Sundance Multiprocessor Technology Limited User Manual

Unit / Module Description:	
Unit / Module Number:	SMT148FX-DC, SMT148FX-ATX
Document Issue Number:	1.4
Issue Date:	3/8/09
Original Author:	GKP

User Manual for **SMT148FX**

DC and ATX versions

Sundance Multiprocessor Technology Ltd, Chiltern House, Waterside, Chesham, Bucks. HP5 1PS.

This document is the property of Sundance and may not be copied nor communicated to a third party without prior written permission.

© Sundance Multiprocessor Technology Limited 2006

Form: OCF42

Date: 6 July 2006

Revision History

Issue	Changes Made	Date	Initials
1.0	First release	4/6/07	GKP
1.1	Minor updates	2/7/07	GKP
1.2	Update LVDS FPGA connectivity.	20/8/07	GKP
1.2.1	Added LVDS buffer drawing.	20/8/07	GKP
1.3	Differentiated DC and ATX versions.	13/6/08	GKP
1.3.1	Corrected LVDs connector pin-out tables.	3/7/08	GKP
	Added additional detail about IL715 isolators.		
1.3.2	Added connector info for RS485.	19/8/08	GKP
1.4	Spartan firmware explanation	3/8/09	FS

Important comments or cautions are displayed next to this symbol.

Table of Contents

1	Introduction	5
2	Related Documents	6
	2.1 Referenced Documents	
3	Acronyms, Abbreviations and Definitions	6
	3.1 Acronyms and Abbreviations	6
4	Functional Description	7
	4.1 Block Diagram	
	4.1.1 Virtex 4 FX	
	4.1.2 Spartan 3	8
	4.1.3 TIM Sites	8
	4.1.4 10/100/1000 Ethernet Phy	8
	4.1.5 LVDS Isolators	9
	4.1.6 Firewire	.12
	4.1.7 USB2	.12
	4.1.8 RS232	. 14
	4.1.9 Flash	. 14
	4.1.10RS485	. 15
	4.1.11SHB	. 15
	4.1.12LEDs	. 15
	4.1.13ZBT Memory	. 15
	4.1.14RSL	. 16
	4.1.15External ComPorts	. 17
	4.1.16Internal ComPorts	. 19
	4.1.17Power input (DC version)	. 20
	4.1.18Power input (ATX version)	. 21
	4.1.19Power output	. 22
	4.1.20JTAG	. 22
	4.1.21Local Clock for ADCs etc.	. 23
	4.1.22Fan Power	. 23
	4.1.23Reset Scheme	. 23
	4.1.24External FPGA Clock Input	. 24
	4.1.25FPGA (Virtex4 and Spartan) configuration	. 24
5	Jumper Position/Function	. 25
6	Footprint	. 26
	6.1 Top View	. 26

	6.2 Bottom View	27
7	Virtex4 FPGA Pin Allocation	28
8	Virtex4 FPGA Bank Allocation	29
9	Programming the Cpld	31
10	O Application to program the Flash	32
	10.1 Connections provided on the SMT148FX	32
11	1 Accessing the Flash	33
	11.1 Programming the Spartan	33
	11.2 Erase and Program of the Flash	33
	11.3 Booting the Spartan and Virtex 4 from flash	34
12	2 Firmware for the Spartan	34
	12.1 Hardwired comport connections	36
13	3 RSL and Comport connections	37
	13.1 RSL connections	37
	13.2 Comport connections	39
14	4 Spartan firmware explanation	42
15	5 DIP Switches	45
16	6 Support Packages	46
17	7 Physical Properties	46
18	8 Thermal Management	47
19	9 Safety	48
20	0 EMC	48
21	1 Ordering Information	48

1 Introduction

The SMT148FX is a four site stand-alone TIM carrier board with several external interfaces.

Connectors are provided to interface to:

- RS232 From FPGA or USB controller
- LVDS (48 pairs)
- JTAG
- RSL
- SATA Connectors carrying RSL signals only.
- SHB
- RS485 (16 pairs)
- USB2
- Firewire (1394) interface only (No IP core).
- Ethernet 10/100/1000
- LED (x32)
- ZBT memory
- Local clock buffer/generator output

Sundance Multiprocessor Technology Limited User Manual

Form: QCF42 Date: 6 July 2006

2 Related Documents

2.1 Referenced Documents

Sundance SLB specification (hyperlink).

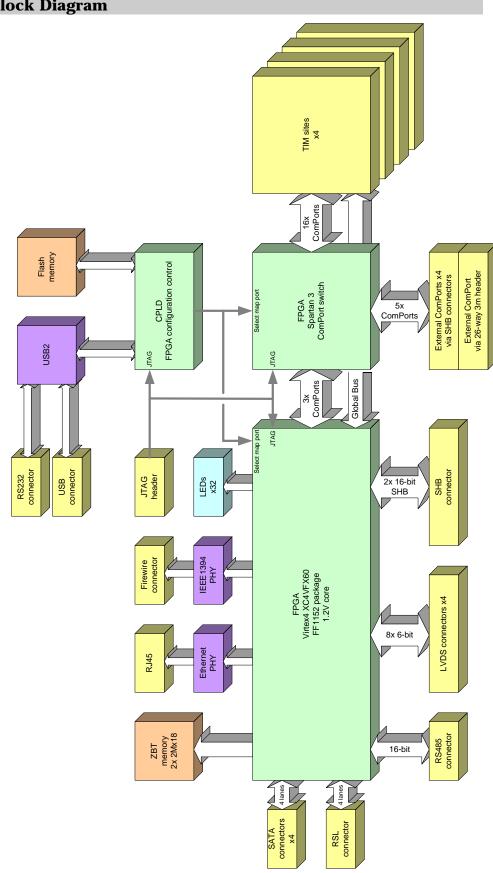
Sundance RSL specification (hyperlink).

Datasheets as specified above.

<u>Texas Instruments Module</u> specification.

SMT118: Carrier with 3 Module sites and I/O facilities.

SMT180: Carrier with 8 Module sites.


3 Acronyms, Abbreviations and Definitions

3.1 Acronyms and Abbreviations

A list of acronyms etc (hyperlink).

4 Functional Description

4.1 Block Diagram

4.1.1 Virtex 4 FX

The primary controlling device on the 148FX is the Xilinx Virtex4 FX60 FPGA. This device is an FF1152 package which provides 16 MGTs (high speed serial I/O) and 576 normal I/O signals.

This device can be configured via a Xilinx compatible JTAG header.

In normal operation, this device is configured by the CPLD (XC2C512). The configuration data is stored in flash memory, and is loaded using slave SelectMAP mode (8-bit parallel).

4.1.2 Spartan 3

The Xilinx Spartan 3 device is similar in nature to that employed on the SMT150Q and SMT329 carrier boards. It acts as a pre-configured ComPort routing switch.

Different ComPort routing schemes are easy to implement using supplied tools (requires Xilinx ISE development software).

This device is also configured by the CPLD, and uses slave SelectMAP mode (8-bit parallel), but is also part of the Xilinx JTAG chain.

4.1.3 TIM Sites

The 148FX provides 4 TIM sites. In addition to the standard specification requirements, the 148FX also provides the 3.3V supply to the two TIM mounting holes.

Each TIM site has 4 ComPorts connected directly to the Spartan 3 device. The two remaining ComPorts are used to create a simple pipe, with each site connecting to its nearest neighbours.

