitary, the Euclidean norm of
the eigenvectors is kept unchanged.

The input matrix a contains information about the unitary transformations used in the
reduction by the function htrid3.

Input array tau contains the diagonal similarity transformations.

Input matrix zr contains in its first m rows the transposed (row) eigenvectors of reduced
real symmetric tridiagonal matrix to be back transformed.

On return from the function the matrix zr contains the real parts of the transformed
eigenvectors (those of the original Hermitian matrix) in its first m rows.

Matrix zi contains the imaginary parts of the transformed eigenvectors of the original
Hermitian matrix in its first m rows.
Performance

The computed eigenvectors are close to the exact eigenvectors of a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of original matrix.

Notes

Array a is in the format produced by the allocation functions fsquare.

The rectangular m X n matrices zr, z¢ are in the format produced by the allocation
function fmatrix. The number of rows in these arrays must not be less than m.

The rectangular 2 X n array tau is in the format produced by the allocation function
fmatrix.

Test
The test program is contained in ch3t.c file. The example matrices are contained in

hermit30.xpd, hermit31.xpd files.

References

D. J. Mueller, Numerical Mathematics, Vol. 8, pp.72-92, 1968.

R. S. Martin, C. Reinsch, J. H. Wilkinson, Numerical Mathematics, Vol. 11, pp.181-195,
1968.
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Algebra, Published by: Clarendon Press, Oxford, 1971.
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11.2.2 HTRIBK Eigenvectors of Original Matrix

Name

chtribk — Forms eigenvalues of Hermitian matrix, single precision
zhtribk — Forms eigenvalues of Hermitian matrix, double precision

Synopsis

#include <ceispack.h>

void chtribk (n, a, tau, m, zr, zi)
int n;

fcomplex **a;

float **tau;

int m;

float **zr, **zi;

void zhtribk (n, a, tau, m, zr, zi)
int n;

dcomplex *x*a;

double **tau;

int m;

double **zr, **zij;

n — order of input matrix, number of columns in eigenvector matrices

a — input unitary transformation matrix

tau — input 2 X n diagonal transformation array

m  — number of eigenvectors to be back transformed

zr — input eigenvectors/output real parts of transformed eigenvector (row) matrix

zi  — output imaginary parts of transformed eigenvector (row) matrix
Description

Function htribk computes the eigenvectors of a complex Hermitian matrix by back
transforming the eigenvectors of the corresponding real symmetric tridiagonal matrix
determined by the function htridi.

The function calculates the matrix product PDZ, where matrix P is the product of (n — 2)
Householder reflections and matrix D is unitary diagonal matrix, that were accumulated in
the reduction of a complex Hermitian matrix A to a symmetric tridiagonal form 7

T =D*Q"AQD
by the function htridi.

The last entry of all the eigenvectors computed by the function htribk is rendered real.
Since the transformations used by the function htribk are unitary, the Euclidean norm of
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the eigenvectors is kept unchanged.

The input matrix ¢ contains information about the unitary transformations used in the
reduction by the function htridi in its full lower triangle except for the real parts of
diagonal elements.

Input array tau contains the diagonal similarity transformations.

Input matrix zr contains in its first m rows the transposed (row) eigenvectors of reduced
real symmetric tridiagonal matrix to be back transformed.

On return from the function the matrix zr contains the real parts of the transformed
eigenvectors (those of the original Hermitian matrix) in its first m rows.

Matrix zi contains the imaginary parts of the transformed eigenvectors of the original
Hermitian matrix in its first m rows.

Performance

The computed eigenvectors are close to the exact eigenvectors of a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of original matrix.

Notes

Matrix a is in the format produced by the allocation functions csquare, trngl_cmatrix or
chermit. If the matrix is allocated by the function trngl_cmatrix the lower triangle must
be specified.

The rectangular m X n matrices zr, z¢ are in the format produced by the allocation
function fmatrix. The number of rows in these arrays must not be less than m.

The rectangular 2 X n array tau is in the format produced by the allocation function
fmatrix.

Test

The test program is contained in cht.c file. The example matrices are contained in

hermiti0O.xpd, hermitil.xpd files.

References

D. J. Mueller, Numerical Mathematics, Vol. 8, pp.72-92, 1968.

ECC_EISPACK 220 Copyright ©1993-2003 GDDI

+



11.2. EIGENVECTORS

R. S. Martin, C. Reinsch, J. H. Wilkinson, Numerical Mathematics, Vol. 11, pp.181-195,
1968.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. IT — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

+ Copyright (©1993-2003 GDDI 221 Reference manual —‘>



CHAPTER 11. HERMITIAN EIGENPROBLEM

+ ECC_EISPACK 222 Copyright ©1993-2003 GDDI +



+

Chapter 12

Matrix Decomposions

12.1 Matrix Equations

12.1.1 HQRDC Quasi-Triangular Decomposition

Name

shqrde — Quasi-triangular decomposition, real matrix, single precision

dhqrde — Quasi-triangular decomposition, real matrix, double precision

Synopsis

#include <ceispack.h>

void shqrdc (n, h, w, z, rv, ierr)
int n;

float **h, *xz;

fcomplex *w;

float *rv;

int *ierr;

void dhqrdc (n, h, w, z, rv, ierr)
int n;

double **h, *x*z;

dcomplex *w;

double *rv;

int *ierr;

n — order of input/output matrices

h — input upper Hessenberg/output quasi-triangular matrix
w  — length n output array containing eigenvalues

z

— input transformations (identity)/output orthogonal transformation matrix

rv  — temporary storage array of length n
ierr  — output variable address containing error completion code
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Diagnostics

On output the variable *ierr is set to zero for normal return. If the limit of MAXITER*n
iterations is exceeded while the i*" eigenvalue is being computed, the error flag *ierr is set
to (i + 1). Eigenvalues corresponding to indices k € [*ierr,n — 1] would be correct.

Description

Function hqrdc reduces the original matrix H in upper Hessenberg form to the upper
quasi-triangular matrix, such that its principal diagonal contains blocks of first and second
order only, using the QR algorithm:

Q'HQ =R,

where matrix @) is orthogonal, matrix R is upper quasi-triangular. The diagonal blocks of
first order are the real eigenvalues of the original matrix, while the diagonal blocks of
second order correspond to the pairs of complex conjugate eigenvalues of the original
matrix.

For more details on the ()R algorithm see the description of the functions hqr and hqr2.

If the decomposition of a Hessenberg matrix is required, the input matrix z must be set to
the identity matrix. The decomposition of a general matrix can also be obtained if the
general matrix has been reduced by orthogonal transformations to upper Hessenberg form
using the function orthes and the transformations have been accumulated in the matrix z
by the function ortran. The original general matrix should not be balanced. The input
parameters low, igh to the functions orthes and ortran should be set to 0 and (n — 1)
respectively.

On return from the function the orthogonal transformation matrix () is stored in the array
z, matrix R is stored in place of the input matrix in the array h.

The function hqrdc could be applied to find the solution of a matrix equation. Let matrices
A, B and C be real n X n, m x m and n X m matrices respectively and n x m matrix X is
to be found which satisfies the matrix equation:

AX+XB=C
If the matrix coefficients A” and B have been reduced to upper quasi-triangular form:
AT =UL"U" and B=VRVT,

the matrix equation can be rewritten in simpler form having lower L and upper R
quasi-triangular matrix coefficients:

LY +YR=F,
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where Y = UTXV and F = UTCV. The columns of the unknown matrix Y can be found
from the equation by the forward substitution method, and the solution matrix X can be
computed by the following formula:

X =Uuyv”t

The forward substitution process needs be modified to take into account the diagonal
blocks of order 2 in the quasi-triangular coefficients.
Performance

The QR algorithm converges in most the cases. Appropriate shifts of origin make
convergence very fast.

The computed eigenvalues are exact for a matrix which is a small perturbation of the
original matrix. The upper bound for the norm of the perturbation matrix is
commensurate to the relative machine precision times the norm of original matrix.

Notes

Matrices h and z are in the format produced by the allocation function fsquare.

Test

The test program is contained in hqrdct.c file. The example matrices are contained in
rmatrixl.xpd, rmatrix2.xpd, rmatrix3.xpd and rhessenl.xpd, rhessen2.xpd,
rhessen3.xpd, rhessen4.xpd, rhessenb5.xpd, rhessen6.xpd files.
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12.2 Singular Value Decomposition

12.2.1 Real Matrix SVD

Name

ssvd — Singular value decomposition, real matrix, single precision
dsvd — Singular value decomposition, real matrix, double precision

Synopsis

#include <ceispack.h>

void ssvd (m, n, a, s, e, matu, u, matv, v, ierr, rv)

int m, n;

float **a, *s, *e;
int matu;

float **u;

int matv;

float *x*v;

int *ierr;

float *rv;

void dsvd (m, n, a, s, e, matu, u, matv, v, ierr, rv)

int m, n;

double **a, *s, x*xe;
int matu;

double **u;

int matv;

double **v;

int *ierr;

double *rv;

m — number of rows in the input/output matrices a and u
n — number of columns in the input/output matrices a and u and order of array v
a — rectangular input matrix
S — length min(m + 1,n) output array containing min(m,n) singular values
e — temporary storage array of length n
matu — flag which causes computation of matrix u
u — rectangular output matrix containing n column left singular vectors
matv — flag which causes computation of matrix v
v — output square matrix containing n column right singular vectors
ierr — output variable address containing error completion code
rv — temporary storage array of length n
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Diagnostics
Function returns

e () for normal return.

e 1 if the k™ singular value has not been determined after MAXITER. iterations. Output
flag *index has been set to k. Singular values corresponding to indices
i € [k+1,n — 1] would be correct. The columns of arrays u and v, corresponding to
indices of correct singular values would be also correct.

Description

Function svd determines the singular value decomposition of real m x n matrix A:

A =UXVT where ¥ is diagonal

Y = diag(oy, 02, ..., 0,),

and its elements are the singular values of matrix A. The columns of matrices U and V
contain respectively left and right singular vectors.

The computations proceed as follows. At first, the original matrix is reduced to a
bidiagonal form by two sequences of Householder transformations:

J = PTAQ,

where P and @) are the products of Householder transformations. Bidiagonal matrix .J has
the same singular values as the original matrix A:

J=GXHT,

so that the left and right transformation matrices in the decomposition of matrix A can be
defined as follows:

U=PGandV = QH

The singular values of the matrix J can be found as positive square roots of the eigenvalues
of the product J*J.

At the next step the modified QR algorithm is applied to the bidiagonal form J in order to
diagonalize symmetric tridiagonal matrix J%.J.

This algorithm iterates a sequence of symmetric tridiagonal matrices which are
orthogonally similar to the original symmetric tridiagonal matrix J7.J. This sequence
converges to a diagonal matrix. A shift of origin generally improves the rate of convergence.
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The current symmetric tridiagonal matrix is verified before the next iteration for possible
splitting to submatrices. If the matrix splits, the subsequent iterations continue with the
lowermost submatrix. The tolerance in the test for splitting is commensurate to relative
machine precision.

The left and right hand transformations are accumulated in the arrays u and v if the input
parameters matu, matv are set to any non-zero value. When they are set to 0 only the
singular values are computed.

The value of the origin shift at the current iteration is defined as the eigenvalue of the
lowermost 2 x 2 principal minor. When the lowermost 1 x 1 minor splits from the rest of
the matrix, its eigenvalue is considered to be an eigenvalue of the original matrix J7.J. The
iterations proceed with the remaining submatrix until the matrix has completely split into
blocks of first order, or equivalently, when it has become a diagonal matrix.

On return from the function vector s contains in its first min(m,n) locations the singular
values of the input matrix. They are unordered. In a case n > m + 1 the extra (m + 1)
element is set to 0.

If specified by the input flag matu, matrix u contains column left singular vectors. It may
coincide with the input array a.

If specified by the input flag matv, matrix v contains column right singular vectors. The
matrix may coincide with the a matrix if m > n.

Performance

Appropriate shift of the origin makes the convergence of the algorithm global. The rate of
convergence is cubic in almost all the cases.

The computed singular values and singular vectors are exact for a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of original matrix.

Notes

Matrices a, u are in the format produced by the allocation function fmatrix. Matrix v is
expected to be in the format produced by the allocation function fsquare.
Matrix a is modified by the function ssvd.

