
Duration: July - November 2021,

Intern: Burak Topçu

Sundance Multiprocessor Technology LTD www.sundance.com

HiPEAC Internship Report

Power Profiling a Custom

Application on VCS-1

Figure 1: Vision Control and Sensor board (VCS-1).

http://www.sundance.com


Introduction 2

Contributions of TULIPP Book 2

About the Internship 2

VCS-1 and LynSyn Lite Devices 2

About VCS-1 2

About LynSyn Lite 3

Deep Neural Network Implementations with MNIST 4

HiPEAC Student Challenge VIII 4

Histogram Equalization Algorithm 5

Implementation 5

Experiments and Test Results 6

Performance and Power Measurement Comparisons with Other Devices 7

AWS - EC2 8

References 9

1



1. Introduction
a. Contributions of TULIPP Book

Towards Ubiquitous Low-Power Image Processing Platforms (TULIPP) book [1] describes the

main reasons for the transition from current processors to the all-in-one platforms as in the VCS-1

board. Major reasons for this platform transition are that data that is processed increases day by day

because image processing algorithms spread more and, algorithms become more sophisticated

which requires more powerful cores to process increasing data with high performance.

Timoteo Garcia Bertoa, who is the author of chapter 3 in the book, explains how the new

SoCs integrated solves the mentioned challenges. SoCs includes lots of application-specific

processors with memories inside. To illustrate, Zynq Ultrascale+ includes quad cores of ARM

Cortex-A53, real-time processors of ARM-Cortex-R5, a GPU, memory, and controller in addition to

lots of connection peripherals such as USB 3.0, PCIe 1,2 and SPI on the PS side. Furthermore, there is

a PL side including storage such as BRAM, I/Os, transceivers and programmable logic resources in

those SoCs. As one can infer easily, these SoC devices have the capability of processing data in

various conditions such as applications requiring highly parallelized implementation or low power

consumption. Moreover, EMC2 boards enhance the usage of those SoCs by developing a state-of-art

architectural design with many peripherals to be used for lots of applications.

As a result, EMC2 with FM191 extension board enables developers to overcome the

bottlenecks of applications with the mentioned properties and benefits.

b. About the Internship

I saw the Beyond TULIPP internship program assigned by Sundance on the HiPEAC job

facilities page. Then, I sent a proposal to Sundance by introducing myself, including my background

knowledge and explaining my plans for the internship process. Afterwards, we agreed on the

internship, and I have started preliminary work of the internship. In this preliminary work, I learnt the

Zynq Ultrascale+ chips in terms of architectural manner, unified coding environment of Vitis HLS and

some guidelines to optimize the applications. Then, I started the internship on 1st July and

completed my internship on 30th October. I explain what I did in the internship duration in the

remaining sections of this report.

2. VCS-1 and LynSyn Lite Devices
a. About VCS-1

VCS-1 [2] (Vision, Control and Sensor solution board) consists of an EMC2-DP board [3] and

FM191 expansion card shared in figure 2 and figure 3 respectively. EMC2-DP has a PCIe/104

OneBank™ Carrier that is compatible with Trenz SoC modules (mine is Zynq US+), an expansion to

access all signals of VITA 57.1 FPGA Mezzanine Card (FMC) compliant low-pin count (LPC) connectors,

general-purpose I/O pins and LEDs. Also, there are some external interface connections such as USB

2.0, HDMI, 1Gb Ethernet and SATA. Also, the FM191 expansion card provides FM191-R that provides

Analogue and Digital GPIOs for robotics, motors and sensor applications (requiring ADC-DAC

conversions). FM191-U that is an expansion of FM191-R adds 4 USB C ports to increase connection

capability and 40 I/O pins additionally. This FM191 circuitry can be used with FMC-LPC connectors.

2



Figure 2: EMC2 board provided by Sundance. Figure 3: FM191 extension board including
many peripherals.

Due to the hardware resource capabilities compatible with application-specific circuitries

mentioned above and lots of interfaces such as GPIOs, USB-C, ethernet and so on. This board is

preferable for various commercial, industrial and military usage applications.

b. About LynSyn Lite

LynSyn lite [5] shared in figure 4 is a device to be used for measuringconsumed power with 3

different sensors for real-time applications. It samples program counters of the system processor up

to 10KHz and correlates the power measurements with source code for mapping power consumption

of the applications. There is two power measurement methods with either USB-micro cable or JTAG

connection via this device. One can observe power consumption, applied voltage and applied current

of each code section for an embedded application by adding breakpoints to the code with the help of

a JTAG connection. USB-micro cable connection provides limited power measurement compared to

the JTAG connection such that one can just measure applied current, voltage and consumed power in

specific time duration. Lynsyn Lite is compatible with both Linux and Windows operating systems and

provides an open-source software used for both samples and visualizes measurement results via its

GUI in [6].

Figure 4: LynSyn Lite device used to profile power consumption of the applications.