The TIM site's interrupt, timer, config, and reset pins are all connected to the Virtex 4 FPGA. The reset signals are asserted during power-up, when pressing the on-board reset button, or when signalled to via one of the external ComPort connectors.

A global bus connection (16 bit data, 12 bit address) is also made from each site to the Virtex 4. The global bus connector normally contains one 16-bit SDB interface (this is unlike the TIM specification which describes the global bus as an Address/Data structure). These SDBs are the primary method of communication to the resources shared by the Virtex 4 (eg. USB, Firewire, etc).

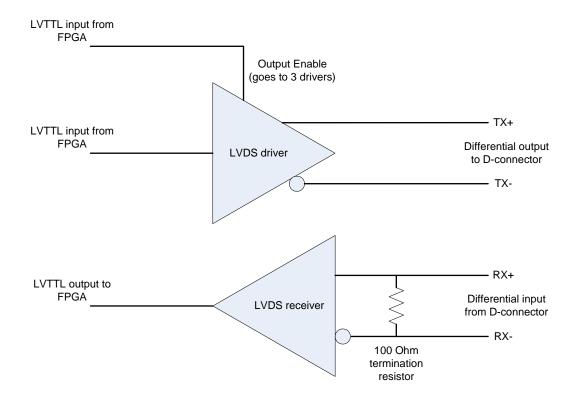
4.1.4 10/100/1000 Ethernet Phy

A Marvell Ethernet PHY connects directly to the Virtex 4 FPGA. This interfaces to a 10/100/1000 network via a standard RJ45 socket. This socket has built-in magnetics.

The PHY is controlled by a MAC within the Virtex 4.

An Ethernet IP core is not supplied in the standard firmware. Please contact Sundance for further information.

4.1.5 LVDS Isolators


48 single ended signals are connected from the Virtex 4 to LVDS drivers and receivers (SN65LVDS390/1) via galvanic isolators (type IL715-3). The transmitter part is enabled via control signals. The LVDS outputs are arranged in groups of 6., hence there are 8 control signals. The LVDS receivers are enabled continuously.

The isolation provided is up to 150V rms maximum.

The isolation provided is up to 150V rms, whilst still enabling a baud rate of up to 100Mbps.

The LVDS transmitters and receivers are external to the FPGA itself. The devices used are SN65LVDS390 and 391.

The IL715-3 galvanic isolators require a simple initialisation sequence before use. Simply toggle the driving pins from the FPGA to the IL715-3 devices at start-up.

Typically. The TIMs are configured to route their McBSPs to the global bus connector pins, which, in turn, are routed to the LVDS I/O. The following table shows the pinout for the 37-way D-type connectors. This is only applicable if the TIM is using non-standard firmware which routes McBSP signals onto the global bus. Contact Sundance for further information.

1	GND	Input/Output	20	GND
2	McBSP_CLKR_Tx_0+	I	21	McBSP_CLKR_Tx_0-
3	McBSP_FSR_Tx_0+	I	22	McBSP_FSR_Tx_0-
4	McBSP_DR_Tx_0+	I	23	McBSP_DR_Tx_0-
5	GND		24	GND
6	McBSP_CLKX_Tx_0+	0	25	McBSP_CLKX_Tx_0-
7	McBSP_FSX_Tx_0+	О	26	McBSP_FSX_Tx_0-
8	McBSP_DX_Tx_0+	О	27	McBSP_DX_Tx_0-
9	GND		28	GND
10	GND			
11	GND		29	GND
12	McBSP_CLKR_Tx_1-	I	30	McBSP_CLKR_Tx_1+
13	McBSP_FSR_Tx_1-	I	31	McBSP_FSR_Tx_1+
14	McBSP_DR_Tx_1-	I	32	McBSP_DR_Tx_1+
15	GND		33	GND
16	McBSP_CLKX_Tx_1-	0	34	McBSP_CLKX_Tx_1+
17	McBSP_FSX_Tx_1-	0	35	McBSP_FSX_Tx_1+
18	McBSP_DX_Tx_1-	0	36	McBSP_DX_Tx_1+
19	GND		37	GND

As the LVDS drivers are connected directly to the FX60 FPGA, they can be driven from this device without need for the above McBSP method. The following table shows the connectivity between the FPGA and the D-connectors (P2, 3, 4 & 5):

		GA		Signal	D-	D-	Signal		FP	GA	
	signa	al pin			Conn Pin	Conn Pin			enab	le pin	
P2	Р3	P4	P5					P2	Р3	P4	P5
				GND	1	20	GND				
D29	K29	M26	P31	RX0+	2	21	RX0-				
F31	C32	L30	P26	RX1+	3	22	RX1-				
E32	D32	L31	P27	RX2+	4	23	RX2-				
				GND	5	24	GND				
D31	E29	K31	M31	TX0+	6	25	TX0-				
E31	F29	K32	M32	TX1+	7	26	TX1-	H27	J30	H32	N32
C29	J29	M25	P30	TX2+	8	27	TX2-				
				GND	9	28	GND				
				GND	10						
				GND	11	29	GND				
C30	L28	M28	P29	RX3-	12	30	RX3+				
D30	L29	N27	R29	RX4-	13	31	RX4+				
G31	H29	M30	R27	RX5-	14	32	RX5+				
				GND	15	33	GND				
H28	J31	J32	P32	TX3-	16	34	TX3+				
F30	J27	N28	R31	TX4-	17	35	TX4+	G32	H30	N30	R28
G30	K28	N29	R32	TX5-	18	36	TX5+				
				GND	19	37	GND				

The LVDS transmitters are enabled in groups. Two groups per D-connector.

Eg. FPGA pin J30 is the transmitter enable for connector P3's TX pins.

The LVDS receivers are continuously enabled and terminated by a 100 Ohm resistor.

4.1.6 Firewire

A single IEEE1394 interface is provided by an Agere FW801A PHY. The following table shows the pinout of the connector;

1	Cable Power			
2	GND			
3	TPB-			
4	TPB+			
5	TPA-			
6	TPA+			

This will allow high speed firewire data to be routed directly to the FPGA.

The standard FPGA firmware does not include an IEEE1394 IP core. These are available from 3^{rd} parties. Please contact Sundance for further information.

4.1.7 USB2

The USB2 interface is provided by the Cypress CY7C68013A device.

The Cypress part, in addition to providing USB functions with a FIFO type interface, also contains a USART, and an 8051 micro-controller.

The USB connector pin-out is shown here;

1	USB_ind
2	Data-
3	Data+
4	GND

The interface provided by this controller looks identical to a 16-bit SDB interface, and is routed directly to the Spartan FPGA and the CPLD.

The standard Cypress firmware does not include functions to control the USART. Please contact Sundance for further information.

Last Edited: 03/08/2009 11:42:00

The following table shows the Cypress pin connectivity to the Sundance SDB signal;

SDB Signal	Cypress Pin
CLK	IFCLK
D0	PB0
D1	PB1
D2	PB2
D3	PB3
D4	PB4
D5	PB5
D6	PB6
D7	PB7
D8	PD0
D9	PD1
D10	PD2
D11	PD3
D12	PD4
D13	PD5
D14	PD6
D15	PD7
WEN	RDY0
REQ	CTL2
ACK	RDY1
UD0	PA7
UD1	RDY3

4.1.8 RS232

Two devices generate RS232 data (simple TX and RX); the FPGA and the USB2 controller.

The Rx data pin from a 9-way D-type connector is connected to both serial interfaces. The Tx data pin from each device is routed to a jumper block (JP12) which allows the selection of one Tx data output. The RS232 levels are generated using a MAX3227 converter.