Test

The test program is contained in svdt.c file, the example matrices are contained in
rsvdl.xpd, rsvd2.xpd files.
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12.2.2 Complex Matrix SVD

Name

csvd — Singular value decomposition, complex matrix, single precision
zsvd — Singular value decomposition, complex matrix, double precision

Synopsis

#include <ceispack.h>

void csvd (m, n, a, s, e, matu, u, matv, v, ierr, cv)
int m, n;

fcomplex **xa, *s, *e;

int matu;

fcomplex *x*u;

int matv;

fcomplex *x*v;

int *ierr;

fcomplex *cv;

void zsvd (m, n, a, s, e, matu, u, matv, v, ierr, cv)
int m, n;

dcomplex **a, *s, *e;

int matu;

dcomplex *x*u;

int matv;

dcomplex *x*v;

int *ierr;

dcomplex *cCv;

m — number of rows in input/output matrices a and u

n — number of columns in input/output matrices a and u and order of matrix v
a — rectangular input matrix

S — length min(m + 1,n) output array containing min(m,n) singular values

e — temporary storage array of length n

matu — flag which causes computation of matrix u
u — rectangular output matrix containing n column left singular vectors
matv — flag which causes computation of matrix v
A — square output matrix containing n column right singular vectors
ierr  — output variable address containing error completion code
cv — temporary storage array of length n

Diagnostics

Function returns

e ( for normal return.
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e 1 if the k™ singular value has not been determined after MAXITER. iterations. Output
flag *index has been set to k. Singular values corresponding to indices
i € [k+1,n — 1] would be correct. The columns of arrays u and v, corresponding to
indices of correct singular values would be correct.

Description

Function csvd determines the singular value decomposition of complex m x n matrix A:

A = UXV™ where X is diagonal

Y = diag(oy, 09, ..., 0,),

and its elements are the singular values of matrix A. Matrix V* is the Hermitian conjugate
of the matrix V. Columns of matrices U and V' contain respectively left and right singular
vectors.

The computations proceed as follows. At first, the original matrix is reduced to a
bidiagonal form by two sequences of unitary Householder transformations:

J = P*AQ,

where P and () are the products of Householder transformations. Bidiagonal matrix J has
the same singular values as the original matrix A:

J=GXHT,

so that the left and right transformation matrices in the decomposition of matrix A can be
defined as follows:

U=PGand V =QH

The singular values of the matrix J can be found as positive square roots of the eigenvalues
of the product J*J.

Finally the diagonal and bidiagonal locations of the bidiagonal matrix J are rendered real
by two diagonal transformations.

At the next step the modified QR algorithm is applied to the real bidiagonal form J in
order to diagonalize symmetric tridiagonal matrix J7'J.

This algorithm iterates a sequence of symmetric tridiagonal matrices which are
orthogonally similar to the original symmetric tridiagonal matrix J%J. This sequence
converges to a diagonal matrix. A shift of origin generally improves the rate of convergence.
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The current symmetric tridiagonal matrix is verified before the next iteration for possible
splitting to submatrices. If the matrix splits, the subsequent iterations continue with the
lowermost submatrix. The tolerance in the test for splitting is commensurate to relative
machine precision.

The left and right hand transformations are accumulated in the arrays u and v if the input
parameters matu, matv are set to any non-zero value. When they are set to 0 only the
singular values are computed.

The value of the origin shift at the current iteration is defined as the eigenvalue of the
lowermost 2 x 2 principal minor. When the lowermost 1 x 1 minor splits from the rest of
the matrix, its eigenvalue is considered to be an eigenvalue of the original matrix J¥.J. The
iterations proceed with the remaining submatrix until the matrix has completely split into
blocks of first order, or equivalently, when it has become a diagonal matrix.

On return from the function vector s contains min(m, n) singular values. They are
unordered and stored in real parts of corresponding entries. Their correponding immaginary
parets are set to zero. In a case n > m + 1 the extra (m + 1)™ element is set to 0.

If specified by the input flag matu, matrix u contains column left singular vectors. It may
coincide with the input array a.

If specified by the input flag matv, matrix v contains column right singular vectors. The
matrix may coincide with the a matrix if m > n.
Performance

Appropriate shift of the origin makes the convergence of the algorithm global. The rate of
convergence is cubic in almost all the cases.

The computed singular values and singular vectors are exact for a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of original matrix.

Notes

Matrices a, u are in the format produced by the allocation function cmatrix. Matrix v is
in the format produced by the allocation function csquare.

Matrix a is modified by the function csvd.

Test

The test program is contained in csvdt.c file. The example matrices are contained in
csvdl.xpd, csvd2.xpd files.
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12.2.3 MINFIT Linear Least Square Problem Solution

Name

sminfit — Linear least squares problem solution of minimal norm, single precision
dminfit — Linear least squares problem solution of minimal norm, double precision
Synopsis

#include <ceispack.h>
void sminfit (m, n, a, s, e, ip, b, ierr, rv)

int m, n;

float **a, *s, *e;
int ip;

float **b, *rv;
int *ierr;

void dminfit (m, n, a, s, e, ip, b, ierr, rv)

int m, n;

double **a, *s, x*xe;

int ip;

double *x*b, *rv;

int *ierr;
m  — number of rows in input matrices a and b
n — number of columns in matrix a¢ and row dimension of a if n > m
a — rectangular input matrix/output matrix of right singular vectors
s — output array containing n singular values
e — temporary storage array of length n
ip  — number of columns in input matrix b
b — input column constant vectors matrix/output matrix product U? B
ierr  — output variable address containing error completion code
rv  — temporary storage array of length n

Diagnostics

Function returns
e () for normal return.

e 1 if the £*® singular value has not been determined after MAXITER iterations. Output
flag *index has been set to k. Singular values corresponding to indices
i € [k+1,n — 1] would be correct. The columns of V' corresponding to indices of
correct singular values and the rows of UB? corresponding to this indices would also
be correct.
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Description
Function minfit computes the singular value decomposition:
A=UxV"

of a real m x n matrix A, forming the product C = U? B instead of the matrix U to
determine further the minimal norm solution of the linear system:

AX = B,

where B is the matrix of constant column right-hand vectors. The matrix of right-hand
transformations is accumulated in place of the input matrix A. The matrix of left-hand
transformations is accumulated as the product U B in place of the input constant matrix.

On return from the function the matrix a has been overwritten by the orthogonal n x n
matrix of right-hand transformations in the decomposition. The vector w contains the
singular values. They are unordered. The input matrix b has been overwritten by the
matrix product U B.

For more details on the algorithm for singular value decomposition see the description of
the svd function.

The function minfit can be applied to find a minimal norm solution of a linear least square
problem. Vector x is the least squares solution of the system:

Ax =10
if it minimizes the Euclidean norm of the residual vector
||b — Az||, = min

When the coefficient matrix A of the linear system is not of full rank then the system does
not have a unique least square solution. To obtain a unique solution x is usuallly chosen
from all « as the one which has the minimal Euclidean norm

[, = min

Defining the threshold 6 as described in the next section Application of SVD and
MINFIT functions and applying the singular value decomposition of the coefficient
matrix A the minimal norm least square solution can be computed as:

z=VEU"D
where the diagonal matrix X is defined having its entries:

i L when o; > 6
ol = i .
¢ 0 otherwise
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The value of the threshold # affects the solution of the system. If it is increased in such a
way that some of the singular values become negligible then the norm of residual vector
||b — Az|| would increase and the norm of solution vector ||z|| would decrease.

The minfit function allows a user to solve simultaneous linear systems with p right-hand
side vectors. They should be stored in the first ip columns of input matrix b.
Performance

Appropriate shift of the origin makes the convergence of the algorithm global. The rate of
convergence is cubic in almost all the cases.

The computed singular values and singular vectors are exact for a matrix which is a small
perturbation of the original matrix. The upper bound for the norm of the perturbation
matrix is commensurate to the relative machine precision times the norm of original matrix.

Notes

Matrices a and b are in the format produced by the allocation function fmatrix.

In a case when the original matrix has its number of columns n greater than its row
dimension m, than the matrix must be allocated as square matrix of order n by the
allocation function fsquare. It is required for the correct accumulation of the
transformation matrix V', which is stored in place of the input matrix A.

The input parameter ip can be zero. In such a case the matrix b is not referenced.

Test
The test program is contained in minfitt.c file. The example matrices are contained in

minfitl.xpd, minfit2.xpd files.

References

G. Golub, C. Reinsch, Numerical Mathematics, Vol. 14, pp.403-420, 1970.

J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, vol. II — Linear
Algebra, Published by: Clarendon Press, Oxford, 1971.

B. S. Garbow, et. all, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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12.2.4 Application of SVD and MINFIT functions

Rank Estimation

The function ssvd can be applied for determining the numerical or effective rank r of a
rectangular matrix. Suppose that matrix A is m x n matrix and m > n. Then the matrix
is called full column rank if its singular values all satisfy the inequalities:

o; > 0, where i € [0,n — 1]

If only some of them are greater than the threshold # then the effective rank r of the
matrix can be obtained from the following inequalities:

o; >0 where i € [0, — 1]
0; <6 wherei€ [r,n—1]

The value of the threshold 6 is usually close to zero and commensurate to the error level

within the matrix elements are known. There are two situations appear choosing the
threshold.

The first one is when the entries of input matrix are known to be experimental data, so
that the matrix can be written as the sum of two matrices:

A+ A,

where A is unknown exact matrix, the matrix 0 A is a perturbation matrix. The value of
threshold 6 can be defined as the [; norm of the perturbation matrix:

0> [[0All, = I{}%X(Mij)

The second situation is when the error level of the entries is determined only by the
roundoff errors. In such a case the appropriate value for # would be:

0 > /mn e max o;,
(3
where ¢ is the relative machine precision.

The Pseudo-Inverse of a Rectangular Matrix

Another application for the ssvd function is determination of the pseudo-inverse of an
input m X n matrix. An n X m matrix Y is called the pseudo-inverse of A if it has the
following properties:

1. (AY)T = AY and (YA)T =YA
2. YAY =Y and AYA=A
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3. |(AY A — A)|| <
4 YlI< 3

The norms used above are Euclidean matrix norms. Denote the pseudo-inverse matrix as
A" and apply the singular value decomposition of A, then the matrix A" can be obtained
from the following formula:

At =vxiy”,

where the diagonal matrix X' is defined to have its entries as follows:

o, =4 %

t L when o; > 0
! 0 otherwise

If the threshold 6 is chosen to be smaller than all the non-zero singular values of matrix A
then matrix A" is called Moore-Penrose inverse. If matrix A is constrained to be square
and non-singular then the pseudo-inverse matrix coincides with the inverse A=! of the
original matrix.

Homogeneous Linear Equations

If matrix A is of rank r < n, then the non-trivial solution of the homogeneous linear system:
Az; =0, where i € [r,n — 1]

can be found as the columns of right-hand singular vector matrix V' in the singular value
decomposition of the matrix A, that correspond to the singular values of A which are
smaller then the threshold . It follows from the equation:

A‘/;, - UiUia

and when o; < 6 then the norm ||AV;]| < #. A linear combination of such a vectors with the
coefficients constrained to have the sum of squares 3" a? < 1 would also be a solution of the
homogeneous linear system within the chosen threshold .

Both the functions minfit and ssvd could be applied to find the solution of a
homogeneous linear system. Using the ssvd function it is not required to accumulate
matrix U of left-hand singular vectors and using the minfit function one should pass the
input parameter ¢p which has been set to zero to the function.
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Chapter 13

Performance

13.1 Accuracy Performance Indexes

13.1.1 Real Generalized Eigenproblem

Name

spignr — Estimates accuracy performance index, single precision
dpignr — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float spignr (n, a, b, alfa, beta, z, s, rv, cv)
int n;

float *x*a, *x*xb, **z;

fcomplex *alfa;

float x*beta;

float *s, *rv;

fcomplex *cv;

double dpignr (n, a, b, alfa, beta, z, s, rv, cv)
int n;

double *x*a, *xx*xb, *x*z;

dcomplex *alfa;

double *beta;

double *g, *rv;

dcomplex *cCv;
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n — order of input matrices
a — first input matrix
b — second input matrix
alfa — length n input array containing n numerators of eigenvalues
beta — length n input array containing n denominators of eigenvalues
zZ — square input array containing n transposed (row) eigenvectors
S — temporary storage/output performance indices array of length n
rv — temporary storage array of length n
cv — temporary storage array of length n
Description

Function pignr computes an accuracy performance index to verify that the generalized
eigenproblem solution contains accurate/reliable data. The index is computed by the
following formula:

4= max ( ||,8lAZl—CYZBZl||2 >
icon-11\10ne (|8l [|All, + les |1 Bl,) [lill,/)

where ¢ is the relative machine precision, || - || denotes Frobenius norm. The performance
index is returned as the function value and is to be interpreted as follows:

e 0 < < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.

Notes

Arrays a, b and z are in the format produced by the allocation function fsquare.

The eigenvectors should be stored in the matrix 2z in the manner specified by the function
qzvec.

