
1

Rapid Application Development (RAD) and code optimization
technique

M. Ahmadian∗, N Nakhaee†, Andrew Nesterov†
∗School of Engineering & Electronics , University of Edinburgh, Edinburgh, UK

†Sundance Digital Signal processing Inc. 4790 Caughlin Parkway #233 Reno NV 89509-0907 U.S.A.

Index Terms— rapid application development, RAD, embedded system,
Matlab R©, Simulink R© ,Real-Time Workshop R©, code optimization,
DSP, SMT6050

Abstract— In this paper the efficiency of code generated by a particular
RAD systems will be examined and contrasted with other available
systems. The functionality and performance of SMT6050, the new
software module from Sundance, helping RAD systems target DSP will
be fully discussed. The RAD used as the base system, in this case, is
Simulink and Real Time Workshop (RTW) from MathWorks . These
two products work in conjunction to simulate (Simulink) and then to
generate code (Real-Time Workshop) for a real time system model.
This combination represents an effective RAD for designing embedded
systems, and with the addition of Sundance SMT6050 and GDD toolbox
for Simulink component, prototypes can be developed in record time
and with impressive performance. This paper investigates Real-Time
Workshop code generation techniques and performance of the resulting
code. The structure of the generated code and the interaction of various
components including SMT6050, Simulink and Real-Time Workshop
are presented in details The paper also explains the parameters that
a designer should take into consideration when designing a model in
Simulink so the generated code could be as optimised as possible. The
performance gain resulting from using these tools are also measured and
presented.

I. I NTRODUCTION

Rapid Application Development has opened its doors to embedded
system designers for some time now [1] [2] [3]. There are several
products already in the market [4], and some are in research phase [5],
for automatically generating embeddable codes. As the performance
of an embedded system is always a very important parameter, there
is a vital question to be considered:

How optimised is the RAD generated code?
The SMT6050 [4] software was designed to assist system devel-

opers in using MathWorks [6] well established RAD system to target
Texas Instrument’s DSPs [7] . SMT6050 assists Real-Time Workshop
[8] to generate appropriate efficient codes for Sundance [9] DSP
boards, which are based on Texas Instrument’s DSP processors series
TMS320C6000. SMT6050 supplies platform information to Real-
Time Workshop and controls it to generate DSP target code from a
Simulink [10] model. SMT6050 then generates a make file to compile
and link all the created source codes to building an application
that can be downloaded into the specified underlying DSP board.
SMT6050 uses Code Composer Studio (CCS) for compilation and
linking. CCS can be used for downloading the created application into
the DSP hardware. SMT6050 also generates some other non-C files
that are needed for building the generated application. For example,
SMT6050 interrogates the installed DSP board to determine how
much memory it has and generates a suitable memory map and linker
command file to be used during linking phase in CCS. SMt6050 could
use highly optimised GDD libraries [11], depending on whether the
designer has used the GDD block set in the Simulink model or not.
GDD libraries are hand optimised assembly codes for TMS320C6000
processors. The library functions have been optimised algorithmically
at the assembly level and hand coded in assembly to obtain the
maximum possible performance, and at the same time to provide

for the maximum accuracy achievable in single precision arithmetic
(32-bits IEEE-754 floating-point numbers). Therefore, users have
the benefit of improved performance, which in some cases could
be as much as 10 times faster than the corresponding C functions.
Usually the use of the library functions would give 30% through
300% performance gain. In short, the steps for developing a working
software application in this system can be summarised as: create
software model in Simulink using GDD block sets, simulate the
model, generate code using Real-Time Workshop and SMT6050,
compile and link using CCS and the run and test resulting solution.

II. SIMULATION AND CODE GENERATION TECHNIQUE

Simulink uses a model-based approach for the rapid application
development. In a model based system design, a system is a model
that is constructed from other interconnected models. Simulink is
shipped with several primary models; other models can be bought
from MathWorks or third-party suppliers. To design a system using
Simulink, the designer begins with developing a model for the desired
system in Simulink and debugs it using Simulink simulator. The
design phase is finished when the developer has obtained satisfactory
results of the simulation. For the code generation phase the system
designer would use SMT6050 to generate code for the developed
model. Based on this approach to system design, designing a system
has three steps:

1) Model construction.
2) Model simulation.
3) Model code generation.

A. Model construction

During this phase, a model is constructed by interconnecting avail-
able models. Simulink comes with several primary models and other
models can be bought from MathWorks or third parties. SMT6050
provides with the models for hardware input/output devices on the
Sundance boards and ADC and DAC modules. For the purpose of
this paper, we are using ”demodspcopdsp.mdl” demo model that is
shipped with SMT6050 (a copy of this model can be found in the
Matlabroot/sundance/demos/dspcop subdirectory). This model that
is shown in fig.1, demonstrating how to design a DSP coprocessor
for Matlab. The idea behind a DSP coprocessor is that a DSP board
can act as a coprocessor for Matlab to offload the heavy duty DSP
processing from a PC to a DSP processor.

