
ON INTERFACE DESIGN FOR DISTRIBUTED SIGNAL PROCESSING

* Juan C. Díaz Martín * Juan A. Rico Gallego, *Jesús M. Álvarez Llorente, **Carmen Calvo Jurado
*Department of Computer Science, **Department of Mathematics,

Escuela Politécnica, University of Extremadura. Avenida de la Universidad, s/n. 10071. Cáceres. Spain
phone: +34 927 257265, fax: +34 927 257202, email: juancarl@unex.es

web: gsd.unex.es

ABSTRACT
Manufacturers of real-time operating systems (RTOS) for
DSP computers and multi-computers are mainly concerned
on kernel size and performance. These RTOS rely on
configuration tools that statically locate the application
tasks across the available machines. This work describes
IDSP, a distributed middle-ware for DSP multi-computers.
It is not a new RTOS, but a framework upon one of them,
currently Texas Instruments DSP/BIOS. IDSP proposes and
researches process management and MPI-like message
passing interfaces that make possible run-time creation of
remote tasks and true location-transparent communication,
These facilities are not yet present in commercial systems,
but a they are a must for achieving more advanced
capabilities such as process migration and fault tolerance.
We describe the design of IDSP and give performance
figures.

1. INTRODUCTION AND GOALS

DSP intensive applications such as speech engines or video
processing are -and they always will be- strongly limited by
its computational complexity. Distributed computing changes
this scenery. Fortunately, most of algorithms and applications
can be decoupled and distributed among two or more CPUs.
Cooperative work between instances of signal processing
algorithms is necessary in order to gain the scalability of pre-
sent and future DSP developments. The state of the art in
DSP multi-computers is well represented by the develop-
ments of Motorola ([1]), Sundance ([2]) o Hunt Engineering
([3]). These manufacturers rely on DSP real-time kernels
such as DSP/BIOS, Virtuoso ([4]), VxWorks ([5]), OSE ([6])
or 3L Diamond ([7]) to name but a few. The 3L Diamond
case study will put our contribution in perspective because its
distribution model closely follows our abstract model. Un-
der Diamond, a complete application is a collection of one
or more concurrently executing tasks. A Diamond task is a
separate multithreaded C program, with its own main func-
tion. Each task has a vector of input ports and a vector of
output ports that are used to connect tasks together and that
are passed to main. Each port is of type “pointer to channel”
(CHAN *). Fig. 1 illustrates the Diamond message-passing
interface over the ports.

#include <chan.h>
main(int argc, char *argv[], char *envp[],
 CHAN *in_ports[], int ins, CHAN *out_ports[], int outs)
{
 int c;
 for (;;) {
 chan_in_word(&c, in_ports[0]);
 if (c == EOF) break;
 chan_out_word(toupper(c), out_ports[0]);
 }
}

Figure 1: A Diamond task.

A program called the configurer running in the PC host
combines task image files to form the executable file. A
user-supplied textual configuration file drives the config-
urer. It specifies the hardware –available processors and
physical links connecting them, the software –tasks and
connections between them, and how tasks are assigned to
processors. Note that chan_out_word (toupper (c), out_ports [0]);
sends the upper character to “the output port 0”. No dy-
namic addressing is involved, what eases programming and
yet it makes tasks communication transparent to specific
locations. We understand that static configuration solves
most of current practical problems, but it fails to face techni-
cal challenges such as run-time reconfiguration, task migra-
tion or fault tolerance in the DSP world. A software layer
usually known as a distributed framework should ease the
cooperation between objects running in different processors.
IDSP is our contribution in that address (Fig. 2). MPI is the
standard API for parallel programming ([9]). The IDSP
framework proposes and researches MPI-like message pass-
ing interfaces that make possible the dynamic creation of
remote tasks and true location-transparent communication,
facilities not explored enough in present commercial sys-
tems.

 Figure 2: The IDSP framework.

The rest of the paper is structured as follows. Section 2 pre-
sents the concepts underlying the IDSP application model
and its addressing scheme. Section 3 and 4 studies the proc-
ess management and communication interfaces respectively,

1365

while section 5 shows the internal architecture. Finally, sec-
tion 6 gives performance figures.

2. DESIGN PRINCIPLES

The key feature of IDSP is the assumption of a model of
distributed application that consists of a graph of
cooperating DSP algorithms running in one or more
machines. A node in the graph represents an algorithm,
served by a process that is known as an operator. Fig. 3
shows an application of five operators. An arrow represents
a data stream.