On return from the function vector s contains the array of estimated performance indices
for each eigenpair.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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13.1.2 Real General Eigenproblem

Name

spistd — Estimates accuracy performance index, single precision
dpistd — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float spistd (n, m, a, w, z, s, rv, cv, zv)
int n, m;

float *x*a, *x*xz;

fcomplex *w;

float *s, *rv;

fcomplex *cv, *zv;

double dpistd (n, m, a, w, z, s, rv, cv, zv)
int n, m;

double *x*a, *x*z;

dcomplex *w;

double *g, *rv;

dcomplex *cv, *zv;

n  — order of input matrix, number of rows in eigenvector matrix
m — number of eigenvalues and eigenvectors, number of columns in eigenvector matrix
a  — input general/upper Hessenberg matrix

w — input array containing m eigenvalues

z  — input matrix containing m column eigenvectors

s — temporary storage/output performance indices array of length n

rv — temporary storage array of length n

cv  — temporary storage array of length n

zv  — temporary storage array of length n
Description

Function pistd computes an accuracy performance index to verify thata real general (with
a full or upper Hessenberg matrix) eigenproblem solution contains accurate/reliable data.
The index is computed by the following formula:

L= max ( Az — Nizill, )
ielo,m-11 \10ne [|A|l, ||z, /)

where ¢ is the relative machine precision, || - || denotes Frobenius norm. The performance
index is returned as the function value and is to be interpreted as follows:
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e 0 < p < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.

Notes

Array a is in the format produced by the allocation function fsquare. Array zis in the
format produced by the allocation function fmatrix.

The eigenvectors should be stored in the m columns of the array z in a manner similiar to
that of the functions hqr2 or invit.

On return from the function vector s contains the array of estimated performance indices
for each eigenpair.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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13.1.3 Symmetric Generalized Eigenproblem

Name

spigsm — Estimates accuracy performance index, single precision
dpigsm — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float spigsm (n, a, b, w, z, s, rv)
int n;

float *x*a, **xb, *w, **xz;

float *s, *rv;

double dpigsm (n, a, b, w, z, s, rv)
int n;

double *x*a, **xb, *w, **z;

double *s, *rv;

n — order of input matrices
a — symmetric input matrix
b — symmetric positive definite input matrix
w — length n input array containing n eigenvalues
z  — square input array containing n transposed (row) eigenvectors
s — temporary storage/output performance indices array of length n
rv — temporary storage array of length n
Description

Function pigsm computes an accuracy performance index to verify that a symmetric
generalized eigenproblem solution contains accurate/reliable data. The eigenproblem is
defined as:

Az = \Buz,

where matrix A is symmetric, matrix B is symmetric and positive definite. The index is
computed by the following formula:

M=  max ;
iclon-11\10ne ([|All, +[[Bll,) [zl

where ¢ is the relative machine precision, || - || denotes Frobenius norm. The performance
index is returned as the function value and is to be interpreted as follows:

e 0 < < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.
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Notes

Arrays a, b and z are expected to be in the format produced by the allocation function
fsquare.

Having returned from the function vector s contains the array of estimated performance
indices for each eigenpair.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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Name

spisab — Estimates accuracy performance index, single precision
dpisab — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float spisab (n, a, b, w, z, mcase, fml, s, rv)
int n, mcase;

float **a, *xb, *w, *xz;

float **xfml, *s, *rv;

double dpisab (n, a, b, w, z, mcase, fml, s, rv)
int n, mcase;

double **a, **xb, *w, **xz;

double **fml, *s, *rv;

n — order of input matrices
a — symmetric input matrix
b — symmetric positive definite input matrix
w — length n input array containing n eigenvalues
z — input square array containing n transposed (row) eigenvectors
mcase — input flag which specifies ordering of matrices in the eigensystem equation
fm1 — temporary storage array of order n
S — temporary storage/output performance indices array of length n
rv — temporary storage array of length n
Description

Function pisab computes an accuracy performance index to verify that the symmetric
generalized eigenproblem solution contains accurate/reliable data. The eigenproblem is
defined as either:

ABzx = Az,
or
BAx = Az,

where matrix A is symmetric, matrix B is symmetric and positive definite. The index is
computed by the following formula:

)= max < chl — )\iziHZ )
iclon-11 \10me (||All, + | Blly) lilly)

where matrix C' is either C' = AB or C' = BA, ¢ is the relative machine precision. The
performance index is returned as the function value and is to be interpreted as follows:
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e 0 < p < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.

Notes

The ordering of the matrices in the eigensystem equation is defined by the input flag
mcase. There are two possible cases exists:

e mcase is set to 0. Then the product AB is used in the equation for the computation
of the performance index.

e mcase is set to any non-zero value. Then the product BA is used.

Arrays a, b and z are in the format produced by the allocation function fsquare.

On return from the function vector s contains the array of estimated performance indices
for each eigenpair.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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13.1.4 Symmetric Eigenproblem

Name

spisym — Estimates accuracy performance index, single precision
dpisym — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float spisym (n, m, a, w, z, s, IVv)
int n, m;

float **a, *w, **z;

float *s, *rv;

double dpisym (n, m, a, w, z, s, rv)
int n, m;

double **a, *w, **z;

double *g, *rv;

n — order of input matrix, number of columns in eigenvector matrix
m — number of eigenvalues and eigenvectors, number of rows in eigenvector matrix
a — symmetric input matrix
w — input array containing m eigenvalues
z  — input matrix containing m transposed (row) eigenvectors
s — temporary storage/output performance indices array of length n
rv — temporary storage array of length n
Description

Function pisym computes an accuracy performance index to verify that the symmetric
eigenproblem solution contains accurate/reliable data. The index is computed by the
following formula:

= max ( HAzi_)\izi“Z )
ilom—1) \ 10ne ||A|l, |z, )

where ¢ is the relative machine precision, || - || denotes Frobenius norm. The performance
index is returned as the function value and is to be interpreted as follows:

e 0 < < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.
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Notes

Array a is expected to be in the format produced by the allocation functions fsym or
trngl fmatrix. If the first function is being used, the lower triangle must be specified.

Array zis in the format produced by the allocation function fmatrix.

On return from the function vector s contains the array of estimated performance indices
for each eigenpair.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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13.1.5 Symmetric Band Eigenproblem

Name

spibds — Estimates accuracy performance index, single precision
dpibds — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float spibds (n, mb, a, w, m, z, s, rv)
int n, mb, m;

float **a, *w, **z;

float *s, *rv;

double dpibds (n, mb, a, w, m, z, s, rv)
int n, mb, m;

double **a, *w, **z;

double *g, *rv;

n — order of input matrix
mb — number of subdiagonals in input matrix
a — band symmetric input matrix
w  — input array containing m eigenvalues
m  — number of eigenvalues and eigenvectors
z  — input matrix containing m transposed (row) eigenvectors
s — temporary storage/output performance indices array of length n
rv  — temporary storage array of length n
Description

Function pibds computes an accuracy performance index to verify that the band symmetric
eigenproblem solution contains accurate/reliable data. The index is computed by the
following formula:

L= max ( Az — Nizill, )
ielo,m-11 \ 10ne [|A||, ||zll, )’

where ¢ is the relative machine precision, || - || denotes Frobenius norm. The performance
index is returned as the function value and is to be interpreted as follows:

e 0 < < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.
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Notes

Array tis expected to be in the format produced by the allocation functions
trngl band _fmatrix or fsymband. If the first function is being used, the lower part of
band must be specified.

Array zis in the format produced by the allocation function fmatrix.

On return from the function vector s contains the array of estimated performance indices
for each eigenpair.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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13.1.6 Real Special Tridiagonal Eigenproblem

Name

spitrd — Estimates accuracy performance index, single precision
dpitrd — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float spitrd (n, m, a, w, z, s, rv)
int n, m;

float **a, *w, **z;

float *s, *rv;

double dpitrd (n, m, a, w, z, s, rv)
int n, m;

double **a, *w, **z;

double *s, *rv;

n — order of input matrix, number of columns in eigenvector matrix
m — number of eigenvalues and eigenvectors, number of rows in eigenvector matrix
a — tridiagonal input matrix
w — input array containing m eigenvalues
z — input matrix containing m transposed (row) eigenvectors
s — temporary storage/output performance indices array of length n
rv — temporary storage array of length n
Description

Function pitrd computes an accuracy performance index to verify that the special
tridiagonal eigenproblem solution contains accurate/reliable data. The index is computed

by the following formula:
J— max ( [ Az — Aizill, )
ielo,m-1 \10ne [|A|l, ||z, )’

where ¢ is the relative machine precision, || - || denotes Frobenius norm. The performance
index is returned as the function value and is to be interpreted as follows:

e 0 < < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < u < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.
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Notes
Array a is in the format produced by the allocation functions band fmatrix, fband or
f3diag.

Array zis in the format produced by the allocation function fmatrix.

On return from the function vector s contains the array of estimated performance indices
for each eigenpair.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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13.1.7 Symmetric Tridiagonal Eigenproblem

Name

spi3ds — Estimates accuracy performance index, single precision
dpi3ds — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float spi3ds (n, m, d, e, w, z, s, Irv)
int n, m;

float *d, *e, *w, **z;

float *s, *rv;

double dpi3ds (n, m, d, e, w, z, s, rvVv)
int n, m;

double *d, *e, *w, **z;

double *g, *rv;

— order of symmetric tridiagonal input matrix

— number of eigenvalues and eigenvectors

— input vector of length n containing diagonal elements of input matrix

— input vector of length n containing subdiagonal elements of input matrix
— input array containing m eigenvalues

— input matrix containing m transposed (row) eigenvectors

— temporary storage array of length n

rv — temporary storage array of length n

“uN g @ a8 B

Description

Function pi3ds computes an accuracy performance index to verify that the symmetric
tridiagonal eigenproblem solution contains accurate/reliable data. The index is computed

by the following formula:
B ( 172 — Nizil|, )
[0 = max ,
iclo,m=1] \ 10 e ||T]|, || 2l

where ¢ is the relative machine precision, ||T||; denotes Frobenius norm of the input matrix.
The performance index is returned as the function value and is to be interpreted as follows:

e 0 < < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.
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The input vectors d and e contain diagonal and subdiagonal elements of the original
matrix. The subdiagonal elements should be stored in the last (n — 1) locations of the
vector e. The first entry of the array is arbitrary.

Notes

The rectangular m x n array zis in the format produced by the allocation function
fmatrix.

References

B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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13.1.8 Complex General Eigenproblem

Name

scpisd — Estimates accuracy performance index, single precision
dzpisd — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float scpisd (n, m, a, w, z, s, cv)
int n, m;

fcomplex **xa, *w, **z;

float x*s;

fcomplex *cv;

double dzpisd (n, m, a, w, z, s, CV)
int n, m;

dcomplex **xa, *w, **z;

double *s;

dcomplex *cCv;

n  — order of input matrix, number of rows in eigenvector matrix
m — number of eigenvalues and eigenvectors, number of columns in eigenvector matrix
a  — input general/upper Hessenberg matrix
w — input array containing m eigenvalues
z  — input matrix containing m column eigenvectors
s — temporary storage/output performance indices array of length n
cv  — temporary storage array of length n
Description

Function cpisd computes an accuracy performance index to verify that the complex general
(with a full or upper Hessenberg matrix) eigenproblem solution contains accurate/reliable
data. The index is computed by the following formula:

L= max ( Az — Nizill, )
ielo,m-11 \ 10ne [|A|l, ||zll, )’

where ¢ is the relative machine precision, || - || denotes Frobenius norm. The performance
index is returned as the function value and is to be interpreted as follows:

e 0 < < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < pu < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.
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Notes

Array a is in the format produced by the allocation function csquare. Array zis in the
format produced by the allocation function cmatrix.

On return from the function vector s contains the array of estimated performance indices
for each eigenpair.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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13.1.9 Hermitian Eigenproblem

Name

scpihm — Estimates accuracy performance index, single precision
dzpihm — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float scpihm (n, m, a, w, zr, zi, s, cv)
int n, m;

fcomplex **a;

float *w, **zr, **zi;

float x*s;

fcomplex *cv;

double dzpihm (n, m, a, w, zr, zi, s, cv)
int n, m;

dcomplex **a;

double *w, **zr, *%*zi;

double *s;

dcomplex *cv;

n  — order of input matrix
m — number of eigenvalues and eigenvectors
a — Hermitian input matrix
w — input array containing m eigenvalues
zr  — input matrix containing real parts of m transposed (row) eigenvectors
zi — input matrix containing imaginary parts of m transposed (row) eigenvectors
s — temporary storage/output performance indices array of length n
cv  — temporary storage array of length n
Description

Function cpihm computes an accuracy performance index to verify that the Hermitian
eigenproblem solution contains accurate/reliable data. The index is computed by the
following formula:

(= max ( Az = dizill, )
ielo,m-1] \ 10ne [|A|l, ||zll, )’

where ¢ is the relative machine precision, || - || denotes Frobenius norm. The performance
index is returned as the function value and is to be interpreted as follows:

e 0 < < 1 implies that the expected accuracy has been achieved within set tolerance.
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e 1 < < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.

Notes

Array a is in the format produced by the allocation functions trngl_cmatrix, chermit or
csquare. If the first function is being used, the lower array must be specified.

The m-row, n-columns arrays zr, zi are in the format produced by the allocation function
fmatrix.