3



3. Deep Neural Network Implementations with MNIST

Deep Neural Network is used commonly by completing popular DNN architectures with its

various configuration. In the internship duration, I want to implement 3 different DNN architectures

try to observe their power consumption on VCS-1. Table 1 reveals the NN architecture configurations

which are inspired from [7] work. First of all, I created the network architectures and trained them

with MNIST dataset. I could decrease error values of each architecture as shared in figure [5].

Table 1: Neural Network architecture configuration, activation and loss functions

Layer Amount Perceptrons Activation and Loss Function

2 layers 300 perceptrons Tanh and MSE

3 layers 300+100 perceptrons Tanh and MSE

3 layers 500+300 perceptrons Softmax and Cross Entropy

Figure 5: Achieved errors for DNN for the architectures mentioned as table xx

After that point, I tried to re-implement this code with Vitis HLS unified environment.

However, since I attended the HiPEAC Student Challenge event, I could not complete this part. Since I

still have the VCS-1, I think I will complete this part of the project for future and share recorded

power consumption with the obtained weights and biases on GitHub [8].

4. HiPEAC Student Challenge VIII

HiPEAC student challenge is a student challenge event and this year they expected to

implement histogram equalization algorithm from the students. In my university, I and some of my

friends decided to attend this event to examine performance and power consumption of this

algorithm on different platforms. It was an opportunity for me since I had been already a HiPEAC

intern and, I would implement the algorithm, make experiments and present my results with my

knowledge that I obtained from the internship. I implemented the algorithm and measured the

power consumption with a basis image detailed in below [8]. Afterwards, I presented my results in

this event in Lyon.

4



a. Histogram Equalization Algorithm

Histogram equalization [9] is an image processing algorithm to manipulate image pixels with

an algorithm to increase the understandability of the grayscale images. The algorithm consists of four

main parts.

Firstly, histogram values of each image pixel are calculated by counting the occurrence rate

of each pixel value. For example, if the image’s pixel depth is 8 bit, we have 255 values in total and

calculate the occurrence rates of each pixel value. After calculating the histogram values that can be

perceived as probability distributions of each pixel, we need to calculate cumulative distribution

functions for those pixel values. CDFs of each pixel value in the range [0,255] is calculated by just

adding the histogram value of the previous ones to the current one. After CDFs are calculated, we

need to find the non-zero CDF for the minimum pixel value. Lastly, we need to apply the formula

given below to calculate equalized histogram values:

ℎ(𝑣) =
𝐶𝐷𝐹(𝑣) −𝐶𝐷𝐹

𝑚𝑖𝑛

𝑀×𝑁 − 𝐶𝐷𝐹
𝑚𝑖𝑛

× (𝐿 − 1)

where M and N are the dimension parameters of the image and L is the pixel depth. The resultant

h(v) values are the histogram equalized result of each pixel of the corresponding image.

b. Implementation

We have carried out work to perform performance and power measurement comparisons

for this algorithm among different hardware platforms. To increase performance, I firstly focused on

the algorithm sub-patterns that can be parallelized.

Calculation of CDF and finding non-zero pixel value steps result in 255 clock cycles at most

because we calculate CDF for each pixel value in the range [0,255] and find non-zero pixel value in

this range. However, calculating histogram values by counting occurrence rate of each pixel takes

more clock cycles if it is implemented in a sequential way. Similarly, re-mapping the histogram

equalized values for those pixels should be implemented in a parallel way to increase algorithm

performance.

Firstly, one has to decide how many pixels will be counted in each clock cycle for the

histogram calculation. Figure 6 represents the implementation of our experimental work. I have also

implemented the algorithm in a more parallelized way. However, those implementations were just

tried with the run-time simulation environment of the Vivado tool. Hist is a vector consisting of 256

elements where each element has 24-bit length for a 4096*4096 image.

5



Figure 6: Histogram calculation of the pixel values

Similar to the above mapping to the calculation of the histogram values, resultant histogram

equalized values for each pixel is re-mapped as shown in figure 7. In figure 7, I have shared a more

parallelized version for the re-mapping such that 16 equalized histogram values re-mapped to the

corresponding pixel values in each clock cycle. Implementing the last part in a more parallel way

requires more hardware resources since there are division and multiplication operations that are

compared to the adder and subtractor circuitry. Hence, I re-mapped 4 equalized pixel values in each

clock cycle.

Figure 7: Applying equalization among calculated CDFs and re-mapping them to the image pixels

c. Experiments and Test Results

I have carried out my experiments with an image that includes 512*512 pixels with 8-bit

depth intensities for each pixel. In the experiments, I have used the VCS-1 board which includes a

Zynq Ultrascale+ chip integrated with EMC2-DP board and LynSyn Lite circuitry. The clock rate of the

Zynq US+ chip is set to 50MHz. The SDRAM memories integrated on-chip operates above 800MHz

which ensures that we can fetch data from the memory at each clock rate without stalling. Also,

power measurements for the embedded application are done via LynSyn lite.