1	
2	Rx
3	Tx
4	
5	GND
6	
7	
8	
9	

Insert only one jumper in positions shown in section 7.

4.1.9 Flash

The flash memory connected to the CPLD and contains configuration data for the two FPGAs.

Any additional space within this device can be used to store application programs.

The flash can be directly programmed by the CPLD only.

The external ComPort is directly connected to the CPLD. This allows the reprogramming of the flash using an identical procedure as that employed on the SMT348. After configuration, the CPLD ComPort is tri-stated and the external ComPort functions as an input to the ComPort switch (Spartan 3).

4.1.10 RS485

Each of the 16 RS485 signal pairs is driven by an SN75HVD12. They are arranged into two groups of 8-bits each and have a single control signal which selects the group to be a transmitter or receiver.

Connector RS1 carries these signals.

Function	pin	pin	Function
S0-	1	2	S0+
S1-	3	4	S1+
S2-	5	6	S2+
S3-	7	8	S3+
S4-	9	10	S4+
S5-	11	12	S5+
S6-	13	14	S6+
S7-	15	16	S7+
GND	17	18	GND
GND	19	20	GND

Function	pin	pin	Function
GND	21	22	GND
GND	23	24	GND
S8-	25	26	S8+
S9-	27	28	S9+
S10-	29	30	S10+
S11-	31	32	S11+
S12-	33	34	S12+
S13-	35	36	S13+
S14-	37	38	S14+
S15-	39	40	S15+

Last Edited: 03/08/2009 11:42:00

4.1.11 SHB

A single SHB connector (Samtec QSH-030-01) provides two independent 16-bit SDBs, or a single 32-bit SDB interface. These signals are connected directly to the FX60.

4.1.12 LEDs

32 LEDs are connected to the Virtex 4 FPGA in a matrix of 8x4.

4.1.13 ZBT Memory

Two 16-bit wide ZBT memories are connected directly to the FPGA. This provides a memory bank of 2Mx16 bits (4Mbytes).

The standard FPGA firmware does not include functions to control the ZBTRAM. VHDL test code is available. Please contact Sundance for further information.

4.1.14 RSL

The Virtex 4 FX FPGA provides 16 RSL (Rocket Serial Link) interfaces. 8 of these are connected to the 4 TIM sites (2 per site).

Four RSLs are connected to 4 SATA style connectors thus allowing inter-board connectivity.

The remaining 4 are presented on a standard RSL connector. See the RSL specification for details on the connector type.

The SATA style connectors do NOT provide a SATA interface using the standard Sundance FPGA firmware.

RSL interfaces provide a high-speed (250Mbytes/s per link) bi-directional connection. Fast communication between TIMs should use these links wherever possible.

4.1.15 External ComPorts

Four ComPorts are connected to SHB style connectors. Two output-type ComPorts (0 and 1), and two input-type ComPorts (3 and 4) are provided. All 4 ComPorts are connected to both SHB-style connectors. Connector A is arranged 0, 1, 3 and 4, and connector B 3, 4, 0 and 1. With this scheme, a simple one-to-one SHB cable can be used to connect connector A on one 148FX to connector B on another 148FX.

External Comports 0, 1, 3 and 4 are routed to two SHB connectors (<u>Samtec QSH-030-01</u>) to allow connection to another SMT148FX carrier and its ComPorts. The pin-out is as follow:

1	STRB_0	2	RDY_0	3	REQ_0	4	ACK_0
5	D0_0	6	D1_0	7	D2_0	8	D3_0
9	D4_0	10	D5_0	11	D6_0	12	D7_0
13		14		15	STRB_1	16	RDY_1
17	REQ_1	18	ACK_1	19	D0_1	20	D1_1
21	D2_1	22	D3_1	23	D4_1	24	D5_1
25	D6_1	26	D7_1	27		28	
29	STRB_3	30	RDY_3	31	REQ_3	32	ACK_3
33	D0_3	34	D1_3	35	D2_3	36	D3_3
37	D4_3	38	D5_3	39	D6_3	40	D7_3
41		42		43	STRB_4	44	RDY_4
45	REQ_4	46	ACK_4	47	D0_4	48	D1_4
49	D2_4	50	D3_4	51	D4_4	52	D5_4
53	D6_4	54	D7_4	55		56	
57		58		59		60	RESET

Compatible with the 148 and 148LT, an active low RESET signal is provided. When two 148FX boards are interconnected with a 60 way cable assembly, the RESET is propagated from one 148FX to the other.

Another ComPort is available via a 26-way connector, where cable <u>SMT502</u> can be used to connect to a <u>SMT3100</u> and download applications from a PC. This connector has the following pin-out.

1	CSTRB	2	GND
3	CRDY	4	GND
5	CREQ	6	GND
7	CACK	8	GND
9	D0	10	D1
11	D2	12	D3
13	D4	14	D5
15	D6	16	D7
17	3.3V	18	GND
19	/RESETOUT	20	GND
21	/RESETIN	22	GND
23	NC	24	NC

4.1.16 Internal ComPorts

Each TIM site has 6 ComPorts.

Four of these are connected directly to the Spartan 3 FPGA. These are ComPorts 0, 1, 3 & 4.

ComPorts 2 & 5 are connected between TIM sites in a pipe configuration as follows;

TIM1 ComPort 2 connects to TIM2 ComPort 5

TIM2 ComPort 2 connects to TIM3 ComPort 5

TIM3 ComPort 2 connects to TIM4 ComPort 5

TIM4 ComPort 2 connects to TIM1 ComPort 5

4.1.17 Power input (DC version)

Power is supplied from an external source. The voltage of the external source needs to be in the range +18V to 30V. This enters the board via an 8-pin connector (Receptacle, mini fit 8 Way, Molex) JP14.

+18-30V	1
+18-30V	2
+18-30V	3
+18-30V	4
GND	5
GND	6
GND	7
GND	8

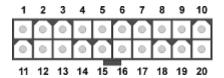
Table 1 : Power in connector pinout

The external source is input to a DC-DC converter module, which produces \pm 12V to the TIM sites. It is also used as an input to two DC-DC converters that produce the \pm 5V, \pm 3.3V, \pm 2.5V and 1.5V supply to the TIM sites, carrier FPGA and other onboard devices.

When using a +24V input, the power consumption of an unpopulated SMT148X is approximately 6W.

Alternatively, the input power can be provided at +9 to 18V (using alternative DCDC parts). Contact Sundance for further information.

The fan connectors, FAN1-4, are powered directly from the input supply.


4.1.18 Power input (ATX version)

Power is supplied directly from an ATX style power supply connected to JP15.

Note that most off-the-shelf PC ATX power supplies have a minimum load rating for their +12V output. Typically, this can be about 1A. Fitting a couple of cooling fans is often sufficient. Alternatively, there are zero load power supplies available. Eg. Lambda NV-175 series (NV1-453TTH-N3-I). Sundance are able to provide a power harness for this model.

The fan connectors, FAN1-4, are powered at +12V.

The ATX Power Connector Pin-Out is shown here:

Main 20 pin connector:

Name	Pin
+3.3V	1
+3.3V	2
GND	3
+5V	4
GND	5
+5V	6
GND	7
-	8
-	9
+12V	10

Pin	Name
11	+3.3V
12	-12V
13	GND
14	ON (input)
15	GND
16	GND
17	GND
18	-
19	+5V
20	+5V

Extension for BTX:

+12V	
+3.3V	

+5V
GND

4.1.19 Power output

Power can be supplied to external devices or modules. The 8-pin connector (Receptacle, mini fit 8 Way, Molex) JP16 provides several voltages and has the following pinout:

	Pin number
-12V	1
+12V	2
+5V	3
+3.3V	4
GND	5
GND	6
GND	7
Key	8

Table 2 : Power out pinout

Connector position 8 is filled to prevent plugging in the power input cable (the connectors are the same type). A modified plug (pin 8 removed) must be used for power output.