On return from the function vector s contains the array of estimated performance indices
for each eigenpair.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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13.1.10 Real SVD

Name

spisvd — Estimates accuracy performance index, single precision
dpisvd — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float spisvd (m, n, a, s, u, v, rvl, rv2)
int m, n;

float *x*a, **xu, **v;

float x*s;

float *rvl, *rv2;

double dpisvd (m, n, a, s, u, v, rvl, rv2)
int m, n;

double **a, *x*u, **v;

double *s;

double *rvl, *rv2;

m  — number of rows in matrices ¢ and u
n — number of columns in matrices a and u, order of matrix v

a — rectangular input matrix

S — input array containing min(m,n) singular values

u — rectangular input matrix containing n column left singular vectors
A\ — square input matrix containing n column right singular vectors

rvl — temporary storage/output performance indices array of length n
rv2 — temporary storage array of length n
Description

Function pisvd computes an accuracy performance index to verify that the real singular
value decomposition:

A=Uxv7T

of the input matrix A is performed reliable/accurate. The index is computed by the
following formula:

B | Av; — oyug||, + HATui — oivi|,
"7 selon™n \ 10 max(m, n) e [All, (Tuill, + loilly) |

where ¢ is the relative machine precision, ||A||2 denotes matrix spectral norm, i. e. the
maximum singular value of the matrix, o; are the singular values of matrix A.

The performance index is returned as the function value and is to be interpreted as follows:
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e 0 < p < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.

Notes

Arrays a, u are in the format produced by the allocation function fmatrix. Array v is in
the format produced by the allocation function fsquare.

For more details on the allocation see the description of function svd.

On return from the function vector rvl contains the array of estimated performance indices
for each singular triplet.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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13.1.11 Complex SVD

Name

scpisv — Estimates accuracy performance index, single precision
dzpisv — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float scpisv (m, n, a, s, u, v, sv, Cv)
int m, n;

fcomplex *xa, **u, **v;

fcomplex *s, *cv;

float *sv;

double dzpisv (m, n, a, s, u, v, Sv, cv)
int m, n;

dcomplex **xa, **u, **v;

dcomplex *s, *Cv;

double *sv;

m — number of rows in matrices ¢ and u

n  — number of columns in matrices a and u, order of matrix v

a  — rectangular input matrix

s — input array containing min(m,n) singular values

u — rectangular input matrix containing n column left singular vectors
Vv — square input matrix containing n column right singular vectors

sv — temporary storage/output performance indices array of length n
cv — temporary storage array of length n
Description

Function cpisv computes the accuracy performance index to verify that the real singular
value decomposition:

A=UXV"

of the input matrix A is performed reliable/accurate. The index is computed by the
following formula:

_ ( | Av; — oyuil], + || A*u; — ovil], )
@ = max :
iefo,n—1) \ 10 max(m,n) e [|All, (||usll, + [|vill,)

where A* is the Hermitian conjugate of matrix A, ¢ is the relative machine precision, || Al
denotes matrix spectral norm, i. e. the maximum singular value of the matrix, o; are the
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singular values of matrix A.

The performance index is returned as the function value and is to be interpreted as follows:

e 0 < < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < u < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.

Notes

Arrays a, u are in the format produced by the allocation function cmatrix. Array v is in
the format produced by the allocation function csquare.

For more details on the allocation see the description of function csvd.

On return from the function vector sv contains the array of estimated performance indices
for each singular triplet.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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13.1.12 Linear Least Squares Problem

Name

spilsq — Estimates accuracy performance index, single precision
dpilsq — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float spilsq (n, a, w, v, rv)
int n;

float **a, *w, **v;

float *rv;

double dpilsq (n, a, w, v, rv)
int n;

double **a, *w, **v;

double *rv;

n — number of columns in input matrix and order of array v
a — rectangular input matrix

w — input array containing n singular values

v — input matrix containing n column right singular vectors
rv — temporary storage array of length n

Description

Function pistd computes the performance index to verify the accuracy of the function
minfit which solves homogeneous system of linear equations:

Axr =0
The solution of the system are the right singular vectors of matrix A, which are
corresponds to the zero singular vectors of matrix A. For more details see the description

of the function minfit.

The index is computed by the following formula:

4= max <—||sz~||2 )
i€{j: 0j=0} ”5||A||2||Ui||2 ’

where ¢ is the relative machine precision, ||Al|; denotes matrix spectral norm, i. e. the
maximum singular value of the matrix, o; are the singular values of matrix A.

The performance index is returned as the function value and is to be interpreted as follows:
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e 0 < p < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.

Notes

Array a is in the format produced by the allocation function fmatrix.
Array v is in the format produced by the allocation function fsquare.

For more details on the allocation see the description of function minfit.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines - EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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13.1.13 Band Linear Systems

Name

spibnd — Estimates accuracy performance index, single precision
dpibnd — Estimates accuracy performance index, double precision

Synopsis

#include <ceispack.h>

float spibnd (n, mb, a, e21, w, m, x, b, s, rv)
int n, mb, m;

float e21;

float **a, *w, **x, *xb;

float *s, *rv;

double dpibnd (n, mb, a, e21, w, m, x, b, s, V)
int n, mb, m;

double e21;

double **a, *w, **x, *xb;

double *g, *rv;

n — order of input matrix
mb — number of sub/super diagonals in input matrix
a — input symmetric/non-symmetric band matrix
e21 — input flag which specifies whether input matrix is symmetric or not
w  — input array containing m constant values
m  — number of right-hand side vectors
X  — input matrix containing m transposed (row) solution vectors
b — input matrix containing m transposed (row) right-hand vectors
S — temporary storage/output performance indices array of length n
rv  — temporary storage array of length n
Description

Function pibnd computes an accuracy performance index to verify that the band
symmetric/non-symmetric linear system solution contains accurate/reliable data. The
simultaneous linear system is defined as:

(A-X)X =B
Where A;, i € [0,m — 1] are the constant values.

The index is computed by the following formula:

f= max <||(A — wil)xi — bi||2>

iclo,m—1] \ ne||A — wil||, [|bill,
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where ¢ is the relative machine precision, || - || denotes Frobenius norm. The performance
index is returned as the function value and is to be interpreted as follows:

e 0 < < 1 implies that the expected accuracy has been achieved within set tolerance.
e 1 < < 100 suggests that one should be careful about the results.

e ;> 100 data is unreliable and should not be used.

Notes

Array a is in the format produced either by the allocation functions trngl _band fmatrix
or fsymband if the input matrix is symmetric. If the first function has been used, the lower
matrix must be specified. If the original matrix is not symmetric then the band _fmatrix or
fband functions should be used.

The input parameter e21 specifies whether the input matrix symmetric or not. It should be
set to 1 if matrix is symmetric or to —1 if not. Note that non-symmetric matrix should
have an equal number of sub/super diagonals.

Arrays z and b are in the format produced by the allocation function fmatrix.

The constant values \;, i € [0, m — 1] are stored in the array w.

On return from the function vector s contains the array of estimated performance indices
for each solution vector.

References
B. T. Smith, et. all, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in
Computer Science, vol. 6, Published by: Springer-Verlag, New York, 1976.

B. S. Garbow, et. all, Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture
Notes in Computer Science, vol. 51, Published by: Springer-Verlag, New York, 1977.
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Basic Vector Functions

14.1 Real Vector Operations

14.1.1 Fill a Vector with a Constant

Name

sfill — Fill a vector with a scalar, single precision
dfill — Fill a vector with a scalar, double precision

Synopsis

#include <ceispack.h>

void sfill (n, sa, sx, incx)
int n;

float sa;

float *sx;

int incx;

void dfill (n, sa, sx, incx)

int n;
double sa;
double *s8x;
int incx;
n — number of elements in output vector
sa — constant value
SX — output vector
incx — index increment in output vector
Diagnostics
None.
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Description

This function fills elements of the output vector with the constant:
xr; =a, wherei€ [0,n—1]

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 1 floating point store operation per output vector element.
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14.1.2 Copy a Vector to a Vector

Name

scopy — Copy elements of a vector to another vector, single precision
dcopy — Copy elements of a vector to another vector, double precision

Synopsis

#include <ceispack.h>

void scopy (n, sx, incx, sy, incy)
int n;

float *sx;

int incx;

float *sy;

int incy;

void dcopy (n, sx, incx, sy, incy)

int n;
double *s8x;
int incx;
double *sy;
int incy;
n — number of elements in the input and output vectors
sX — input vector
incx — index increment of input vector
Sy — output vector
incy — index increment of output vector
Diagnostics
None.
Description

This function copies elements of the input vector sx to the output vector sy:
yi = x;, where i € [0,n — 1]

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 1 floating point load/store operation per vector element.
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14.1.3 Interchange Elements of Two Vectors

Name

sswap — Interchange elements of two vectors, single precision
dswap — Interchange elements of two vectors, double precision

Synopsis

#include <ceispack.h>

void sswap (n, sx, incx, sy, incy)
int n;

float *sx;

int incx;

float *sy;

int incy;

void dswap (n, sx, incx, sy, incy)

int n;
double *s8x;
int incx;
double *sy;
int incy;
n — number of elements in the input/output vectors
SX — first input/output vector
incx — index increment of first vector
Sy — second input/output vector
incy — index increment of second vector
Diagnostics
None.
Description

This function interchanges the elements of two vectors:
x; <> y;, wherei € [0,n— 1]

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 3 floating point load/store operations per vector element.
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14.1.4 Index of the Maximum Absolute Value of a Vector
Elements

Name

isamax — Finds the index of maximum absolute value of vector elements, single precision
idamax — Finds the index of maximum absolute value of vector elements, double precision

Synopsis

#include <ceispack.h>
int isamax (n, sx, incx)
int n;

float *sx;

int incx;

int idamax (n, sx, incx)

int n;
double *s8x;
int incx;
n — number of elements in input vector
SX — input vector
incx — index increment of input vector
Diagnostics

If n < 1 then no operations are performed and the function returns IDXE.

Description

This function returns index [ of the element with maximum absolute value. If the vector
has several elements with equal maximum absolute value, the function returns index of the
first such element.

[ =min{i: |z;] =max}, Vie[0,n—1]

Performance

This function takes 1 absolute value and executes 1 floating point comparison per each
value tested.
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14.1.5 Maximum Absolute Value of a Vector Elements

Name

samax — Find the vector element with the maximum absolute value, single precision
damax — Find the vector element with the maximum absolute value, double precision

Synopsis

#include <ceispack.h>
float samax (n, sx, incx)
int n;

float *sx;

int incx;

double damax (n, sx, incx)

int n;
double *sx;
int incx;
n — number of elements in input vector
SX — input vector
incx — index increment of input vector
Diagnostics

If n < 1 then no operations are performed and the function returns ZERO.

Description

This function determines the maximum of absolute values of all the input vector elements

and returns this maximum as function value:
a = max(|z;|), where i€ [0,n—1]

Performance

This function takes 1 absolute value and executes 1 floating point comparison per each
value tested.
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14.1.6 Sum of the Absolute Values of a Vector Elements

Name

sasum — Sum of absolute values of vector elements, single precision
dasum — Sum of absolute values of vector elements, double precision

Synopsis

#include <ceispack.h>
float sasum (n, sx, incx)
int n;

float *sx;

int incx;

double dasum (n, sx, incx)

int n;
double *sx;
int incx;
n — number of elements in input vector
SX — input vector
incx — index increment of input vector
Diagnostics

If n < 1 then no operations are performed and the function returns ZERO.

Description

This function returns sum of absolute values of elements of the input vector:
n—1
s = |zl
i=0

Performance

This function executes (n — 1) floating point additions and takes n absolute values.
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14.1.7 Add a Constant to a Vector

Name

sshift2 — Add a scalar to a vector, single precision
dshift2 — Add a scalar to a vector, double precision

Synopsis

#include <ceispack.h>

void sshift2 (n, sa, sx, incx, sy, incy)
int n;

float sa;

float *sx;

int incx;

float *sy;

int incy;

void dshift2 (n, sa, sx, incx, sy, incy)
int n;

double sa;

double *s8x;

int incx;

double *sy;

int incy;

#define sshift(n, sa, sx, incx) \
sshift2(n, sa, sx, incx, sx, incx)

#define dshift(n, sa, sx, incx) \
dshift2(n, sa, sx, incx, SxX, incx)

n — number of elements in input/output vector
sa — real constant

sX — input vector

incx — index increment of input vector

Sy — output vector

incy — index increment of output vector

Diagnostics

None.
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Description

This function adds the constant sa to the elements of the input vector sx and store result
to the output vector sy:

yi=a+x;, whereie€[0,n—1]

Macro sshift stores the result in the input vector, i.e. performs the operations in-place.