Performance measurements among the different configurations of the algorithm are shared

in table 1 and power consumption metrics measured via USB-micro connection of LynSyn lite are

shared in figure 8, 9 and 10.

6



Figure 8: Applied Voltage in the range [0s, 1s] Figure 9: Applied Current in the range [0s, 1s]

Figure 10: Consumed Power in the range [0s, 1s]

Table 2: Performance measurements of the histogram equalization algorithm with different
parallelization configurations (bolded one is the experimental one)

The bolded result is the experimental one such that the application is created and embedded

into the chip with Petalinux. The remaining results are obtained with the run-time simulation

environment of the Vivado tool. As a result, the histogram equalization algorithm requires 10.49

milliseconds to process an image that has 512*512 pixels. Also, the belonging hardware consists of

Zynq US+ chip consumes 2.047 watt/sec on average.

Implementation details, example images in both .png and .txt (including hexadecimal pixel

values) formats are shared in the GitHub repository [8].

7



d. Performance and Power Measurement Comparisons with Other

Devices

Similar to my experiments, we have carried out the same experiment on a CPU and GPU

devices. In GPU, experiments are done on the Google Colab which uses Tesla P100 architecture in

their cores.

It took 1 millisecond to complete this algorithm on Colab’s cloud environment. Since the

algorithm takes a too small time to complete its work, the power sampling rate of the

nvmlDeviceGetPowerUsage [10] function cannot measure the power consumption of the algorithm

reliably.

In the experiments on CPU, the hardware and compiler configurations are as follows:

● C++ 17 is used for the compiler, LLVM OpenMP API version is the 5th version and Ubuntu

5.11.0-38-generic operating system is used.

● Intel Xeon(R) Gold6148 CPUs are used. In the experiments, 20 of those CPUs are used

with 40 threads in total.

The algorithm resulted in 6,43 milliseconds with 20 cores for the same image. Figure [xx]

represents the performance results of those algorithms on different platforms.

Figure 11: Execution time results for histogram equalization algorithm tested on Colab’s Teasla P100
GPU, 20 * Intel CPU and Zynq Ultrascale+

5. AWS - EC2

Amazon Web Server provides an Elastical Compute cloud namely EC2. Users can create their

virtual machines with specified resources amount with respect to their demands. In my works, while

I was trying to implement more parallelized version of the histogram equalization algorithm,

synthesis and implementation did not complete because of the insufficiency of the RAM. Afterwards,

Sundance provides me an EC2 account to configure more powerful machine for the experiments.

One of the admins adds additional users’ ssh keys to the EC2 account and guest user can

create an EC2 instance in this way. After creating the instance, you need to build your machine in

terms of dependies, operating system desktop and communication portal. In my work, I have used

8



remmina application to connect to the my EC2 instance via VNC. VNC has to be installed both local

machine and virtual machine. Afterwards, users can access virtual machine via VNC connection and

Remmina GUI. Ivica ,who is a member of Sundance, prepared three documentations for AWS EC2

instance creationg, connection between local machine and VM, and building application on VM side

for the boards via JTAG tool respectively.

The most sophisticated thing is that, users can debug their applications via JTAG tool

between virtual machine and local by connecting device to the local machine and configuring and

building the application from the virtual machine.

6. References

[1] M. Jahre, D. Göhringer, and P. Millet, Towards ubiquitous low-power image processing platforms.

Cham: Springer International Publishing, 2021.

[2] https://www.sundance.com/vcs-1/

[3] https://www.sundance.technology/som-cariers/pc104-boards/emc2-dp/

[4]

https://www.sundance.technology/system-on-modules-som/fmc-modules/adc-dac-fmc-modules/fm191/

[5] https://store.sundance.com/product/lynsyn-lite/

[6] https://github.com/EECS-NTNU/lynsyn-host-software/wiki

[7] http://yann.lecun.com/exdb/mnist/

[8] https://github.com/topcuburak/InternshipAtSundance

[9] https://en.wikipedia.org/wiki/Histogram_equalization

[10]

https://docs.nvidia.com/deploy/nvml-api/group__nvmlDeviceQueries.html#group__nvmlDeviceQueries_

1g7ef7dff0ff14238d08a19ad7fb23fc87

9

https://www.sundance.com/vcs-1/
https://www.sundance.technology/som-cariers/pc104-boards/emc2-dp/
https://www.sundance.technology/system-on-modules-som/fmc-modules/adc-dac-fmc-modules/fm191/
https://store.sundance.com/product/lynsyn-lite/
https://github.com/EECS-NTNU/lynsyn-host-software/wiki
http://yann.lecun.com/exdb/mnist/
https://github.com/topcuburak/InternshipAtSundance
https://en.wikipedia.org/wiki/Histogram_equalization