4.1.20 JTAG

A single JTAG chain connects all 4 TIM sites and the JTAG in & out connectors. This chain is used with the TI Code Composer Studio software suite. Although in essence it is a chain, the chain exists internally to a Xilinx CPLD. The CPLD drives and receives signals to the 4 TIM sites independently. This allows JTAG clock frequencies in excess of 30MHz to work reliably.

The JTAG-out (JTAG2) connector can be connected to the JTAG-in (JTAG1) connector of other SMT148FX, thus extending the chain (see cable <u>SMT503</u>).

All JTAG chaining and TIM bypass is performed within the CPLD.

4.1.21 Local Clock for ADCs etc.

The full functionality of the SMT399-F is also included. This comprises an external clock input, phase shifter, local OCXO, and 4-way power splitter.

Selection between local OCXO and VGA is made with the position of a 0 Ohm resistor link. This link (labelled R125) is located on the reverse of the board near the RS232's 9-way d-connector. Moving this link will not invalidate any warranty.

Some soldering is necessary to select between the two options.

J1-4 are outputs from a power splitter which is fed from the OCXO. These outputs are intended for the Sundance range of ADC/DAC modules.

Connector J5 is used for an external clock input which enters the VGA (variable gain amplifier).

4.1.22 Fan Power

Four two-pin connectors are provided to supply fans using power directly from the power input connector.

Note that if power is provided via an ATX type supply, then these fan connectors will be powered at +12V.

4.1.23 Reset Scheme

A power rail monitor observes the state of the 3.3V supply. This device will generate a reset to the SMT148FX (RESET148) during power-up or if the 3.3V supply drops below 3V. This signal is an open-collector output and is also driven to the inter-card ComPort connector, and thus to another SMT148FX.

The POR (power on reset) signal is driven to the RESETOUT pin on the external ComPort1 connector. The RESETIN pin on the above connector is buffered by an open-collector device which in turn can also drive the RESET148 signal. An additional 4 pin header is provided to allow other devices to share the open-collector RESET148 signal.

The TIM reset pins are connected to the FPGA and will be reset when RESET148 is active as well as when some firmware conditions trigger a reset to the different TIMs (see Firmware description for more details about TIM reset).

4.1.24 External FPGA Clock Input

Located near the DSP JTAG headers, connector J6 provides a direct connection to the FPGA pin H17. This has 50 Ohm termination and is suitable for LVTTL (maximum 3.3V) signals only.

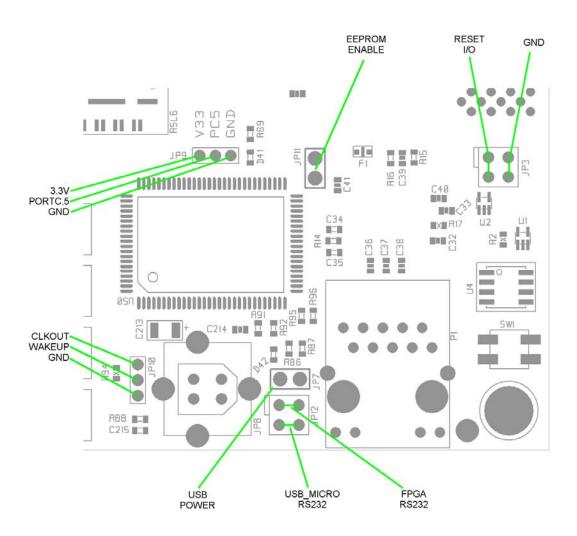
4.1.25 FPGA (Virtex4 and Spartan) configuration

The Virtex4 FPGA can be configured from flash, USB or ComPort. This is determined by the setting of switch bank SW3, and is detailed in the following table. Note that SW4-1 must be set to OFF.

The Jumpers [1-2] of SW3 control the Spartan configuration

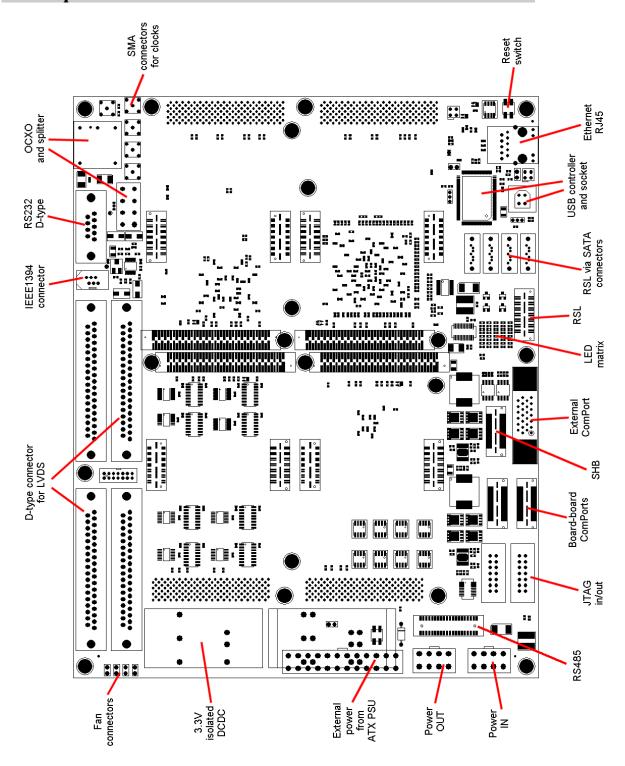
The Jumpers [3-4] of SW3 control the Virtex4 configuration.

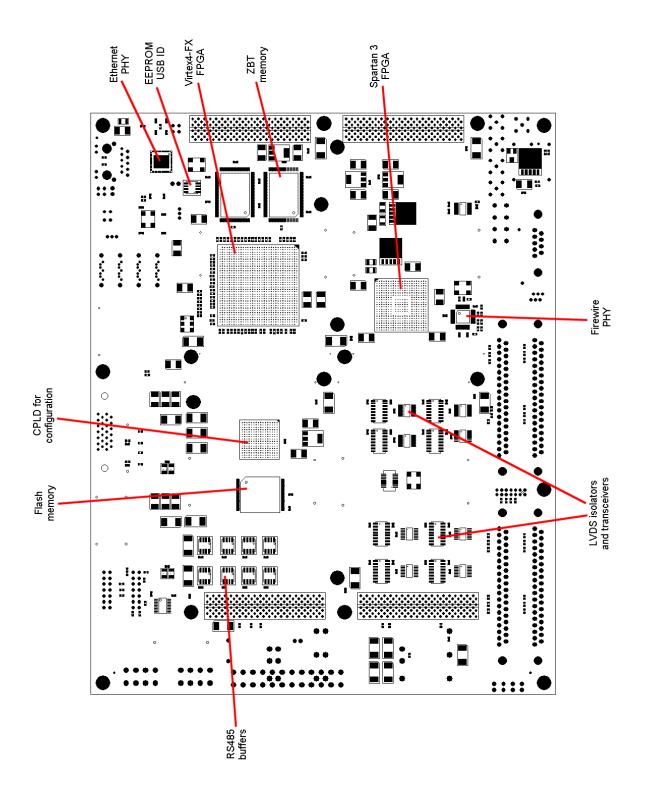
SW3	Position 2 or 4	Position 1 or 3		
Flash	ON	ON		
Comport	OFF	ON		
USB	ON	OFF		


