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Board Architecture 

 

The SMT166 SLB carrier board architecture is shown below: 
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The design is mostly symmetrical with each Virtex 6 FPGA having identical connectivity (logical 

connections and PCB trace routing) to: 

1) Two banks of DDR3 memory. Each bank is composed using 2 x 64Mx16 DDR3 devices. The clock 

frequency is 500MHz thus giving a data rate of 4GB/s. 

2) Two SLB interfaces. Each SLB interface can carry 4 x 14-bit ADC interfaces from, for example, an 

SMT941 quad ADC module. The SLB interface runs at up to 250MHz, so the data rate is 2GB/s. 

Each SLB interface has a separate serial programming/configuration protocol referred to as SPI. 

3) A 1-lane and a 4-lane cable PCIe interface. 

4) Two SATA interfaces. 

5) A gigabit Ethernet interface. 



6) RSL (Rocket serial link, also called GTP, GTX and/or MGT). These can operate up to 6.5Gb/s but 

run at 2.5Gb/s with the default firmware. 

7) Half an interface to a 5th SLB connector. 

8) 4 LEDs. 

 

FPGA Configuration 

 

All three Xilinx devices (2 x Virtex 6 and a CPLD) are included in a single JTAG chain. The chain is 

defined as follows: 

Device ID IR length 

 

Virtex 6 LXT130 - FPGA_0 0x6424A093 10 

Virtex 6 LXT130 - FPGA_1 0x6424A093 10 

CPLD XC2C512 0x16D7E093 8 

 

Diagrammatically this is shown below: 

 

  



The CPLD contains a configuration that allows the two Virtex 6 FPGAs to be programmed/configured 

upon reset or power-up. The configuration data is stored in a flash memory device. The flash 

contents may be programmed using SMT6002. 

The CPLD also contains a USB interface and a ComPort (8-bit bi-directional communication port) to a 

TIM site. The ComPort supports SMT6002 when programming the flash on the TIM, and also host 

connectivity from the TIM at data rates of up to 20MB/s. 

The various operational modes are selected using 2 x 4-way DIP switches as detailed here: 

SW3 SW2 Function 

1 2 3 4 1 2 3 4 

 

On Off Off Off On On Off Off SMT166 flash programming 

Off Off Off Off On On Off Off TIM flash programming 

    On On   FPGA2000 configure from flash 

    Off Off   FPGA2000 no flash configuration 

      On On FPGA1000 configure from flash 

      Off Off FPGA1000 no flash configuration 

On        USB to flash 

Off        USB to ComPort 

 

Notes: 

FPGA1000 is also called FPGA_0. 

FPGA2000 is also called FPGA_1. 

 

  



FPGA Detailed Block Diagram 

 

The Virtex 6 FPGA contains the following configuration shown below: 

 

 

The FPGA is controlled using a Microblaze (MB) soft processor core. This runs at 125MHz, and has a 

number of peripherals attached. 

The FPGA design was implemented using Xilinx EDK/SDK 13.4. 

All of the custom peripherals were designed using ISE 13.4, and include: 

Peripheral Name Description 

 

Clock generator clock_generator_v4_03_a Generate clocks for MB etc. 

Aurora aurora_v1_00_a RSL (GTX/MGT) serial interface to TIM. 

SLB slb_fifo_v1_00_a SLB interface supporting 4 channels of 16 bits. 

Channels are in pairs with data and clock. 

SPI slb_spi_v1_00_a Serial configuration interface for ADC module. 

DDR3 mpmc_v6_05_a Multi-ported memory interface. 

SLB to MPMC my_npi_v1_00_a Fast DMA-type interface between SLB and DDR3. 

LEDs xps_gpio_v2_00_a 5-bit GPIO register to control LEDs and return the 

FPGA number. 

 

All peripherals connect (where appropriate) to the PLB bus. The main VHDL code is called 

user_logic.vhd within the respective design folder. 

  



FPGA Peripherals 

 

Clock Generator 

The clock generator has a 125MHz differential clock input from pins L23/M22 and outputs 6 clocks 

to the system as described below (clock_generator_A): 

Clock Frequency 

MHz 

Description 

 

CLKOUT0 125 MicroBlaze and PLB. 

CLKOUT1 250 MPMC I/O clock. 

CLKOUT2 500 DDR3 clock. 

CLKOUT3 500 DDR3 clock. 

CLKOUT4 200 DDR3 ref clock. 

CLKOUT5 200 RSL initialisation clock. 

 

Note: Clock_generator_B is used for MPMC_B and associated DDR3.  



 

Aurora 

The Aurora core is created using Xilinx CoreGen. This particular implementation has a 32-bit 

interface, 1-lane, and is set for streaming mode. The lanes used are from MGT112 with the REFCLK 

on pins AH6/AH5. 

The entity contains the following ports: 

Port 

 

Description 

TXP/TXN Differential transmit pair from one lane of the quad-tile. 

RXP/RXN Differential receive pair to one lane of the quad-tile. 