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 1 floating point addition per output vector element.
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14.1.8 Add a Vector to a Vector

Name

svadd2 — Add two vectors, single precision
dvadd2 — Add two vectors, double precision

Synopsis

#include <ceispack.h>

void svadd2 (n, sx, incx, sy, incy, sz, incz)
int n;

float *sx;

int incx;

float *sy;

int incy;

float *sz;

int incz;

void dvadd2 (n, sx, incx, sy, incy, sz, incz)
int n;

double *sx;

int incx;

double *sy;

int incy;

double *sz;

int incz;

#define svadd(n, sx, incx, sy, incy) \
svadd2(n, sx, incx, sy, incy, sy, incy)

#define dvadd(n, sx, incx, sy, incy) \
dvadd2(n, sx, incx, sy, incy, sy, incy)

n — number of elements in the input/output vectors
SX — first input vector
incx — index increment of first vector
Sy — second input vector
incy — index increment of second vector
Sz — output vector
incz — index increment of output vector
Diagnostics
None.
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Description

This function adds two vectors sx and sy element by element, and stores the result to the
output vector sz:

zi =x; +vy;, whereie€ [0,n—1]

Macro svadd stores the result in the second input vector, i.e. performs the operations
in-place.

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 1 floating point addition per output vector element.
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14.1.9 Multiply a Vector by a Constant

Name

sscal2 — Scale a vector by a scalar, single precision
dscal2 — Scale a vector by a scalar, double precision

Synopsis

#include <ceispack.h>

void sscal2 (n, sa, sx, incx, sy, incy)
int n;

float sa;

float *sx;

int incx;

float *sy;

int incy;

void dscal2 (n, sa, sx, incx, sy, incy)
int n;

double sa;

double *s8x;

int incx;

double *sy;

int incy;

#define sscal(n, sa, sx, incx) \
sscal2(n, sa, sx, incx, sx, incx)

#define dscal(n, sa, sx, incx) \
dscal2(n, sa, sx, incx, SxX, incx)

n — number of elements in the input/output vectors
sa — constant, scale factor
sX — input vector
incx — index increment of input vector
Sy — output vector
incy — index increment of output vector
Diagnostics
None.
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Description

This function scales the input vector sx by the constant sa and stores the result in the
output vector sy:

y; = ax;, where i€ [0,n — 1]

Macro sscal stores the result in the input vector, i.e. performs the operations in-place.

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 1 floating point multiplication per output vector element.
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14.1.10 Multiply a Vector by a Constant Add a Vector

Name

saxpy2 — Multiplies a vector by a scalar, add a vector, single precision
daxpy2 — Multiplies a vector by a scalar, add a vector, double precision

Synopsis

#include <ceispack.h>

void saxpy2 (n, sa, sx, incx, sy, incy, sz, incz)
int n;

float sa;

float *sx;

int incx;

float *sy;

int incy;

float *sz;

int incz;

void daxpy2 (n, sa, sx, incx, sy, incy, sz, incz)
int n;

double sa;

double *sx;

int incx;

double *sy;

int incy;

double *sz;

int incz;

#define saxpy(n, sa, sx, incx, sy, incy) \
saxpy2(n, sa, sx, incx, sy, incy, sy, incy)

#define daxpy(n, sa, sx, incx, sy, incy) \
daxpy2(n, sa, sx, incx, sy, incy, sy, incy)

n — number of elements in the input/output vectors
sa — constant
SX — first input vector
incx — index increment of first vector
Sy — second input vector
incy — index increment of second vector
Sz — output vector
incz — index increment of output vector
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Diagnostics

None.

Description

This function multiplies the input vector sx by the constant sa and adds the result to
another vector. The resultant vector is stored in the output vector sz.

2 = ax; +y;, where i€ [0,n—1]

Macro saxpy overwrites the second input vector with the output values, i.e. the operation
is performed in-place.
Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 1 floating point multiplication and 1 floating point addition per
output vector element.
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14.1.11 Multiply a Vector by a Vector

Name

svmul2 — Multiply two vectors, single precision
dvmul2 — Multiply two vectors, double precision

Synopsis

#include <ceispack.h>

void svmul2 (n, sx, incx, sy, incy, sz, incz)
int n;

float *sx;

int incx;

float *sy;

int incy;

float *sz;

int incz;

void dvmul2 (n, sx, incx, sy, incy, sz, incz)
int n;

double *sx;

int incx;

double *sy;

int incy;

double *sz;

int incz;

#define svmul(n, sx, incx, sy, incy) \
svmul2(n, sx, incx, sy, incy, sy, incy)

#define dvmul(n, sx, incx, sy, incy) \
dvmul2(n, sx, incx, sy, incy, sy, incy)

n — number of elements in the input/output vectors
SX — first input vector
incx — index increment of first vector
Sy — second input vector
incy — index increment of second vector
Sz — output vector
incz — index increment of output vector
Diagnostics
None.
ECC_EISPACK 284 Copyright ©1993-2003 GDDI

+



+

14.1. REAL VECTOR OPERATIONS

Description

This function multiplies two vectors sx and sy element by element, and stores the result in
the output vector sz:

z; = x;y;, where i € [0,n — 1]

Macro svmul stores the result in the second input vector, i.e. performs the operations
in-place.

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

The function executes 1 floating point multiplication per output vector element.
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14.1.12 Dot Product

Name

sdot — Dot product of two vectors, single precision
ddot — Dot product of two vectors, double precision

Synopsis

#include <ceispack.h>

float sdot (n, sx, incx, sy, incy)
int n;

float *sx;

int incx;

float *sy;

int incy;

double ddot (n, sx, incx, sy, incy)

int n;
double *sx;
int incx;
double *sy;
int incy;
n — number of elements in the input vectors
sX — first input vector
incx — index increment of first vector
sy — second input vector
incy — index increment of second vector
Diagnostics

If n < 1 then no operations are performed and the function returns ZERQ.

Description

This function forms the dot product of two input vectors and returns it as the function
value:

n—1
d= Z TiYi
i=0

Performance

This function executes n floating point multiplications and (n — 1) floating point additions.
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14.1.13 Euclidean Norm of a Vector

Name

snrm2, snrm2p — Euclidean norm of a vector, single precision
dnrm2, dnrm2p — Euclidean norm of a vector, double precision

Synopsis

#include <ceispack.h>
float snrm2 (n, sx, incx)
int n;

float *sx;

int incx;

float snrm2p (n, sx, incx)
int n;

float *sx;

int incx;

double dnrm2 (n, sx, incx)
int n;

double *sx;

int incx;

double dnrm2p (n, sx, incx)

int n;
double *sx;
int incx;
n — number of elements in input vector
SX — input vector
incx — index increment of input vector
Diagnostics

If n < 1 then no operations are performed and the functions returns ZERQ.

Description

This function determines the Euclidean or /5 norm of the input vector and returns it as the

function value:
n—1 1/2
ol = (3 )
i=0
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Notes

The snrm2p function and its double precision counterpart are generally slower than the
snrm2 function because they perform scailing of vector elements to avoid possible
overflow /underfow and obtain more precise result.

Performance

The snrm2 function executes n floating point multiplications and (n — 1) additions.

The snrm2p function executes up to 2n floating point multiplications in order to obtain
more precise result.
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14.1.14 Construct Givens Plane Rotation

Name

srotg — Construct Givens plane rotation, single precision
drotg — Construct Givens plane rotation, double precision

Synopsis

#include <ceispack.h>
void srotg (sa, sb, c, s)
float *sa, *sb;

float *c, *s;

void drotg (sa, sb, c, s)
double *sa, *sb;
double *c, *s;

sa  — address of input a/output r variable
sb — address of input b/output z variable
¢ — address of output variable containing the cosine of rotation
s  — address of output variable containing the sine of rotation
Diagnostics
None.
Description

Given the values @ and b this function estimates rotation matrix elements ¢ and s. At first,
the function computes two parameters:

la|

ﬁ when |a| < |

% when |a|] > |b
Q:{ laf > 1B and r=oVa?+b?

Subsequently the matrix elements are computed by the following formuli:

c:{l when r =0 and S:{

% otherwise

when r =0
otherwise

Sl O

Therefore computed values ¢, s and r satisfy the equation:

(+2)()=()

where s and ¢ are respectively the sine and cosine of the rotation angle.
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The sign constant p = £1 does not affect the rotations themselves, but is necessary when
the compact storage scheme using only one memory location is requested for the elements
of the rotation angle, allowing sine and cosine construction to be stable. This function

additionally computes one more parameter z for the above purpose:

s if |a| > ||
z=4q1 ifc=0
c b if a| < |0

The sine and cosine can be constructed now by using the following formuli:

vV1—22 if|z| <1 z if |z2] < 1
c=< 0 ifz=1 and s=< 1 ifz=1
z71 if [2] > 1 V-2 if|z] > 1
Notes

Values a and b are passed to the function by reference.

On return from the function, the memory locations *sa, *sb, *s and *c would contain

values r, z, s and ¢, respectively.
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14.1.15 Apply Givens Plane Rotation

Name

srot2 — Apply Givens plane rotation, single precision
drot2 — Apply Givens plane rotation, double precision

Synopsis

#include <ceispack.h>

void srot2 (n, sx, incx, sy, incy, sw, sz, c, s)

int n;

float *sx;

int incx;

float *sy;

int incy;

float *sw, *sz,
float c, s;

void drot2 (n, sx, incx, sy, incy, sw, sz, c, s)

int n;

double *sx;

int incx;

double *sy;

int incy;

double *sw, *sz,
double c, s;

#define srot(n, sx, incx, sy, incy, c, s) \
srot2(n, sx, incx, sy, incy, sx, sy, c, s)

#define drot(n, sx, incx, sy, incy, c, s) \
drot2(n, sx, incx, sy, incy, sx, sy, C, S)

n — number of elements in the input/output vectors
sX — first input vector

incx  — index increment of first input/output vector

sy — second input vector

incy — index increment of second input/output vector
sw  — first output vector

SZ — second output vector

¢ — the cosine of rotation angle

— the sine of rotation angle

Diagnostics

None.
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Description

This function applies Givens plane rotation to the input vectors sx and sy and stores the
result in the output vectors sw and sz:

(wi>:< ¢ S><xi>, where ¢ € [0,n — 1]
% —s ¢ )\ v

Macro srot stores the result in the input vectors, i.e. performs the operations in-place.

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 2 floating point multiplications and 1 floating point addition per
output vector element.
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14.1.16 Machine Constants

Name

smach — Compute machine dependent parameters, single precision
dmach — Compute machine dependent parameters, double precision
Synopsis

#include <ceispack.h>
float smach (job)
int job;

double dmach (job)
int job;

job — specifies the constant to be computed

Diagnostics

None.

Description

The smach function computes one of three machine dependent constants and returns it as
function value.

Assuming a computer has the following parameters of floating point arithmetic:

r the base of arithmetic

t  the number of base r digits

s the smallest possible exponent
[ the largest possible exponent

then the function computes either:

eps = it
tiny = 100 7+
huge = 0.015"¢

The eps value is such that 1.0 4+ eps > 1.0.

The value to be computed is specifed by the input parameter job:

if job =1 the eps constant is to be computed
if job =2 the tiny constant is to be computed
if job =3 the huge constant is to be computed

If job has been set to any other value than 2 or 3 the eps constant would be computed.
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14.2 Complex Vector Operations

14.2.1 Fill a Vector with a Constant

Name

cfill — Fill a complex vector with a complex scalar, single precision
zfill — Fill a complex vector with a complex scalar, double precision

Synopsis

#include <ceispack.h>

void cfill (n, ca, cx, incx)
int n;

fcomplex ca;

fcomplex *cx;

int incx;

void zfill (n, ca, cx, incx)
int n;

dcomplex ca;

dcomplex *cx;

int incx;
n — number of elements in output vector
ca — complex constant
cX — output complex vector
incx — index increment in output vector
Diagnostics
None.
Description

This function fills elements of the output vector with the complex constant:
z; =a, wherei€[0,n—1]

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 2 floating point store operations per output vector element.
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14.2.2 Copy a Vector to a Vector

Name

ccopy — Copy elements of a complex vector to another complex vector, single precision
zcopy — Copy elements of a complex vector to another complex vector, double precision

Synopsis

#include <ceispack.h>

void ccopy (n, cx, incx, cy, incy)
int n;

fcomplex *cx;

int incx;

fcomplex *cy;

int incy;

void zcopy (n, cx, incx, cy, incy)

int n;
dcomplex *cx;
int incx;
dcomplex *cy;
int incy;
n — number of elements in the input and output vectors
cX — input complex vector
incx — index increment of input vector
cy — output complex vector
incy — index increment of output vector
Diagnostics
None.
Description

This function copies elements of the input vector cx to the output vector cy:
yi = x;, where i € [0,n — 1]

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 2 floating point load/store operations per vector element.
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14.2.3 Interchange Elements of Two Vectors

Name

cswap — Interchange elements of two complex vectors, single precision
zswap — Interchange elements of two complex vectors, double precision

Synopsis

#include <ceispack.h>

void cswap (n, cx, incx, cy, incy)
int n;

fcomplex *cx;

int incx;

fcomplex *cy;

int incy;

void zswap (n, cx, incx, cy, incy)

int n;

dcomplex *cx;

int incx;

dcomplex *cy;

int incy;
n — number of elements in the input/output vectors
CX — input/output complex vector
incx — index increment of first vector
cy  — input/output complex vector
incy — index increment of second vector

Diagnostics

None.