Examples:

	Virt	ex 4	Spartan	
SW3	4 3 2		2	1
Both devices configure from Flash.		ON	ON	ON
Direct configuration via USB.	ON	OFF	ON	OFF
(needs a host application to send the bitstreams via USB)				
Configuration of Spartan via Flash and of Virtex 4 via CP3 connected to TIM site 1 CP0.		ON	ON	ON

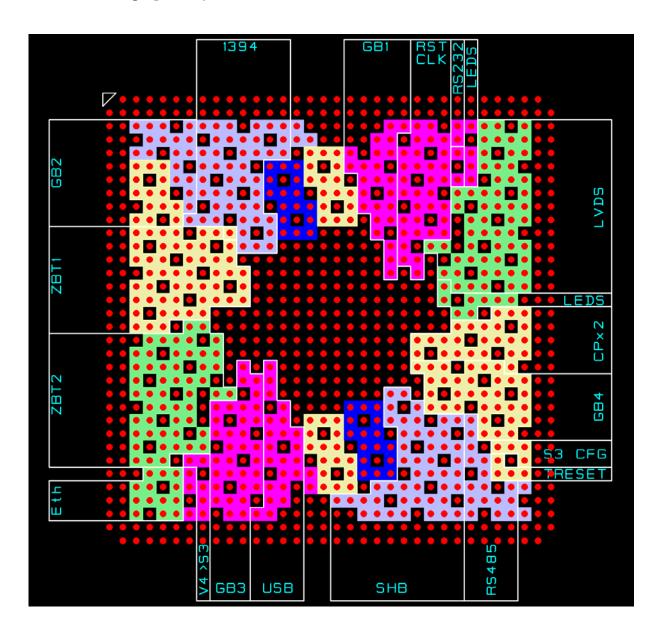
The Spartan is always the device configured first.


It is possible to download a new configuration to the FPGA using a Xilinx JTAG cable connected to a PC and to JP6 on the SMT148FX carrier. This uses the standard 14-way ribbon cable supplied by Xilinx. Refer to Xilinx document DS300 v3.1 page 8 for details of the pinout.


5 Jumper Position/Function

6 Footprint

6.1 Top View


7 Virtex4 FPGA Pin Allocation

VIICAT	II WA I III		Cui		<u>''</u>
USB2 controller	CLK	1		22	SDB type interface
	Data	16			
	Control	3			
	User Def	2			
Firewire / OXUF922	All			29	IDE interface to OXUF922
	Address	12		23	From OXUF922
	Data	8			V4 Configuration data
	Control	3			
	<u>.</u>				
SHB/SDB	Data	16	2	48	2 x 16-bit data.
300/30B			2	40	
	Control	3			WEN, REQ, ACK.
	User	4			USER0-3
	Clock	1			
RS485	All			18	16 data and two control.
LVDS	All			56	8 groups of 7, normally routed to McBSPs via FPGA.
ComPorto	All	10	4	40	To Charles?
ComPorts	All	12	4	48	To Spartan3.
LEDs	All			12	8 x 4 matrix.
Ethernet PHY	All			12	4-bit data + 2 control for each direction.
				4	RST, COMA, MDC and MDIO.
		-			_ L
Global Bus	Address	12	4	128	
				120	
	Data	16			
	Control	4			STRB, RW, PAGE, RDY
TIM misc	TCLK	2	4	48	
	Config	1			
	IIOF,NMI	4			
	IACK	1			
	Reset	1			Individual resets to TIM sites.
	Clock	3			CLKIN, H1 and H3.
	Clock	3			CERIN, HI dilu HS.
RS232	All			2	Tx + Rx.
ZBT	Address	20	1	62	
	Data	32			
	Control+Clk	10			
Spartan3	FPGA config			3	PROG, CCLK, DIN
Opartario					
	Data Interface			4	CLK25, PXCLK, PXDATA, PXLOAD
	Reset			1	From V4
Other				2	BDRESET, CLK50

8 Virtex4 FPGA Bank Allocation

Interface	Bank	Comment
Global Bus A	5	12 Address, 16 Data, 4 Control (STRB, RDY, WR, PAGE)
Global Bus B	6+10	12 Address, 16 Data, 4 Control (STRB, RDY, WR, PAGE)
Global Bus C	8	12 Address, 16 Data, 4 Control (STRB, RDY, WR, PAGE)
Global Bus D	11	12 Address, 16 Data, 4 Control (STRB, RDY, WR, PAGE)
ZBT Bank 1	10	Clock uses GCK on bank
ZBT Bank 2	12	Clock uses GCK on bank
Ethernet	12	
SHB	7	
RS485	7+8	Direction control is on bank 8.
ComPorts	11+5	2 ports per bank used.
LVDS	9	
USB	8	Appears as a 16 bit SDB.
LEDs	5+9	
Misc, TIM	1+3+4	
RS232	5	Tx, Rx.
RST, Clock	5	
IEEE1394	6	
TIM reset	11	
V4 to S3 interface	8	CLK, DATA, LOAD, RESET

This is shown graphically here,

9 Programming the Cpld

The cpld firmware is necessary to access the flash and to configure the SMT148-FX FPGAs..

Please use Xilinx download cable to download the cpld jedec file top.jed.

Select the CPLD XC2C512 from the 3 components and download the file top.jed.

• It can be found in:

\$\Program Files\Sundance\SMT6048\ FlashProgramming

This is a one off operation.

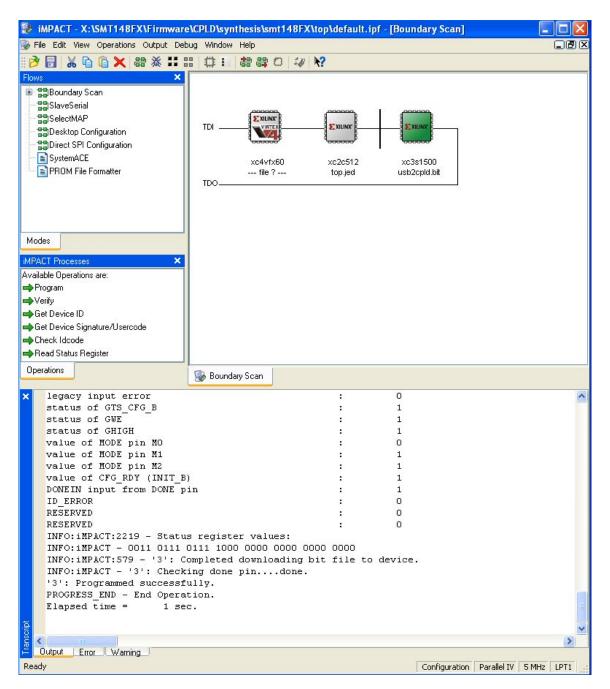
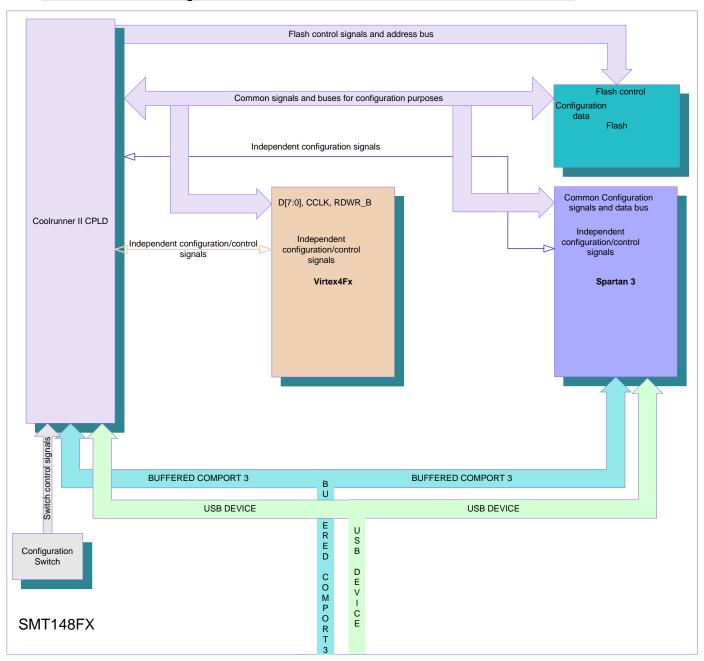