The model consists of five blocks. From left to right, they are:

1) IComport3: Gets data from the PC.
2) Data type conversion 1: Convert input data to float.
3) Magnitude FFT: Calculate the power spectrum of input.
4) Data type conversion 2: Convert input to int32.
5) Ocomport3: Send data to PC.



2

Fig. 1. DSP Coprocessor model

Fig. 2. Flowchart of the generated code

B. Simulation

During this phase, the system response is simulated and errors
could be detected and fixed. Simulink call each block at the appro-
priate time to simulate the system. Simulink also checks that the data
flows between blocks are correctly handled. For example, if a block
expects an integer data as its input but is fed with floats, Simulink
would generate an error and inform the developer that there is a data
flow error. The designer can change the model if the system response
is not in the acceptable region and retest the simulation to find a new
response. The iterations continue until the system response become
acceptable.

C. Code generation

When the designer has satisfied with the system response, he can
use SMT6050 to generate code. Since Simulink tested the developed
model during simulation and designer checked the system response,
the code generation normally would pass without errors. SMT6050
generates the source code and necessarily files needed for compiling,
linking and building the executive binary file for uploading to the
DSP board. For example, it generates a linker command file and a
make file to use make utility for compiling and linking the generated
code and a batch file to set the required environment variables needed
by make file and TI compiler and linker. During code generation,
Matlab run the generated batch file to produce the output file ready
to be uploaded into a Sundance DSP board.

III. C ODE GENERATION METHOD

SMT6050 analyse the model and generates code that contain two
main parts: Initialisation and one-step as shown in fig 2. In the ini-

Fig. 3. Detail flowchart of the generated code

tialisation subroutine, code is generated to initialise each block in the
model. Initialisation is called only once at the beginning of program
run. The one step is responsible to generate the required response
of the system. In the one step subroutine, SMT6050 generates code
that reproduces the functionality of each block in the model. The
generated code for the selected model would follow the structure of
the graph shown fig 3.

IV. OPTIMISATION TECHNIQUE

Since initialisation codes runs only one time but the one-step
subroutine calls repeatedly, optimisation effort focused on one step
subroutine.

SMT6050 generates code for one-step using information that is
passed to it via a TLC file for each block. Each block in the model
should have a corresponding TLC file. The TLC file instructs the
SMT6050 on how to generate the code for a block. TLC files for
the blocks shipped with Simulink have directives to generate code
compatible with ANSI C compilers. The generated codes are very
effective but since they generated based on a TLC that is targeted
for general ANSI C compilers they do not use the internal parallel
structure of TI DSP processors. To solve this problem, we developed
a new set of blocks for Simulink. The TLC for these blocks instructs
SMT6050 to generate calls to GDD DSP libraries. GDD libraries are
a set of hand optimised assembly subroutines for TI DSP processors.
The library functions intensively use the internal parallel structure of
TI DSP processors to effectively process the input data.

A. GDD Library specifications

The GDD libraries were designed to implement the most frequently
required DSP vector operations and a set of routines for solving
systems of linear equations and matrix eigenvalues computations.

Structure of the DSP library (GDD300)[12]:

• Transforms (FFT, Hartley)
• Filters, convolutions, windows
• Real and complex vector operations
• Complex scalar math
• Data conversions
• Random number generation

Structure of the Eigenvalue library (GDD8000)[12]:



3

• Real and complex generalized eigensystems
• Real and complex general matrix eigensystems
• Symmetric and hermitian generalized eigensystems
• Symmetric and hermitian eigensystems
• Tridiagonal symmetric eigensystems
• SVD and least squares solutions

Structure of the Linear Equations library (GDD7000)[12]:

• Real and complex general matrix linear equations
• Real and complex symmetric matrix linear equations
• Real symmetric positive definite matrix linear equations
• Hermitian matrix linear equations
• Hermitian positive definite matrix linear equations
• Real and complex band matrix linear equations
• Real positive definite symmetric band matrix linear equations
• Positive definite hermitian band matrix linear equations
• Tridiagonal matrix linear equations
• Tridiagonal symmetric matrix linear equations
• Real and complex Toeplitz linear equations
• Cholesky decomposition
• QR matrix decomposition
• SVD and least squares solutions

The functions in these libraries conforms to the C calling con-
ventions and are C callable, however coding in C applied a number
of restrictions that potentially reduce the effectiveness of the code,
thus internally these functions were coded in assembly, that helped
to overcome restrictions of the C language and use internal parallel
structure of TI TMS320C6000 processors that are capable to execute
up to eight independent instructions on each CPU cycle.

The main features of functions in the libraries are optimal instruc-
tion flow, interruptibility and reentrability (thread safe). There are two
separate modules to work in little and big endian memory mode.

The architecture of TMS320C6000 allows for performing of dif-
ferent types of an assembly code optimisation. The most important of
them are instruction partitioning, scheduling and software pipelining
[13] [14] [15]. The other types of optimisation performed were
data dependencies disambiguation, memory banks access conflicts
removal, split-joint path resolving and loop unrolling.