Figure 3. The IDSP application model

Conceived as a building block, a design principle of
IDSP is keeping the operator a simple entity. Hence, it has a
single thread of execution, currently a DSP/BIOS task.
Typically, signal processing leads to an algorithm applied
to data streams windows in an infinite loop. In our model, a
loop iteration reads inputs in sequence, does the computing
task, and writes to the output, going back for new input
data. This activity pattern is suitable for a single thread.
Notwithstanding, for the sake of regularity, IDSP also
charges operators with non-DSP services. This is the case
of the system servers, for instance.

The addressing scheme is one of the key features of a
distributed system. Each operator in the system has
assigned an address that distinguishes it from the rest in a
global scope. Operators are the end points of a
communication. The IDSP address is transparent to the
operator location. It consists on the pair [gix, oix] -the
group index, and the operator index. There should not be
two groups with the same gix. IDSP provides a service to
obtain a unique gix. A random number must be employed
otherwise. The operator index, oix for short, identifies an
operator inside a group, ranging from 0 up to the maximum
number of operators in the group.

A data stream is a sequence of messages, usually signal
windows. Fig. 4 shows the format of the IDSP message.
Four fields compose it. The source and destination address,
followed by the number of bytes of the data field and the
data field itself. Some messages, notwithstanding, do not
carry the signal data, but methods identifiers of the IDSP
system RPC servers, their parameters and results.

Figure 4: The IDSP message format

Note that both kinds of information are supported by the
same message format. Method information or signal data is
irrelevant for the IDSP kernel. Hence, from now on, we can
refer to them just as the data field.

3. THE PROCESS MANAGEMENT INTERFACES

This research has been carried out on Texas Instruments
TMS320C6000 processors with DSP/BIOS ([8]). DSP/BIOS
is the 25Kbytes sized kernel that Texas Instruments supplies
with its DSP systems and it has therefore became one of the
better known and more widely used RTOS. Raw DSP/BIOS,
however, is not aware of other CPUs in a distributed memory
multi-computer environment; hence the purpose of building
the new process management interfaces. They use
DSP/BIOS for just basic concurrency support and extend it
with a run-time process management facility.

Each operator has a system-wide well-known integer
name. Of course, all the instances of the same operator
share the same name. The so named operator register is a
module that keeps the features of the operators linked in
memory, i.e., the operator name, the body function, the
parameters size and the stack size. In some way, this
register plays the role of a file system in a conventional
computer, which keeps the executable files. The IDSP
process management interface is simple:

Int init (Void);
Int enrol (Void);
Void leave (Void);
Int create (Opr_t *oper, Addr_t addr, Int name, char *param);
Void destroy (Opr_t oper);
Int start (Opr_t oper);
Int kill (Opr_t oper);
Opr_t self (Void);

Init primitive initialises IDSP. Enrol allows a host RTOS task
-a DSP/BIOS task, for instance, to become an IDSP operator
and therefore invoke its interfaces. Leave has the contrary
effect. Create creates a new operator, supplying it with its
name and its global address. Destroy stops the operator and
liberates its resources. Start schedules the new operator and,
finally, Kill “disables” the operator, a state discovered by next
or current kernel service and currently used to invoke leave.

The OPR interface manages the distribution of operators
by allowing an operator to create another in a given
machine, as well as to destroy, start and kill it. OPR is
implemented by an RPC system service that exhibits the
following interface specification. Note how it fits the kernel
interface.

Int OPR_create (Addr_t addr, Int machine, Int code, char *param);
Void OPR_destroy (Addr_t addr);
Int OPR_start (Addr_t addr);
Int OPR_kill (Addr_t addr);

The GRP interface helps on process management by
allowing operating on groups. A group is a set of related
algorithms that cooperate in solving a task and it is known
by a single identifier. Groups are created, started and
destroyed by using its name. GRP is also implemented by

1366

an RPC service, built upon the OPR interface. This is its
interface specification:

Int GRP_create (Int *gix, Int mode, Int *name, Void **parm, Int size);
Int GRP_destroy (Int gix);
Int GRP_kill (Int gix);
Int GRP_start (Int gix);
Void GRP_leave (Void);
Int GRP_self (Void);
Int GRP_channel (Int gix, Int *inCh, Int *outCh, Int size);

GRP_create creates a group composed by the operators
in name. Operators are assigned to processors following a
load-balancing approach. This means, for instance, that
group instance g can have the operator 4 running on the
machine m, while the group g’ can have its operator 4
running on the machine m’. When the mode parameter takes
the GRP_GEXTGIX value, GRP_create just returns a system
unique gix identifier. The GRP_GRAPH value creates a new
group. Size is number of operator composing the group.
GRP_destroy terminates the group by destroying its
operators and liberating the group resources. GRP_kill kill
the composing operators as above explained. GRP_leave
allows the invoking operator to abandon the group. The last
one destroys the group.