Figure 1:SMT148FX JTAG chain


10 Application to program the Flash

The Host can access the SMT148FX flash via the USB.

Before the Spartan is configured, the CPLD provides a link to the USB.

It also is the Flash controller.

10.1 Connections provided on the SMT148FX

11 Accessing the Flash

This section describes the various steps to follow to access the Flash.

11.1 Programming the Spartan

Set the switches of the SMT148FX with SW3 [4-3-2-1]= ON ON ON ON and SW4[4-3-2-1] = OFF OFF ON.

SW4 [1] ON provides Programming and erase accesses of the Flash.

SW4 [1] OFF disables these accesses and enables read accesses only of the Flash in a view to program the FPGAs.

Reset or power off and on the SMT148FX evytime you change the switch settings..

11.2 Erase and Program of the Flash

Sundance provides 2 download utilities:

- The SMT6002 is a free utility downloadable with the Sundance wizard.
 - o The Spartan firmware MUST be located at address 0x0.
 - The Virtex 4 firmware MUST be located at address 0x800000.
- The SMT6048 package provides a host utility called FlashUtility.exe.
 - Tick the option for the relevant FPGA and you can delete/ program a new firmware for it.

Browse to the firmware of your choice for the SMT148FX Spartan or the Virtex 4(after the next power up, it will be loaded from Flash in the Spartan and/or the Virtex4.)

It can be found in:

\$\Program Files\Sundance\SMT6002\Firmware\Smt148FX

You always need to delete the current bitstream before replacing it with a new bitstream in Flash.

Deleting a bitstream is quick, but erasing the whole flash can take 2 minutes. Programming takes about 1 minute.

11.3 Booting the Spartan and Virtex 4 from flash

Then set the switch SW4[4-3-2-1] = OFF OFF OFF.

The Spartan and Virtex 4 will configure from Flash next time you issue a hard reset or power on the SMT148FX.

Any Spartan design available flashes led 2 while the Virtex4 example design provided flashes the whole raw of leds next to led2.

12 Firmware for the Spartan.

It can be found in: \$\Program Files\Sundance\SMT6002\Firmware\Smt148FX

<u>The default firmware</u> "com.sundance.smt148-fx.sc3s1500.usb_default.app" present in flash, enables default comport connections between TIM sites and a direct connection between USB and TIM site 1 comport 3. The connections are represented by Figure 2: Default bitstream comport configuration.

More firmware are available to allow different TIM connections.

The default_anticlockwise firmware

"com.sundance.smt148-fx.sc3s1500.usb_default_anticlockwise.app" provides the same comport connections as before, but this time going from TIM1 to TIM4 to TIM3 to TIM2 to TIM1.

The default_dual_TIM firmware

"com.sundance.smt148-fx.sc3s1500.usb_default.dual_TIM.app" provides the same comport connections as before, but this time going from TIM4 to TIM1 to TIM2 to TIM3 to TIM4.

For more advanced use, the SMT148-FX Virtex4 FPGA is available for customisation

A custom firmware for the Spartan to show that the Virex 4 can be part of the network of processors in a Diamond application is provided with "com.sundance.smt148-fx.sc3s1500.Tim2Cpld.app".

The comport link used between TIM1 and the virtex4 is TIM1 CP0 to Virtex4 CP3. (this link is only for configuration and not yet available as a valid link after configuration...will be in the next release).

Another link is declared and can be used for communication once the application is loaded. The connections made are TIM1 CP4 to Virtex4 CP1.

Feel free to make a Diamond application including a TIM on TIM site 1 and a design on the Virtex 4.

Use the Diamond server to load the .app and you should see the virtex 4 configuring. (do not forget to check the SMT148-FX switches)

A new firmware can be made for you or you can get the project to allow you to customise the Spartan at will...

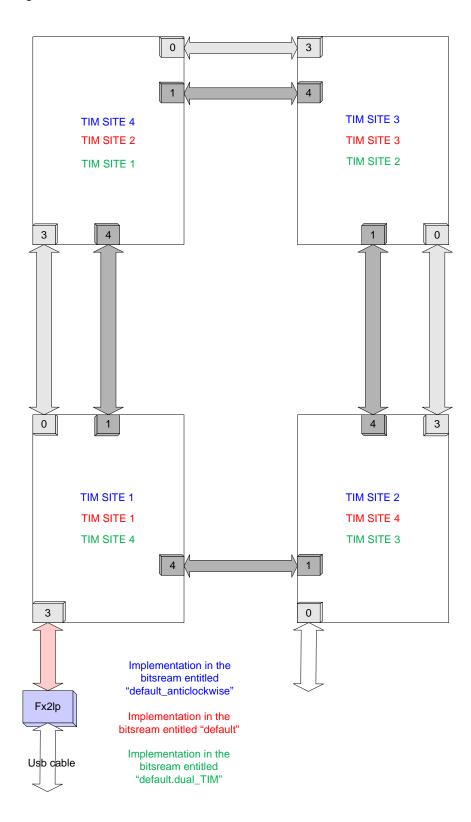


Figure 2: Default bitstream comport configuration.

12.1 Hardwired comport connections

A hardwired comport pipe is implemented between TIM sites.

It links the TIM sites in a clockwise manner using comport 2 and comport 5 as per Figure 3.