GTXQ0_P/N Reference clock input to the quad-tile. These ports are in the top level (not 

user_logic). 

aurora_clk_out This is the single-ended refclk output from an IBUFDS_GTXE1. This is in the top 

level and is intended to drive the user_logic aurora_clk_in (to multiple lanes). 

aurora_clk_in Reference clock input. 125MHz. 

init_clk_i A 200MHz clock from the system clock generator, CLKOUT5. 

LEDStat 4 bits used for debugging to drive LEDs. 

probe_clk, probes Interface to Chipscope used for debugging. 

 

Two Aurora cores are implemented within this design. The MB addresses are shown here: 

Address (hex) 

 

Resource  

8740 0000 Aurora 0 CTRL Use this lane on FPGA0 to connect to the 

TIM. 8840 0000 Aurora 0 FIFO 

8940 0000 Aurora 1 CTRL Use this lane on FPGA1 to connect to the 

TIM. 8A40 0000 Aurora 1 FIFO 

 

The low-level aurora_8b10b_v5_3 core has a 32-bit TXD input coupled with a simple handshaking 

interface using TX_SRC_RDY_N and TX_DST_RDY_N. The 32-bit RXD output is coupled with a simple 

data ready signal RX_SRC_RDY_N. See the Xilinx user guide ug353 for full details 

http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_ug353.pdf. 

The interface between the MB and the Aurora core is via a 1k x 32 FIFO. To transmit from the core, 

the MB writes to the FIFO then issues a send command. When the packet has been sent, the FIFO 

will become empty. 

NOTE: This operation will be updated to include a DMA-type functionality. 

  



The Aurora status and control registers are described here: 

Aurora Status Register 

Bit - little endian (31-0) SDK bit (0-31) Function 

 

31-8 0 - 23 0 to 23 - not used 

7 24 tx_full 

6 25 tx_empty 

5 26 rx_full 

4 27 rx_empty 

3 28 channel_up 

2 29 lane_up 

1 30 hard_error 

0 31 soft_error 

            

Aurora Control Register 

Bit 

 

Function 

23-21 Loopback mode 

20 State machine reset 

19 Aurora GT reset 

18 Aurora reset 

17 RX FIFO reset 

16 TX FIFO reset 

 

The MB typically polls the status bits which show the FIFO flags. No communication is possible if the 

bits channel_up or lane_up are not high. Hard and soft errors should not occur. Do not over-fill the 

FIFO. 

The lane initialisation is normally performed by writing 0x001F0000 followed by 0x00030000, and 

then 0. This will reset the Aurora core and the controlling state machine while keeping the FIFOs in 

reset to ensure no erroneous data reception. 

  



DDR3 and MPMC and NPI 

The DDR3 interface was implemented using the included IP from within Xilinx XPS. This was initially 

created using the BSB (base system builder) wizard. The second DDR3 interface has to be added 

manually as BSB does not support multiple DDR3 interfaces. Each DDR3 requires a separate clock 

generator. 

MPMC means Multi-Port Memory Controller. This is an easy, efficient, and expandable mechanism 

to interface to the DDR3. The physical DDR3 interface is the Xilinx MIG which is called from the EDK 

tools. 

The MPMC has 8 ports. This design currently uses 2 ports. Port0 is connected directly to the PLB and 

hence allows MB access. Port1 is connected to the NPI peripheral which is used to stream data from 

the SLB directly into DDR3 without MB intervention. 

The MB memory addresses for the two DDR3 banks are given here: 

Address (hex) 

 

Resource Comment 

9000 0000 DDR3 A  

A000 0000 DDR3 B  

 

Note: The same addresses are used in both FPGAs. 

The NPI protocol  (Native Port Interface) is fully described in the MPMC datasheet from Xilinx 

http://www.xilinx.com/support/documentation/ip_documentation/mpmc.pdf 

In the SMT166 implementation of the NPI, the data bus is 64 bits wide, and we write 32 word bursts 

for maximum performance. The protocol follows essentially the following sequence and is 

implemented using a simple state machine: 

 A WrFIFO_PUSH signal is asserted concurrently with the data that is to be written. The write 

data is first read from the SLB FIFO. A data word will be sent to the MPMC on every rising 

clock edge (250MHz) where WrFIFO_PUSH is asserted. When 32 words have been transferred 

then the AddrReq signal is asserted for one clock cycle.  

 The data writing is continuous as long as there is data in the SLB FIFO to read. The SLB FIFO 

input will be running at a maximum speed of 245.76MHz. This is the local clock rate of the 

SMT941. 

 The NPI interface runs at 250MHz with 64-bit data. This is translated to the physical DDR3 

interface which runs at 500MHz DDR and 32-bit data. The DDR3 rate is equivalent to 500MHz 

and 64-bit data when taking the dual data rate into account. Hence the DDR3 rate far exceeds 

what is needed to store the ADC data at full (245.76MHz) speed. 

The NPI implementation has a single control input rst_in, and a single output status stopped. The 

rst_in signal is controlled by an output port from the SLB interface (See later). The returned status 

signal is also made available in a register within the SLB interface. The stopped signal becomes 

asserted when the whole of the DDR3 has been written to at the end of an ADC data acquisition. 