Description

This function interchanges the elements of two complex vectors:
x; <> y;, wherei € [0,n— 1]

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 6 floating point load/store operations per vector element.
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14.2.4 Index of the Maximum Absolute Value of a Vector
Elements

Name

icamax — Finds the index of maximum absolute value of vector elements, single precision
izamax — Finds the index of maximum absolute value of vector elements, double precision

Synopsis

#include <ceispack.h>
int icamax (n, cx, incx)
int n;

fcomplex *cx;

int incx;

int izamax (n, cx, incx)

int n;
dcomplex *cx;
int incx;
n — number of elements in input vector
cX — input vector
incx — index increment of input vector
Diagnostics

If n < 1 then no operations are performed and the function returns IDXE.

Description

This function returns index [ of an element of the input vector which has the maximum
sum of absolute values of real and imaginary parts. If the vector has several elements with
the same maximum, then the function returns the index of the first such element it finds.

[ =min {i: |Re(x;)| + [Im(x;)| = max}, Viel[0,n—1]

Performance

This function executes 1 floating point addition, takes 2 absolute values and executes 1
floating point comparison per each complex value tested.
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14.2.5 Maximum Absolute Value of a Vector Elements

Name

scamax — Find the vector element with the maximum sum of absolute values of real and
imaginary parts, single precision

dzamax — Find the vector element with the maximum sum of absolute values of real and
imaginary parts, double precision

Synopsis

#include <ceispack.h>
float scamax (n, cx, incx)
int n;

fcomplex *cx;

int incx;

double dzamax (n, cx, incx)

int n;
dcomplex *cCx;
int incx;
n — number of elements in input vector
cX — input vector
incx — index increment of input vector
Diagnostics

If n < 1 then no operations are performed and the function returns ZERQ.

Description
This function determines the maximum sum of absolute values of real and imaginary parts
of all the input vector elements and returns this maximum as function value:

a = max (|Re(x;)| + |[Im(x;)|), where i€ [0,n— 1]

Performance

This function takes 2 absolute value, executes 1 floating point addition and 1 floating point
comparison per each complex value tested.
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14.2.6 Sum of the Absolute Values of a Vector Elements

Name

scasum — Sum of absolute values of real and imaginary parts of complex vector elements,
single precision

dzasum — Sum of absolute values of real and imaginary parts of complex vector elements,
double precision

Synopsis

#include <ceispack.h>
float scasum (n, cx, incx)
int n;

fcomplex *cx;

int incx;

double dzasum (n, cx, incx)

int n;
dcomplex *cCx;
int incx;
n — number of elements in input vector
cX — input vector
incx — index increment of input vector
Diagnostics

If n < 1 then no operations are performed and the function returns ZERQ.

Description

This function returns the sum of absolute values of real and imaginary parts of elements of
the input complex vector:

i
L

s =D (IRe(x:)| + [Im(w;)])

)

Il
o

Performance

This function executes (2n — 1) floating point additions and takes 2n absolute values.
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14.2.7 Add a Constant to a Vector

Name

cshift2 — Add a complex scalar to a complex vector, single precision
zshift2 — Add a complex scalar to a complex vector, double precision

Synopsis

#include <ceispack.h>

void cshift (n, ca, cx, incx, cy, incy)
int n;

fcomplex ca;

fcomplex *cx;

int incx;

fcomplex *cy;

int incy;

void zshift (n, ca, cx, incx, cy, incy)
int n;

dcomplex ca;

dcomplex *cx;

int incx;

dcomplex *cy;

int incy;

#define cshift(n, ca, cx, incx) \
cshift2(n, ca, cx, incx, cx, incx)

#define zshift(n, ca, cx, incx) \
zshift2(n, ca, cx, incx, cx, incx)

n — number of elements in input/output vector
ca — complex constant

cxX — input complex vector

incx — index increment of input vector

cy — output complex vector

incy — index increment of output vector

Diagnostics

None.
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Description

This function adds the complex constant ca to the elements of the complex input vector cx
and stores the result in the output complex vector cy:

yi=a+z;, whereic[0,n—1]
Macro cshift stores the result in the input vector, i.e. performs the operations in-place.

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 2 floating point additions per output vector element.
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14.2.8 Add a Vector to a Vector

Name

cvadd2 — Add two complex vectors, single precision
zvadd2 — Add two complex vectors, double precision

Synopsis

#include <ceispack.h>

void cvadd2 (n, cx, incx, cy, incy, cz, incz)
int n;

fcomplex *cx;

int incx;

fcomplex *cy;

int incy;

fcomplex *cz;

int incz;

void zvadd2 (n, cx, incx, cy, incy, cz, incz)
int n;

dcomplex *cCx;

int incx;

dcomplex *cy;

int incy;

dcomplex *cz;

int incz;

#define cvadd(n, cx, incx, cy, incy) \

cvadd2(n, cx, incx, cy, incy, cy, incy)

#define zvadd(n, cx, incx, cy, incy) \

zvadd2(n, cx, incx, cy, incy, cy, incy)

n — number of elements in the input/output vectors
cxX — input complex vector
incx — index increment of input vector
cy — input complex vector
incy — index increment of input vector
cz — output complex vector
incz — index increment of output vector
Diagnostics
None.
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Description

This function adds two complex vectors cx and cy element by element, and stores the
result in the complex output vector cz:

zi =x; +vy;, whereie [0,n— 1]

Macro cvadd stores the result in the second input vector, i.e. performs the operations
in-place.

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 2 floating point additions per output vector element.
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14.2.9 Multiply a Vector by a Real Constant

Name

csscal — Scale a complex vector by a real scalar, single precision
zdscal — Scale a complex vector by a real scalar, double precision

Synopsis

#include <ceispack.h>

void csscal2 (n, sa, cx, incx)
int n;

float sa;

fcomplex *cx;

int incx;

fcomplex *cy;

int incy;

void zdscal2 (n, sa, cx, incx)
int n;

double sa;

dcomplex *cx;

int incx;

dcomplex *cy;

int incy;

#define csscal(n, sa, cx, incx) \
csscal2(n, sa, cx, incx, cx, incx)

#define zsscal(n, ca, cx, incx) \
zsscal2(n, ca, cx, incx, cX, incx)

n — number of elements in the input/output vectors
sa, — real constant, scale factor
cxX — input complex vector
incx — index increment of input vector
cy — output complex vector
incy — index increment of output vector
Diagnostics
None.
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Description

This function scales the input vector cx by a real constant sa and stores the result to the
output vector cy:

Re(y;) = aRe(x;)
,  where i € [0,n — 1]
I'm(y;) = alm(z;)

Macro csscal stores the result in the input vector, i.e. performs the operations in-place.

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 2 floating point multiplications per output vector element.
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14.2.10 Multiply a Vector by a Constant

Name

cscal2 — Scale a complex vector by a complex scalar, single precision
zscal2 — Scale a complex vector by a complex scalar, double precision

Synopsis

#include <ceispack.h>

void cscal2 (n, ca, cx, incx, cy, incy)
int n;

fcomplex ca;

fcomplex *cx;

int incx;

fcomplex *cy;

int incy;

void zscal2 (n, ca, cx, incx, cy, incy)
int n;

dcomplex ca;

dcomplex *cx;

int incx;

dcomplex *cy;

int incy;

#define cscal(n, ca, cx, incx) \
cscal2(n, ca, cx, incx, cx, incx)

#define zscal(n, ca, cx, incx) \
zscal2(n, ca, cx, incx, cxX, incx)

n — number of elements in the input/output vectors
ca  — complex constant/scale factor
cxX — input complex vector
incx — index increment of input vector
cy — output complex vector
incy — index increment of output vector
Diagnostics
None.
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Description

This function scales a complex input vector cx by a complex constant ca and stores the
result in the output complex vector cy:

y; = ax;, where i€ [0,n — 1]

Macro cscal stores the result in the input vector, i.e. performs the operations in-place.

Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 4 floating point multiplications and 2 floating point additions per
output vector element.

+ Copyright (©1993-2003 GDDI 307 Reference manual —‘>



+

CHAPTER 14. BASIC VECTOR FUNCTIONS

14.2.11 Multiply a Vector by a Constant Add a Vector

Name

caxpy2 — Multiply a complex vector by a complex scalar, add a complex vector, single
precision

zaxpy2 — Multiply a complex vector by a complex scalar, add a complex vector, double
precision

Synopsis

#include <ceispack.h>

void caxpy2 (n, ca, cx, incx, cy, incy, cz, incz)
int n;

fcomplex ca;

fcomplex *cx;

int incx;

fcomplex *cy;

int incy;

fcomplex *cz;

int incz;

void zaxpy2 (n, ca, cx, incx, cy, incy, cz, incz)
int n;

dcomplex ca;

dcomplex *cx;

int incx;

dcomplex *cy;

int incy;

dcomplex *cz;

int incz;

#define caxpy(n, ca, cx, incx, cy, incy) \
caxpy2(n, ca, cx, incx, cy, incy, cy, incy)

#define zaxpy(n, ca, cx, incx, cy, incy) \
zaxpy2(n, ca, cx, incx, cy, incy, cy, incy)

n — number of elements in the input/output vectors
ca  — complex constant/scale factor
cxX — input complex vector
incx — index increment of input vector
cy — input complex vector
incy — index increment of input vector
cz — output complex vector
incz — index increment of output vector
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Diagnostics

None.

Description

This function multiplies the complex input vector cx by the complex constant ca, and adds
the result to another complex vector. The result vector is stored in the output vector cz.

2 = ax; +y;, where i€ [0,n—1]

Macro caxpy overwrites the second input vector with the output values, i.e. the operation
is performed in-place.
Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 4 floating point multiplications and 4 floating point additions per
output vector element.
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14.2.12 Multiply a Vector Conjugate by a Constant Add a

Vector

Name

caxcpy2 — Multiply a complex conjugated vector by a complex scalar, add a complex

vector, single precision

zaxcpy2 — Multiply a complex conjugated vector by a complex scalar, add a complex

vector, double precision

Synopsis

#include <ceispack.h>

void caxcpy2 (n, ca, cx, incx, cy, incy, cz, incz)

int n;
fcomplex ca;
fcomplex *cx;
int incx;
fcomplex *cy;
int incy;
fcomplex *cz;
int incz;

void zaxcpy2 (n, ca, cx, incx, cy, incy, cz, incz)

int n;
dcomplex ca;
dcomplex *cCx;
int incx;
dcomplex *cy;
int incy;
dcomplex *cz;
int incz;

#define caxcpy(n, ca, cx, incx, cy, incy) \

caxcpy2(n, ca, cx, incx, cy, incy, cy, incy)

#define zaxcpy(n, ca, cx, incx, cy, incy) \

zaxcpy2(n, ca, cx, incx, cy, incy, cy, incy)

n — number of elements in input/output vectors
ca  — complex constant/scale factor
cxX — input complex vector
incx — index increment of input vector
cy — input complex vector
incy — index increment of input vector
cz — output complex vector
incz — index increment of output vector
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Diagnostics

None.

Description

This function multiplies a conjugate of input vector cx by a complex constant ca, and adds
another vector cy. The result vector is stored in the complex output vector cz..

zi = al; +vy;, where i€ [0,n—1]
Macro caxcpy puts the output result in the second input vector, i.e. performs the
operation in-place.
Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

This function executes 4 floating point multiplications and 4 floating point additions per
output vector element.
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14.2.13 Multiply a Vector by a Vector

Name

cvmul2 — Multiply two complex vectors, single precision

zvimul2 — Multiply two complex vectors, double precision

Synopsis

#include <ceispack.h>

void cvmul2 (n, cx, incx, cy, incy, cz, incz)
int n;

fcomplex *cx;

int incx;

fcomplex *cy;

int incy;

fcomplex *cz;

int incz;

void zvmul2 (n, cx, incx, cy, incy, cz, incz)
int n;

dcomplex *cCx;

int incx;

dcomplex *cy;

int incy;

dcomplex *cz;

int incz;

#define cvmul(n, cx, incx, cy, incy) \

cvmul2(n, cx, incx, cy, incy, cy, incy)

#define zvmul(n, cx, incx, cy, incy) \

zvmul2(n, cx, incx, cy, incy, cy, incy)

n — number of elements in the input/output vectors
cxX — input complex vector
incx — index increment of input vector
cy — input complex vector
incy — index increment of input vector
cz — output complex vector
incz — index increment of output vector
Diagnostics
None.
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Description

This function multiplies two complex vectors cx and cy element by element, and stores the
result in the complex output vector cz:

z; = x;y;, where i € [0,n — 1]
Macro cvmul stores the result in the second input vector, i.e. performs the operations
in-place.
Notes

If n < 1 then the function returns immediately with no operations performed.