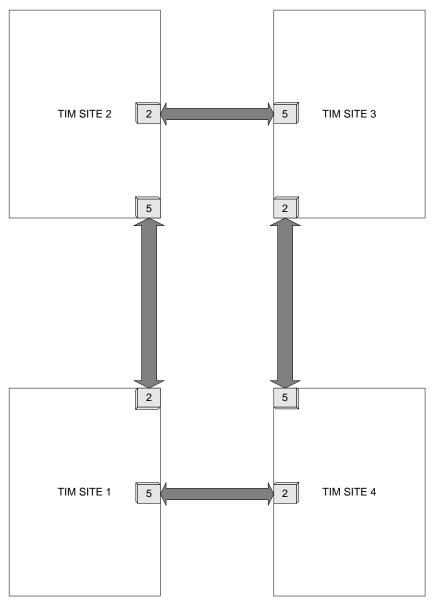


Figure 3: PCB comport connections between TIM sites

PCB Comport connections between TIM sites

13 RSL and Comport connections

13.1 RSL connections

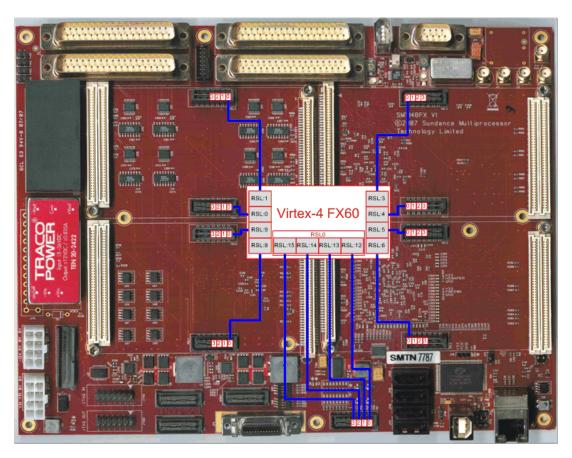


Figure 4: Virtex 4 RSL connections

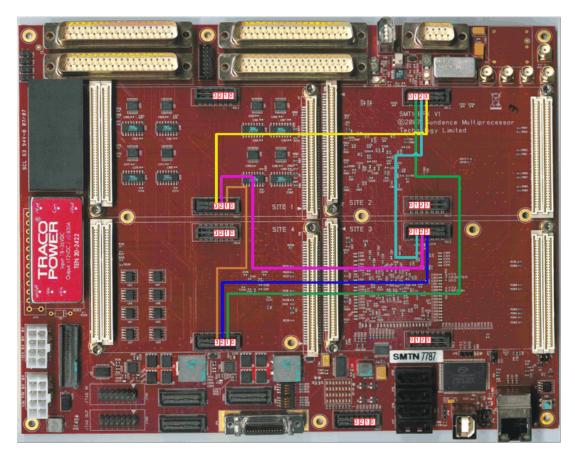


Figure 5: PCB RSL connections between TIM sites

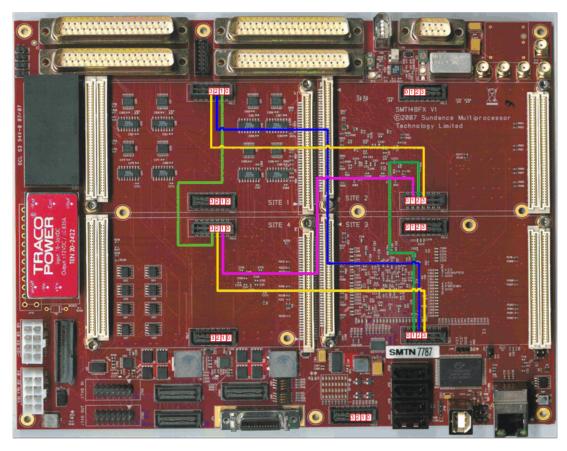


Figure 6: PCB RSL connections between TIM sites

13.2 Comport connections

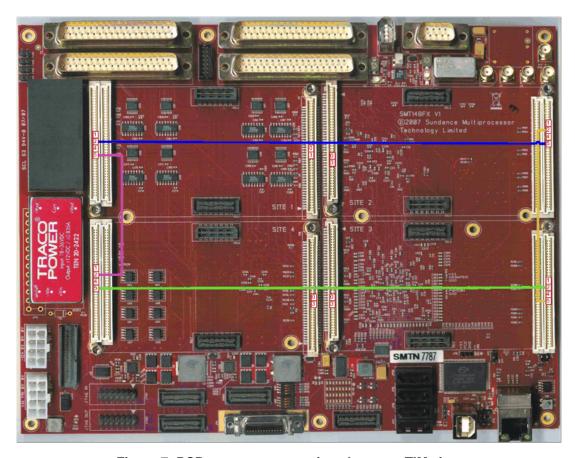


Figure 7: PCB comport connections between TIM sites

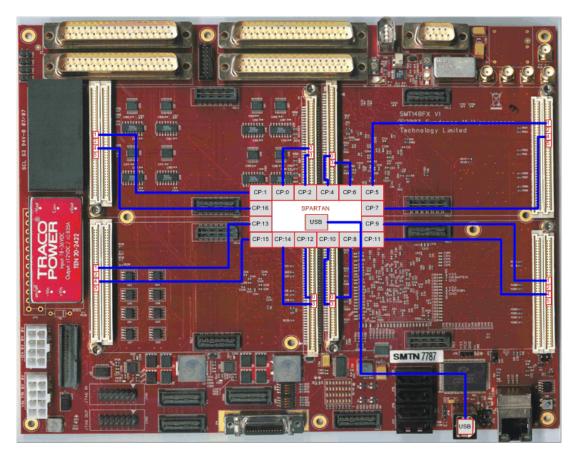


Figure 8: Spartan comport connections

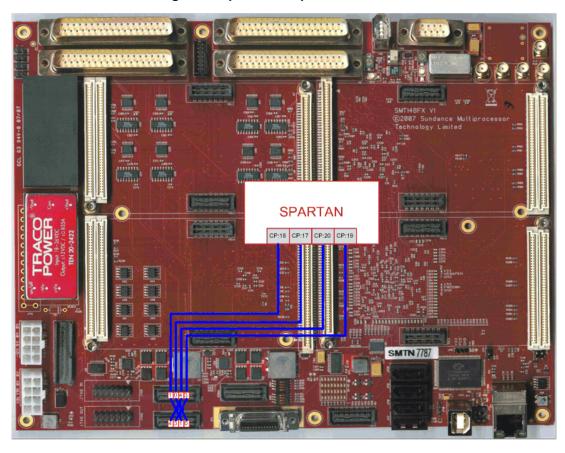


Figure 9: Spartan comport connections

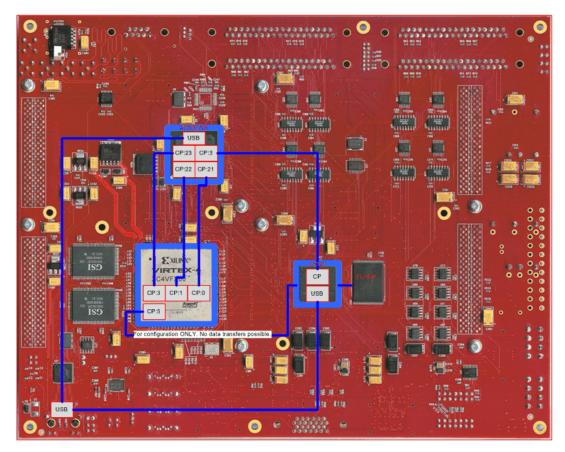


Figure 10: Spartan to Virtex 4, CPLD and USB comport connections

The comport used to configure the Virtex 4 can't be re-used after the FPGA configuration. It's why the comport 5 is used in a Diamond project, this comport is not connected on the PCB. If you select one of the three comport available on the Virtex 4 as its configuration comport, you will not be able to use this comport for data transfer after the FPGA configuration.

14 Spartan firmware explanation

Sundance provides many Spartan firmwares; you can design your own firmware in following the next instructions.

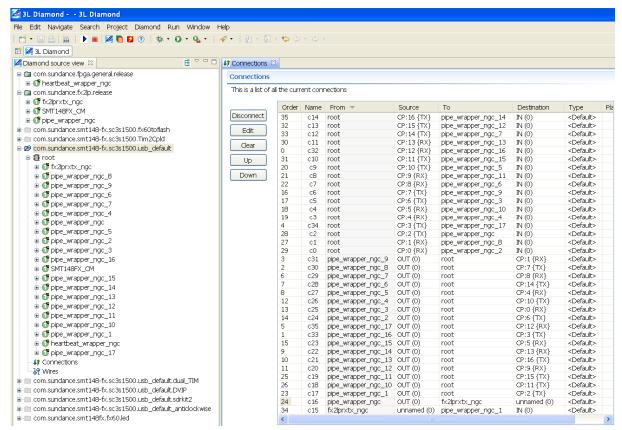


Figure 11: Default Spartan firmware project

The firmware must contain the clock manager task: SMT148FX_CM

The clock domain named here ifclk must be used for all the tasks and all the connections.