4. THE MESSAGE PASSING INTERFACES

The kernel shows a simple but yet powerful interface to
send and receive messages:

Int send (Int sync, char *buffer, Int count, Addr_t dst, Int tag,
 Rqst_t *rqst, Uns timeout);
Int recv (Int sync, char *buffer, Int count, Addr_t src, Int tag,
 Rqst_t *rqst, Status *status, Uns timeout);
Int waitany (Int count, Rqst_t *rqst, Int *index, Status *status);
Int waital (Int count, Rqst_t *rqst, Status **status);

The sync parameter determines if send and recv operate
either in synchronous or asynchronous mode. Send
primitive sends count bytes of buffer buffer to dst operator,
labelled with the tag tag. The K_E_DISABLED error is
returned when the invoking operator has been disabled.
The K_E_TIMEOUT error is returned when the rendezvous
times out. Recv primitive is similar. The rqst
communication object is returned when send and recv are
invoked in asynchronous mode. Waitany and waitall suspend
the operator until its communication request are satisfied.
On other hand, upon these kernel primitives, IDSP build
two higher level, user oriented communication libraries,
group communication (GC) and remote procedure call
(RPC). GC facility is quite similar to MPI. In fact, P4, a
parallel library that supports MPI, has been ported to the
C6000 architecture upon GC ([10]):

Int GC_send (char *buffer, Int count, Int dst, Int tag, Uns timeout);
Int GC_asend (char *buffer, Int count, Int dst, Int tag,
 GC_Rqst_t *rqst, Uns timeout);
Int GC_bcast (char *buffer, Int count, Int root);
Int GC_recv (char *buffer, Int count, Int src, Int tag,
 GC_Status *status, Uns timeout);

Int GC_arecv (char *buffer, Int count, Int src, Int tag,
 GC_Rqst_t *rqst, Uns timeout);
Int GC_wait (GC_Rqst_t rqst, GC_Status *status);
Int GC_waitall (Int count, GC_Rqst_t *rqst, GC_Status *status[]);
Int GC_waitany (Int count, GC_Rqst_t *rqst, Int *index,
 GC_Status *status);
Int GC_test (GC_Rqst_t rqst, Int *flag, GC_Status *status);

One important difference between IDSP and DSP/BIOS
objects is that the former ones can be in different machines.
This fact poses the problem of remote invocation. Remote
objects are often operated in distributed systems by using a
technique known as RPC (Remote Procedure Call). The
RPC system servers of IDSP also fit into its application
model. They are implemented as the single instance of a
single operator group. There are two main RPC system
servers in IDSP: the group server and the operator server.
Whilst there is one operator server per machine, there is a
single group server in the whole system. The machine
hosting the group server is called the root machine. RPC
syntax and semantics have been inspired in the Amoeba
operating system ([11]). Operators use RPC for accessing
user or system services such as create groups or operators
asking for CPU loads… OPR and GRP stubs and
skeletons, for instance, use these primitives:

Int RPC_trans (char *buffer, Int count, Int service);
Int RPC_send (char *buffer, Int count, Int dst);
Int RPC_recv (char *buffer, Int count, Int src);

At the highest level, DSP operators communicate
through objects named channels. There are two kinds of
channels, input channels, and output channels. Inside an
operator, channels of the same sense are known by its order
number 0, 1, 2, … Thus, channels complete the IDSP
application model shown in Fig. 3. The programmer just
sends data to output channel, say 2, and data arrives to the
connected operators 3 and 4. The GRP_channel primitive
supplies a just created group with two connection matrices,
one for input channels and another for output channels. The
operator creates, reads, writes and destroys the channels it
uses by using the channel interface (CHN). Built on GC,
CHN is a more flexible facility than the before mentioned
static Diamond channels:

Int CHN_create (CHN_t *ch, Uns mode, Uns channelNr);
Void CHN_destroy (CHN_t ch);
Int CHN_send (CHN_t ch, char *buffer, Int nbytes, Uns timeout);
Int CHN_asend (CHN_t ch, char *buffer, Int nbytes,
 CHN_Rqst *rqst,
 Uns timeout);
Int CHN_recv (CHN_t ch, char *buffer, Int nbytes, Uns timeout);
Int CHN_arecv (CHN_t ch, char *buffer, Int nbytes,
 CHN_Rqst *rqst, Uns timeout);
Int CHN_test (CHN_Rqst *chRqst, Bool *flag);
Int CHN_wait (CHN_Rqst *chRqst, CHN_Status *st);
Int CHN_waitall (Int count, CHN_Rqst *chRqst, CHN_Status *st);
Int CHN_waitany (Int count, CHN_Rqst *chRqst, Int *index,
 CHN_Status *st);

5. A MICROKERNEL SOFTWARE ARCHITECTURE

IDSP rests upon two software engineering techniques that
have proved to be a solid foundation for building robust

1367

software: layering and objects. An object is a data structure
plus a set of operations over such data, also known as
member functions or methods. Methods promote the
software reusability by applying the principle of
information hiding. They hide to the user the internal
implementation of the object, allowing that changes in the
implementation of the object do not affect the client code.
Objects are created, operated on and finally, destroyed. In
IDSP, a group is an object an operator is an object and a
channel is an object. Every entity in IDSP is an object. Fig.
5 shows the microkernel architecture of IDSP. We can see
how services as GRP and OPR have been segregated from
the kernel and implemented as user servers that
communicate through the kernel message-passing
interface.

Figure 8: The IDSP architecture

6. MESSAGE-PASSING PERFORMANCE

In spite of its rich semantics (practically the ones showed
by the MPI standard) the IDSP message-passing interfaces
show reasonable performance.

Figure 9: Time to send synchronous messages versus

message size

Fig. 9 shows the time that sending a message takes to the
synchronous primitives. A Sundance SMT310Q multi-
computer board with four TMSC6102 DSP processors has
been our test environment. As a reference, we measured that
it takes 17 microseconds the highly optimised DSP/BIOS
MBX_post primitive to send a short message to a mailbox.
Asynchronous primitives show similar performance, being

the added cost of further wait invocations around the 20%.
The good performance of the P4 port on IDSP ([10]) sup-
ports the idea that IDSP is not slow.

7. CONCLUSIONS

A distributed framework for DSP multicomputers has been
proposed. IDSP has been implemented on Texas Instruments
TMSC6000 processors, but its use of DSP/BIOS makes it
quite portable to other architectures. IDSP interfaces have
been modelled after the MPI standard, what makes them
powerful and flexible, and yet keeping IDSP small (about 60
K) and fast. In our view, its transparent location address
scheme makes IDSP a tool for researching on distributed
embedded systems. We are currently working on improving
the IDSP interfaces and using them to support distributed
speech recognition engines and build a MPI port. We plan
future work on implementing and testing the MPI/RT speci-
fications on the DSP world.

8. ACKNOWLEDGEMENTS
CICYT and Junta de Extremadura founded this work under the
TIC99-0609 (DIARCA) and IPR00C032 projects respectively.

REFERENCES

[1] http://mcg.motorola.com/us/general/CPCIC6400.pdf
[2] http://www.sundance.com
[3] http://www.hunteng.co.uk
[4] http://www.transtech-dsp.com/software/virtuoso.htm
[5] http://www.windriver.com/products/vxworks5
[6] http://www.ose.com/downloads/pdfs/products
[7] http://www.3l.com
[8] www.ti.com/tmwbios
[9] W. Gropp, E. Lusk, N. Doss, A. Skjellum, “A High Per-

formance, Portable Implementation of the MPI Message
Passing Interface Standard”. Parallel Computing, 22, pp.
789-828 (1996).

[10] J. A. Rico, J.C. Díaz, J.M. Rodríguez, J. M. Álvarez, J.
L. García, “Porting P4 to Digital Signal Processing Plat-
forms", in Proc. 10th European PVM/MPI User’s Group
Meeting (EuroPVM/MPI 2003). Venice, Italy, Sep 29 -
Oct 2, 2003. Lecture Notes in Computer Science LNCS
2840. Springer, pp. 362-368.

[11] A.S. Tanenbaum et al., “Experiences with the Amoeba
Distributed Operating System”. 1990. Comm. ACM,
vol. 33, no. 12, pp. 46-63.

1368

	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Diaz Juan