Performance

The function executes 4 floating point multiplications and 2 floating point additions per
output vector element.
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14.2.14 Dot Product

Name

cdotu — Dot product of two complex vectors, single precision
zdotu — Dot product of two complex vectors, double precision

Synopsis

#include <ceispack.h>

fcomplex cdotu (n, cx, incx, cy, incy)
int n;

fcomplex *cx;

int incx;

fcomplex *cy;

int incy;

dcomplex zdotu (n, cx, incx, cy, incy)

int n;
dcomplex *cCx;
int incx;
dcomplex *cy;
int incy;
n — number of elements in the input vectors
cxX — input complex vector
incx — index increment of input vector
cy — input complex vector
incy — index increment of input vector
Diagnostics

If n < 1 then no operations are performed and the function returns complex ZERO.

Description

This function forms the complex dot product of two complex vectors and returns it as the

function value:
n—1
d= Z TiYi
i=0

Performance

This function executes 4n floating point multiplications and (2n — 2) floating point

additions.
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14.2.15 Dot Product with Conjugation

Name

cdotc — Dot product of two complex vectors, conjugating first vector, single precision
zdotc — Dot product of two complex vectors, conjugating first vector, double precision

Synopsis

#include <ceispack.h>

fcomplex cdotc (n, cx, incx, cy, incy)
int n;

fcomplex *cx;

int incx;

fcomplex *cy;

int incy;

dcomplex zdotc (n, cx, incx, cy, incy)

int n;
dcomplex *cCx;
int incx;
dcomplex *cy;
int incy;
n — number of elements in the input vectors
cxX — input complex vector
incx — index increment of input vector
cy — input complex vector
incy — index increment of input vector
Diagnostics

If n < 1 then no operations are performed and the function returns complex ZERO.

Description

This function forms the complex dot product of two complex input vectors, conjugating the
first vector. The function returns the dot product as the function value.

n—1
d= Z ZTiYi
i=0

Performance

This function executes 4n floating point multiplications and (2n — 2) floating point
additions.
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14.2.16 Unitary Norm of a Vector

Name

scnrm?2, scnrm2p — Unitary norm of a complex vector, single precision
dznrm2, dznrm2p — Unitary norm of a complex vector, double precision

Synopsis

#include <ceispack.h>
float scnrm2 (n, cx, incx)
int n;

fcomplex *cx;

int incx;

float scnrm2p (n, cx, incx)
int n;

fcomplex *cx;

int incx;

double dznrm2 (n, cx, incx)
int n;

dcomplex *cx;

int incx;

double dznrm2p (n, cx, incx)

int n;
dcomplex *cCx;
int incx;
n — number of elements in input vector
cx — input vector
incx — index increment of input vector
Diagnostics

If n < 1 then no operations are performed and the functions returns ZERQ.

Description

This function determines the unitary norm of the input vector and returns it as the
function value:

Jell, = (Z (Re(w:)? + fm(m?)) N

1=0
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Notes

The scnrm2p function and its double precision counterpart are generally slower than the
scnrm? function because they perform scaling of the vector elements to avoid possible
overflow /underflow and obtain a more precise result.

Performance

The scnrm2 function executes 2n floating point multiplications and (2n — 1) additions.

The scnrm2p function executes up to 4n floating point multiplications in order to obtain a
more precise result.
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14.2.17 Construct Givens Plane Rotation

Name

crotg — Construct Givens plane rotation, single precision
zrotg — Construct Givens plane rotation, double precision

Synopsis

#include <ceispack.h>
void crotg (ca, cb, c, s)
fcomplex *ca, *cb;

float x*c;

fcomplex *s;

void zrotg (ca, cb, c, s)
dcomplex *ca, *cb;

double *c;

dcomplex *s;

ca  — address of first input a/output «r variable

cb — address of second input variable b

¢ — address of output variable containing first parameter of rotation

s — address of output variable containing second parameter of rotation
Description

Given the values @ and b this function estimates rotation matrix elements ¢ and s. At first,
the function verifies if |a| is not zero and computes two parameters:

o= and r=4/|a|?+ |b]?

lal

Subsequently the matrix elements are computed by the following expressions:

lal ab  otherwise

r

0  when |a| =0 1 when |a|=0
c= . and s =
otherwise

Therefore computed values ¢, s and r satisfy the equation:

() () =)
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Notes

Values a and b are passed to the function by reference.

On return from the function, the memory locations *s and *c contain the values s and ¢
respectively.

Variable *sa has been set to ar if a # 0, otherwise it is set to the value of input variable
*3sb.
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14.2.18 Apply Givens Plane Rotation

Name

csrot2 — Apply Givens plane rotation, single precision
zdrot2 — Apply Givens plane rotation, double precision

Synopsis

#include <ceispack.h>

void csrot2 (m, cx, incx, cy, incy, cw,
int n;

fcomplex *cx;

int incx;

fcomplex *cy;

int incy;

fcomplex *cw, *cz;

float c, s;

void csrot2 (m, cx, incx, cy, incy, cw, cz, c, S)

int n;

dcomplex *cCx;

int incx;

dcomplex *cy;

int incy;

dcomplex *cw, *cCz;
double c, s;

#define csrot(n, cx, incx, cy, incy, c, s) \

csrot2(n, cx, incx, cy, incy, cx, cy, c, s)

#define zdrot(n, cx, incx, cy, incy, c, s) \

zdrot2(n, cx, incx, cy, incy, cx, cy, c, s)

n
cx
incx
cy
incy
CW
cz

¢

Diagnostics

None.

— number of elements in the input/output vectors

— first input complex vector

— index increment of first input/output vector

— second input complex vector

— index increment of second input/output vector

— first output complex vector

— second output complex vector

— the cosine of rotation angle
— the sine of rotation angle
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Description

This function applies Givens plane rotations to the complex input vectors cx and cy and
stores the result in the complex output vectors cw and cz:

)= () (3)
m(5)=(08)m ()

Macro csrot stores the result in the input vectors, i.e. performs the operations in-place.

,  where i € [0,n — 1]

Notes

If n < 1 then the function returns immediately with no operation performed.

Performance

This function executes 4 floating point multiplications and 2 floating point additions per
output vector element.
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14.2.19 Machine Constants

Name

cmach — Compute machine dependent parameters, single precision
zmach — Compute machine dependent parameters, double precision
Synopsis

#include <ceispack.h>
float cmach (job)
int job;

double zmach (job)
int job;

job — specifies the constant to be computed

Diagnostics

None.

Description

The cmach function computes one of three machine dependent constants and returns it as
function value.

Assuming a computer has the following parameters of floating point arithmetic:

r the base of arithmetic

t  the number of base r digits

s the smallest possible exponent
[ the largest possible exponent

then the function computes either:

eps = it
tiny = 100 7+
huge = 0.015"¢

The eps value is such that 1.0 4+ eps > 1.0.

The value to be computed is specifed by the input parameter job:

if job =1 the eps constant is to be computed
if job =2 the tiny constant is to be computed
if job =3 the huge constant is to be computed

If job has been set to any other value than 2 or 3 the eps constant would be computed.
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Matrix Allocation

15.1 Real Matrices and Vectors

15.1.1 General Matrices and Vectors

Name

fmatrix — Allocate real general matrix, single precision
dmatrix — Allocate real general matrix, double precision

Synopsis

#include <cblas.h>

float **fmatrix (m, n)
int m;
int n;

double **dmatrix (m, n)
int m;
int n;

#define  fsquare(n) fmatrix (n, n)
#define dsquare(n) dmatrix (n, n)
#define  fvector(n) (float *) fmatrix (1, n)
#define dvector(n) (double *) dmatrix (1, n)

m — number of rows in matrix
n — number of columns in matrix/order of matrix/length of vector
Diagnostics

The fmatrix function returns a pointer to the allocated matrix if it is successful, or NULL if

the allocation failed.
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Description

The fmatrix function allocates storage for a real rectangular m-rows, n-columns matrix
and returns a pointer to the allocated matrix.

Matrix elements are stored in memory contiguously, row-wise.

Macro fsquare allocates storage for a square matrix of order n, and returns a pointer to
the allocated matrix.

Macro fvector allocates storage for a real vector of length n, and returns a pointer to the
allocated vector.
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15.1.2 Symmetric and Triangular Matrices

Name

trngl fmatrix — Allocate real triangular matrix, single precision
trngl_dmatrix — Allocate real triangular matrix, double precision

Synopsis

#include <cblas.h>

float **trngl fmatrix (uplo, diag, n)
char uplo;

char diag;

int n;

double **trngl dmatrix (uplo, diag, n)
char uplo;

char diag;

int n;

#define  fsym(n)  trngl fmatrix (°1’, ’n’, n)
#define dsym(n)  trngl.dmatrix (’1’, ’n’, n)

uplo — specifies lower /upper triangular matrix
diag — specifies allocation of principal diagonal
n — order of the matrix

Diagnostics

The trngl fmatrix function returns a pointer to the allocated matrix if it is successful, or
NULL if the allocation failed.

Description

The trngl_fmatrix function allocates storage for the lower or upper part of a real
symmetric (triangular) matrix of order n, and returns the pointer to the allocated matrix.

Matrix elements are stored in memory contiguosly row-wise.

Only the entries in the upper or lower triangular part of the matrix are allocated and can
be referenced only for:
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Type of triangle

matrix entries a;;

lower 1>
strict lower 1>
upper i<
strict upper 1< 7

Other locations in the matrix do not exist and must not be referenced.

Macro fsym allocates storage for the lower part of a symmetric or triangular non-unit
matrix of order n, and returns a pointer to the allocated matrix.

Notes

If the input flag uplo is set to U’ or ’u’ then the upper triangle part is to be allocated,

otherwise the lower part would be allocated

If the input flag diag is set to U’ or ’u’ then the principal diagonal of the matrix is not

allocated.
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15.1.3 Band Matrix

Name

band_fmatrix — Allocate real band matrix, single precision
band_dmatrix — Allocate real band matrix, double precision

Synopsis

#include <cblas.h>

float #**band_fmatrix (m, n, nl, nu)
int m, n;
int nl, nu;

double **band_dmatrix (m, n, nl, nu)
int m, n;
int nl, nu;

#define  fband(n, nl, nu) band_fmatrix (n, n, nl, nu)
#define dband(n, nl, nu) band_dmatrix (n, n, nl, nu)
#define f3diag(n) band_fmatrix (n, n, 1, 1)
#define  d3diag(n) band_dmatrix (n, n, 1, 1)

m — number of rows in the matrix

n  — number of columns/order of the matrix
nl — number of subdiagonals in the matrix
nu — number of superdiagonals in the matrix

Diagnostics

The band_fmatrix function returns a pointer to the allocated matrix if it is successful, or
NULL if the allocation failed.

Description

The band_fmatrix function allocates storage for a real m-rows, n-columns band matrix
and returns a pointer to the allocated matrix.

Macro fband allocates storage for a band matrix of order n.

The elements of the allocated matrix are stored in memory contiguously row-wise. Only
band entries are allocated and can be referenced only for:

aij i — gl <my, i<

or
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ag:|o—jl <m, i=j
Other locations in the matrix do not exist and must not be referenced.

Macro f3diag allocates storage for a real tridiagonal matrix of order n, and returns a
pointer to the allocated matrix. Matrix elements are stored in memory contiguously
row-wise. Only the entries in upper, principal and lower diagonals are allocated and can be
referenced only for:

aij: |Z—]|§1

As in above routines, other locations in the matrix do not exist and must not be
referenced.
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15.1.4 Band Symmetric and Triangular Matrices

Name

trngl_band_fmatrix — Allocate real band symmetric matrix, single precision
trngl_band_dmatrix — Allocate real band symmetric matrix, double precision

Synopsis

#include <cblas.h>

float **trngl band fmatrix (uplo, diag, n, k)
char uplo, diag;

int n;

int k;

double **trngl band dmatrix (uplo, diag, n, k)
char uplo, diag;

int n;

int k;

#define fsymband(n, k) trngl _band _fmatrix (’1’, ’n’, n, k)
#define  dsymband(n, k) trngl _band _dmatrix (’1’, ’n’, n, k)
#define  fsym3diag(n) trngl_band_fmatrix (°1’, ’n’, n, 1)
#define  dsym3diag(n) trngl_band_dmatrix (’1’, ’n’, n, 1)

uplo — specifies lower /upper part of the band

diag — specifies allocation of principal diagonal
n — order of matrix
k — number of sub-/super-diagonals

Diagnostics

The trngl_band fmatrix function returns a pointer to the allocated matrix if it is
successful, or NULL if the allocation failed.

Description

The trngl_band_fmatrix function allocates storage for a real band symmetric matrix of
order n, and returns a pointer to the allocated matrix.

Macro fsymband allocates storage for the lower part of a band symmetric matrix of order n.

Matrix elements are stored in memory contiguously row-wise.
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Only the entries in upper or lower band part of the matrix are allocated and can be
referenced only for:

in a case of the upper band part of the matrix:
aij: |i—j| <k i<j
in a case of the lower band part of the matrix:
a;: |i—j| <k i>j
Other locations in the matrix do not exist and must not be referenced.