The SMT148FX_CM task is used to generate this clock domain at 48MHz; it's the only one that uses the default clock.

The heartbeat_wrapper_ngc task corresponds to the LED Spartan status; this task just has to be added to the project and doesn't need any connection.

The fx2lprxtx_ngc task corresponds to the USB connection, connect this task to your root processor location, for the default firmware, it's T1CP3.

Between all the connections you must add a pipe_wrapper_ngc task.

You have to connect the two comport direction, for example with the default firmware, for the connection between the USB and the T1CP3 we will have:

- fx2lprxtx_ngc⇔ pipe_wrapper_ngc_1⇔root CP:2(TX)
- root CP:2(TX) ⇔ pipe_wrapper_ngc ⇔ fx2lprxtx_ngc

The Spartan comport connection is list in the following table.

TIM CLA 1	root CP:0	root CP:1	root CP:2	root CP:16
TIM Site 1	T1CP0	T1CP1	T1CP3	T1CP4
TIM Site 2	root CP:4	root CP:5	root CP:6	root CP:7
TIM Site 2	T2CP0	T2CP1	T2CP3	T2CP4
TIM Site 3	root CP:8	root CP:9	root CP:10	root CP:11
	T3CP0	T3CP1	ТЗСРЗ	T3CP4
TIM Site 4	root CP:12	root CP:13	root CP:14	root CP:15
	T4CP0	T4CP1	T4CP3	T4CP4
***	root CP:21	root CP:22	root CP:23	
Virtex 4 comports	V4CP0	V4CP1	V4CP3	
Virtex 4 configuration	root CP:3			
	CBUF			
Connection to another SMT148FX	root CP:17	root CP:18	root CP:19	root CP:20
Connection to another SW11148FA	JPCP0	JPCP1	JPCP3	JPCP4

Table 3: Spartan connections

Don't forget to edit all the connection and select the ifclk clock domain and select the right link starts up properties.

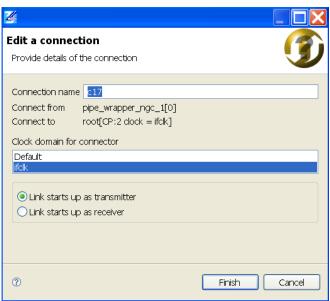


Figure 12: Connection properties

At reset you must connect a comport from RX to TX or TX to RX. For the default firmware, the T1CP3 of the TIM root processor is RX at reset, to get its bitstream. The Spartan firmware comport (root CP:2) will have the link starts up as transmitter properties.

The next Diagram shows the Default firmware connection with all the connections properties.

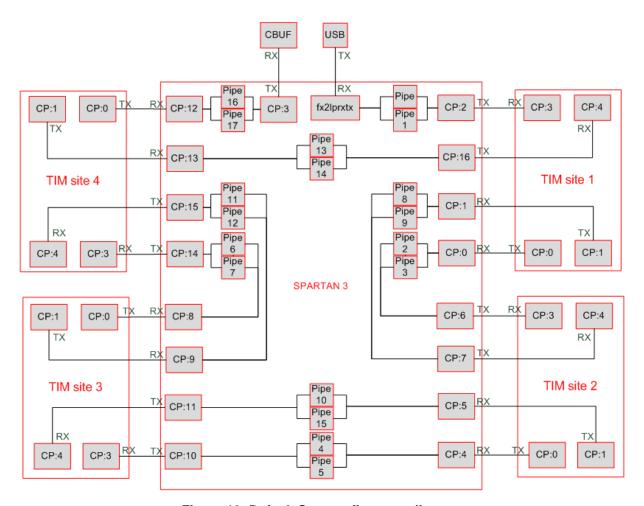


Figure 13: Default Spartan firmware diagram

15 DIP Switches

SW4	1
Programming/Erase of the Flash	ON
Flash Reads in a view to configure FPGAs	OFF

Table 4: Switch SW4

The Spartan and Virtex 4 configuration sources can be identified using SW3.

The Jumpers [1-2] of SW3 are controlling the Spartan configuration

The Jumpers [3-4] of SW3 are controlling the Virtex4 configuration.

SW3	Jumper 2 or jumper 4	Jumper 1 or Jumper3
Flash	ON	ON
Comport	OFF	ON
USB	ON	OFF

Table 5: Switch SW3.

The Comport as a source is a feature only supported for Virtex 4 configuration.

Examples:

When SW4[1] is OFF:

	Virtex 4		Spartan	
SW3	4	3	2	1
Both devices configure from Flash.	ON	ON	ON	ON
Direct configuration via USB.	ON	OFF	ON	OFF
(needs a host application to send the bitstreams via USB)				
Configuration of Spartan via Flash and of Virtex 4 via CP3 connected to TIM site 1 CP0.	OFF	ON	ON	ON

Table 6: Examples of Switch configuration.

The Spartan is always the device configured first.

Do not try to configure the Virtex 4 before configuring the Spartan or the configuration will fail.

When SW4[1] is ON, SW3[4321] should be set to ON ON ON.

16 Support Packages

To be added.

17 Physical Properties

Dimensions	250 x 200mm
Weight	350g

The following table indicates the power capabilities of the on-board supplies;

Option		A	В	С
Supply Current	+12V	1.67A	0.83A	*
	+5V	10A	10A	*
	+3.3V	10A	10A	*
	-5V	0A	0A	*
	-12V	0A	0.83A	*

^{*}Option C is with the use of an external ATX power supply. Refer to the relevant power supply specification in this case.

I MTRF	
111111	

18 Thermal Management

Although provision is made to attach DC fans to the SMT148FX (powered directly from the input voltage), correct enclosure air flow should be ensured.

Sundance are able to provide a heat-pipe type thermal management solution for two TIM sites (sites 2 and 3). This involves increased height TIM and RSL connectors for these sites, the fixing of the heat-pipe system direct to the TIMs' components, and the addition of an off-board heatsink and fan. Please consult Sundance for pricing and availability for this option.

Several components in both the onboard 3.3V and 5.0V supplies are rated at $125^{\circ}C$ maximum. Without adequate cooling, the inductors in this circuit can reach in excess of $170^{\circ}C$ when running at full rated load.

Some of the major components are located on the underside of the carrier board. This will allow heatsinks (or indeed an enclosure) to be fitted.

19 Safety

This module presents no hazard to the user when in normal use.

20 EMC

This module is designed to operate from within an enclosed host system, which is built to provide EMC shielding. Operation within the EU EMC guidelines is not guaranteed unless it is installed within an adequate host system.

This unit is protected from damage by fast voltage transients originating from outside the host system which may be introduced through the output cables.

Short circuiting any output to ground (except the bi-directional reset output) does not cause the system to lock up or reboot.

21 Ordering Information

Several variations of this product are available.

SMT148-FX-DC Standard product with on-board voltage converters.

SMT148-FX-ATX Standard product with ATX PSU input connector.

SMT148-FX-nn-Fxxx With additional local ADC oscillator. xxx refers to the

oscillator frequency. nn refers to power input type.