Two special kinds of optimisation were specifically excluded and
have not been used; these are loop iteration intervals of less than 6
cycles and multiple register assignments. Although they may increase
performance of the code, they also restrict interruptibility of the final
code. Instead, the preference has been given to the ability of the
code to be interrupted on every CPU cycle, and the performance
degradation connected with large iteration intervals has been worked
around by loop unrolling.

V. EXPERIMENT AND RESULTS

SMT6050 was used to generate code for the selected model,
compile and link for the SMT376 Sundance TIM board with TI
TMS320C6711 microprocessor running at 150 MHz clock rate and
256 MB of SDRAM [16]. The generated code was profiled to estimate
the efficiency of the generated code.

The time that each block takes to run in one call to one-step
subroutine is estimated based on DSP clock tick. The results are
shown in table I.

The performance of the data input/output blocks (IComport3 and
OComport3) of the Simulink model completely depends on the
performance of the underlying hardware. The communication ports of
the test bed platform (SMT376) are implemented on a Xilinx FPGA
device. To start/stop data communication via the comports, the control
program has to set up a number of registers in the FPGA memory
space. After the control registers has been properly initialised, the

Block name DSP Clock Tick

IComport3 —-
Data Conversion 1 3115
FFT 348316
Data Conversion 2 13469
Ocomport3 —-

TABLE I
PROFILE RESULT FOR DEMO MODEL CONSTRUCTED WITHSIMULINK

BLOCKS

Fig. 4. DSP co-processor model constructed using GDD block set.

communication process is being performed by the hardware. Thus,
the data communication blocks IComport3 and OComport3 need not
be software optimised.

To generate optimised code, a new model that uses GDD block set
was constructed. The new model has similar functionality compared
to the previous model before but it uses GDD blocks instead of
Simulink blocks. The model was changed as shown in fig.4.

SMT6050 generates code for this model based on GDD library
calls and hence it is optimised for TI DSP processors.

The generated code for this model was profiled and the results are
shown in the table II.

The time that each step takes in the optimised and non-optimised
code is shown in the table III.

VI. CONCLUSION

Code generation using SMT6050 and MathWorks Real-Time
Workshop was discussed and a technique based on using hand
optimised assembly code such as GDD was presented. The structure
of generated code was examined. It was shown that the generated
code from a model that was constructed from GDD block sets was

Block name DSP Clock Tick

IComport3 —-
Data Conversion 1 1750
GDD RFFT 30997
Data Conversion 2 3606
Ocomport3 —-

TABLE II
PROFILE RESULT FOR DEMO MODEL CONSTRUCTED WITHGDD BLOCK

SET

Model DSP Clock Tick

Non optimised 364597
Optimised 36353

TABLE III
COMPARISON BETWEEN THE PROFILE RESULT FOR THE TWO

CONSTRUCTED MODEL



4

10 time faster compared to a similar model that was constructed from
Simulink native block sets. The gain in speed comes from the fact
that using GDD block sets force SMT6050 and Real-Time Workshop
to generate codes that calls into an hand optimized assembly code.
The other advantage of using this technique is that since GDD block
sets provides with a simple and generic API, these codes can be
easily ported to other platforms by linking against the respectively
targeted GDD libraries.

REFERENCES

[1] W. Wolf, “CAD techniques for embedded systems-on-silicon,”16th
International Conference on Computer Design, pp. 24–29, Oct 1999.

[2] W.Wolf, “Household hints for embedded systems designers,”Computer
(IEEE), vol. 35, no. 5, pp. 106–108, May 2002.

[3] M. Mrva, “Reuse factors in embedded systems design,”Computer
(IEEE), vol. 30, no. 8, pp. 93–95, aug 1997.

[4] http://www.sundance.com/edge/files/productpage.asp?STRFilter=SMT6050.
[5] R. Obermaisser and P. Peti, “A framework for rapid application devel-

opment of distributed embedded real-time systems,”EUROCON 2003,
vol. 1, pp. 80 – 84, Sept 2003.

[6] http://www.MathWorks.com.
[7] http://www.ti.com.
[8] Real-Time Workshop user’s manual (version 5), The MathWorks, Inc.,

2002.
[9] http://www.sundance.com.

[10] Simulink user’s manual (version 5.1), The MathWorks, Inc., 2003.
[11] “http://www.dspshop.com/MiddleRoots.asp?Code=1.”
[12] GDD user’s manual, Sundance Multiprocessor Technology Ltd, 2002.
[13] “TMS320C6000 CPU and Instruction Set Reference Guide, rev. F,”

Texas Instrument, Tech. Rep. SPRU189F, October 2000.
[14] “TMS320C6000 Optimizing Compiler User’s Guide, rev K,” Texas

Instrument, Tech. Rep. SPRU187K, October 2002.
[15] “TMS320C6000 Programmer’s Guide, rev F,” Texas Instrument, Tech.

Rep. SPRU198F, February 2001.
[16] Sundance, “SMT376 DSP hardware user guide.”