If the principal diagonal is not allocated, then in the case the the upper part of the matrix
the index ¢ must satisfy ¢ < j. In the case for the lower part of the matrix the index ¢ must
satisfy ¢ > 7.

Macro fsym3diag allocates storage for the lower part of a real symmetric tridiagonal
matrix of order n, and returns a pointer to the allocated matrix.

Only the entries in principal diagonal a;;, and in the first subdiagonal a;;_; are allocated
and can be referenced.
Notes

If the input flag uplo is set to U’ or *u’ then the upper band part of the matrix is to be
allocated, otherwise the lower band part would be allocated.

If the input flag diag is set to U’ or ’u’ then the principal diagonal of the matrix is not
allocated.

ECC_EISPACK 330 Copyright ©1993-2003 GDDI

+



15.2. COMPLEX MATRICES AND VECTORS

15.2 Complex Matrices and Vectors

15.2.1 General Matrices and Vectors

Name

cmatrix — Allocate complex general matrix, single precision
zmatrix — Allocate complex general matrix, double precision

Synopsis

#include <ceispack.h>
fcomplex **cmatrix (m, n)
int m;

int n;

dcomplex **zmatrix (m, n)
int m;
int n;

#define csquare(n) cmatrix (n, n)
#define  zsquare(n) zmatrix (n, n)
#define cvector(n) (fcomplex *) cmatrix (1, n)
#define zvector (n) (dcomplex *) zmatrix (1, n)

m — number of rows in matrix
n  — number of columns in matrix/order of matrix/length of vector
Diagnostics

The cmatrix function returns a pointer to the allocated matrix if it is successful, or NULL if
the allocation failed.

Description
The cmatrix function allocates storage for a complex rectangular m-rows, n-columns

matrix and returns a pointer to the allocated matrix.

Matrix elements are stored in memory contiguously, row-wise, with their real and
imaginary part interleaved.

Macro csquare allocates storage for a square matrix of order n, and returns the pointer to
the allocated matrix.

Macro cvector allocates storage for a complex vector of length n, and returns the pointer
to the allocated vector.
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15.2.2 Hermitian and Triangular Matrices

Name

trngl_cmatrix — Allocate complex triangular matrix, single precision
trngl zmatrix — Allocate complex triangular matrix, double precision

Synopsis

#include <ceispack.h>

fcomplex **trngl_cmatrix (uplo, diag, n)
char uplo;

char diag;

int n;

dcomplex **trngl_zmatrix (uplo, diag, n)
char uplo;

char diag;

int n;

#define chermit (n) trngl_cmatrix (’1’, ’n’, n)
#define  zhermit(n) trngl_zmatrix (’1’, ’n’, n)

uplo — specifies lower/upper triangular matrix
diag — specifies allocation of principal diagonal
n — order of the matrix

Diagnostics

The trngl_cmatrix function returns a pointer to the allocated matrix if it is successful, or
NULL if the allocation failed.

Description

The trngl_cmatrix function allocates storage for lower or upper part of a complex
triangular (or symmetric, or Hermitian) matrix of order n, and returns a pointer to the
allocated matrix.

Matrix elements are stored in memory row-wise, with their real and imaginary part
interleaved.

Only the entries in the upper or lower triangular part of the matrix are allocated and can
be referenced only for:
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Type of triangle | matrix entries a;;
lower 1>
strict lower 1>
upper i<
strict upper 1<

Other locations in the matrix do not exist and must not be referenced.

Macro chermit allocates storage the for lower part of a Hermitian (symmetric or
triangular) non-unit matrix of order n, and returns a pointer to the allocated matrix.

Notes

If the input flag uplo is set to U’ or ’u’ then the upper triangle part is to be allocated,

otherwise the lower part would be allocated

If the input flag diag is set to U’ or ’u’ then the principal diagonal of the matrix is not

allocated.
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15.2.3 Band Matrix

Name

band_cmatrix — Allocate complex band matrix, single precision
band_zmatrix — Allocate complex band matrix, double precision

Synopsis

#include <ceispack.h>

fcomplex **band cmatrix (m, n, nl, nu)
int m, n;

int nl, nu;

dcomplex **band zmatrix (m, n, nl, nu)
int m, n;
int nl, nu;

m — number of rows in the matrix

n  — number of columns in the matrix

nl  — number of subdiagonals in the matrix
nu — number of superdiagonals in the matrix

Diagnostics

The band_cmatrix function returns a pointer to the allocated matrix if it is successful, or
NULL if the allocation failed.

Description

The function band_cmatrix allocates storage for a complex m-rows, n-columns band
matrix and returns a pointer to the allocated matrix.

Matrix elements are stored in memory contiguously, row-wise, with their real and
imaginary parts interleaved.

Only band entries are allocated and can be referenced only for:
aij i — gl <my, i<

or
ag:|o—jl <m, i=j

Other locations in the matrix do not exist and must not be referenced.

ECC_EISPACK 334 Copyright ©1993-2003 GDDI —‘>



15.2. COMPLEX MATRICES AND VECTORS

15.2.4 Band Hermitian and Triangular Matrix

Name

trngl_band_cmatrix — Allocate band Hermitian matrix, single precision
trngl_band_zmatrix — Allocate band Hermitian matrix, double precision

Synopsis

#include <ceispack.h>

fcomplex **xtrngl_band cmatrix (uplo, diag, n, k)
char uplo, diag;

int n;

int k;

dcomplex **trngl_band zmatrix (uplo, diag, n, k)
char uplo, diag;

int n;
int k;
uplo — specifies lower /upper part of the band
diag — specifies allocation of principal diagonal
n — order of matrix
k — number of sub-/super-diagonals
Diagnostics

The trngl_band_cmatrix function returns a pointer to the allocated matrix if it is
successful, or NULL if the allocation failed.

Description

The trngl_band_cmatrix function allocates storage for a band Hermitian matrix of order
n, and returns a pointer to the allocated matrix.

Matrix elements are stored in memory contiguously, row-wise, with their real and
imaginary part interleaved.

Only the entries in the upper or lower band part of the matrix are allocated and can be
referenced only for:

in a case of the upper band part of the matrix:

in a case of the lower band part of the matrix:
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Other locations in the matrix do not exist and must not be referenced.

If the principal diagonal is not allocated, then in the case of the upper part of the matrix
the index ¢ must satisfy ¢« < 7. In the case of the lower part of the matrix the index ¢ must
satisfy ¢ > 7.

Notes

If the input flag uplo is set to U’ or *u’ then the upper band part of the matrix is to be
allocated, otherwise the lower band part would be allocated.

If the input flag diag is set to U’ or ’u’ then the principal diagonal of the matrix is not
allocated.

+ ECC_EISPACK 336 Copyright ©1993-2003 GDDI +



Index

band_dmatrix, 327
band_fmatrix, 327
d3diag, 327

dband, 327
dmatrix, 323
dsquare, 323
dsym3diag, 329
dsymband, 329
dsym, 325

dvector, 323
f3diag, 327

fband, 327
fmatrix, 323
fsquare, 323
fsym3diag, 329
fsymband, 329
fsym, 325
fvector, 323
trngl_band_dmatrix, 329
trngl_band_fmatrix, 329
trngl_dmatrix, 325
trngl _fmatrix, 325

Back substitution
band matrices, 125
band symmetric matrices, 125
complex general matrices, 47
complex upper Hessenberg matrices,
193, 196, 199
generalized matrix system, 17
generalized upper Hessenberg form, 62
real general matrices, 20
real upper Hessenberg matrices, 82, 85
symmetric tridiagonal matrices, 174
Bisection technique
symmetric tridiagonal matrices, 154,
157,173
Blancing
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real general matrix, 78, 81, 223

real upper Hessenberg matrix, 78, 81,
223

symmetric tridiagonal matrix, 142,
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Eigenvectors

band symmetric matrix, 124
complex general matrix, 201, 203,
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complex non-balanced matrix, 205,
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complex upper Hessenberg matrix,
192, 195, 198
generalized
general matrix system, 62
symmetric matrix system, 103, 106
Hermitian matrix, 216, 219
left-hand, 94, 207
non-symmetric tridiagonal matrix, 135
real general matrix, 88, 90, 92, 94
real non-balanced matrix, 92, 94
real upper Hessenberg matrix, 81, 84
right-hand, 81, 88, 90, 92, 115, 192,
195, 201, 203, 205, 216, 219
symmetric matrix, 115
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symmetric tridiagonal matrix, 163, rsm, 34
166, 169, 172 rst, 43
rs, 31
Forward substitution, 225 rt, 40
Function eigenvalues
accuracy index bisect, 153
scpihm, 259 bgr, 121
scpisd, 257 comlr, 186
scpisv, 263 comqr, 189
spi3ds, 255 hqr, 78
spibds, 251 imtqll, 145
spibnd, 267 imtqlv, 147
spignr, 241 neign3, 139
spigsm, 245 ratqr, 159
spilsq, 265 tqll, 142
spisab, 247 tqlrat, 150
spistd, 243 tridib, 156
spisvd, 261 eigenvalues and eigenvectors
spisym, 249 comlr2, 192
spitrd, 253 comqr2, 195
allocation hqr2, 81
band_cmatrix, 334 imtql2, 169
chermit, 332 tql2, 166
cmatrix, 331 tsturm, 172
csquare, 331 eigenvectors
cvector, 331 bakvec, 135
trngl_band_cmatrix, 335 balbak, 92
trngl_cmatrix, 332 balbkl, 94
balancing bandv, 124
balanc, 65 cbabk2, 205
cbal, 177 cbabkl, 207
decompositions cinvit, 198
csvd, 231 combak, 201
hqgrdc, 223 cortb, 203
minfit, 235 elmbak, 90
ssvd, 227 htrib3, 216
drivers htribk, 219
cg, 46 invit, 84
ch, 49 ortbak, 88
rgg, 15 tinvit, 163
rg, 19 trbakl, 115
rsb, 37 generalized eigenvalues
rsgab, 25 qzit, 56
rsgba, 28 qzval, 59
rsg, 22 generalized eigenvectors
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qzvec, 62
rebakb, 106
rebak, 103
linear equations
bandv, 124
minfit, 235
reduction
bandr, 117
comhes, 180
corth, 183
elmhes, 73
eltran, 76
figi2, 132
figi, 129
htrid3, 209
htridi, 213
orthes, 68
ortran, 71
qzhes, 53
reduc?2, 100
reduc, 97
tredl, 109
tred2, 112
vector operations
caxcpy2, 310
caxcpy, 310
caxpy2, 308
caxpy, 308
ccopy, 295
cdotc, 315
cdotu, 314
cfill, 294
cmach, 322
crotg, 318
cscal2, 306
cscal, 306
cshift2, 300
cshift, 300
csrot2, 320
csrot, 320
csscal?2, 304
csscal, 304
cswap, 296
cvadd?2, 302
cvadd, 302

cvmul2, 312
cvmul, 312
icamax, 297
isamax, 273
samax, 274
sasum, 275
saxpy2, 282
saxpy, 282
scamax, 298
scasum, 299

scnrm2p, 316

scnrm?2, 316
scopy, 271
sdot, 286
sfill, 269
smach, 293
snrm2p, 287
snrm2, 287
srot2, 291
srotg, 289
srot, 291
sscal2, 280
sscal, 280

sshift2, 276

sshift, 276
sswap, 272
svadd2, 278
svadd, 278
svmul2, 284
svmul, 284

Generalized eigenproblem
of higher order, 16

Inverse iteration technique
band matrices, 125
band symmetric matrices, 125
complex upper Hessenberg matrices,

199

real upper Hessenberg matrices, 85
symmetric tridiagonal matrices, 164,

173

Linear equations

band coefficient matrix, 124

Copyright (©1993-2003 GDDI

339

Reference manual



INDEX

band symmetric coefficient matrix,
124

homogeneous, 239

least squares problem, 235

solution of minimal norm, 235

LR algorithm

complex upper Hessenberg matrices,

186, 192

QL algorithm
explicit shifts
symmetric tridiagonal matrices, 142,
166
implicit shifts
symmetric tridiagonal matrices, 44,
145, 148, 169
QR algorithm
band symmetric matrices, 121
complex upper Hessenberg matrices,
189, 195
real upper Hessenberg matrices, 78,
81, 223
Q7 algorithm, 15, 53-64

Rational QL algorithm

symmetric tridiagonal matrices, 150
Rational QR algorithm

symmetric tridiagonal matrices, 160
Rectangular matrices

pseudo-inverse, 238

rank estimation, 238

singular value decomposition, 228,

232, 236

Similarity transformations
diagonal, 66, 130, 132, 136, 178
elementary, 73, 76, 180
orthogonal, 68, 71, 109, 112, 118
permutation, 66, 73, 178, 180
unitary, 183, 210, 213

Sturm sequence, 140, 154, 173
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