SLB 

The SLB interface is implemented using the slb_fifo peripheral. The entity has the following ports: 

Port 

 

Description 

adcab_da/db 14-bit inputs from the SMT941 ADC. Two channels a and b. 

adcab_clkoutp/n Differential clock for channels a and b. 

adccd_da/db 14-bit inputs from the SMT941 ADC. Two channels c and d. 

adccd_clkoutp/n Differential clock for channels c and d. 

fifo_dout 64-bit FIFO data output bus. 

fifo_clk FIFO read clock. 

fifo_rden FIFO read data enable. 

fifo_empty FIFO empty flag. 

rst_out Control signal to the NPI. 

stopped Status signal from the NPI. 

debug_clk/data Interface to Chipscope used for debugging. 

 

In essence this core consists of data capture logic and two 1k x 32 FIFOs. Each of the two FIFOs 

receives data from the capture logic associated with a channel pair. The ADC clock is common to 

both channels in a pair and is used for the write clock of the FIFO. The two 32-bit wide FIFOs are read 

simultaneously by the NPI logic using a single read clock. The FIFO empty flag is a logic AND of the 

two empty flags from each 32-bit FIFO. This means that data can only be transferred if both channel 

pairs are running, and they must be at the same frequency (which is inherent in the SMT941 design). 

Data from the ADC is sent using 7 differential pairs and DDR signalling. Each pair represents two bits 

of data; the LSB is sent on the rising edge, and the MSB on the falling edge. The ADC data capture 

logic first takes each pair and creates a DDR single-ended data bit using an IBUFDS. This single-ended 

bit is then sent to an IDDR to create the even and odd sample bits (at SDR). In this way, the 250MHz 

differential data (using 7 pairs) is converted into a 250MHz 14-bit data bus. This data bus is input to 

the capture FIFO. 

The FIFO_CLK signal is input from the NPI (MPMC) core together with a synchronous FIFO_RDEN 

(read enable) signal. 64-bit data is returned on FIFO_DOUT. 

The rst_out signal is inverted from the state of the control register bit (see below). When low this 

will hold the NPI in reset and not capture ADC data. When high, the NPI is released from reset and 

data capture starts. 

The stopped signal is returned from the NPI and is made available in the status register (see below). 

Address (hex) 

 

Resource  

8540 0000 SLB_FIFO_0 channels a&b W:bit 0 - 1 to enable capture. 

R:bit 16 - 1=capture complete. 

8640 0000 SLB_FIFO_1 channels c&d W:bit 0 - 1 to enable capture. 

R:bit 16 - 1=capture complete. 

 



SPI 

The SLB modules are typically configured (as is the case with the SMT941) using a serial bus 

comprising of clock, data, and latch enable. 

The SMT941 has separate busses for each of its devices; ADC1, ADC2, and clock synthesizer. 

Several other control signals are required to control the module's operation. 

Sundance supply an SDK C source function that initialises the ADC. Two parameters are passed to 

this function, the SLB module (0 or 1), and the required sample frequency (125 or 250). This function 

is shown in the appendix. 

The MB addresses are shown in the table below: 

Address (hex) 

 

Resource  

8240 0000 SLB_SPI_0 Offset 4: SPI_Data 

Offset 8: SPI_Control / Status 

8340 0000 SLB_SPI_1  

 

The status / control register bit functions are shown in the table below: 

SPI Control / Status Register 

Bit 

 

Function 

11 ChAB_reset & ChCD_reset 

10 ChCD_ctrl2 

9 ChCD_ctrl1 

8 ChAB_ctrl2 

7 ChAB_ctrl1 

6 Clk_Pwrdwn 

5 Clk_nReset 

4  

3 Busy 

2 SPI_Sel bit 1 

1 SPI_Sel bit 0 

0  

 

  



GPIO 

A 5-bit MB peripheral is included to control the state of 4 LEDs (per FPGA) and to return the FPGA 

device number.  

The FPGA device number is currently implemented using a custom SLB plug on the spare (SLB5) 

interface. Most FPGA pins are connected equally on the two FPGAs with the exception of the 5th SLB 

interface which is shared. The only mechanism to allow the FPGAs to decide whether it is 0 or 1 is to 

use this interface. The custom plug simply grounds one of these inputs. The corresponding pin on 

the other FPGA is internally pulled high. So each FPGA can read this pin and make it available in the 

GPIO register for the MB. 

This mechanism is needed if the bitstreams (FPGA configurations) are to be identical. As there is a 

PCB routing error (the RSL lanes are not connected symmetrically), the MB needs to know which 

Aurora lane to use to connect to the DSP module in the TIM site. 

Address (hex) 

 

Resource  

8140 0000 GPIO Bits 4:1 LEDs. 

Bit 0: FPGA device number. 

 

 

  



Really useful hints/tips: 
Configure FPGA using impact as this allows the targeting of either device. There does not seem to be 

a simple way of configuring either FPGA from with SDK. 

In the XMD% console type: 

 connect mb mdm -debugdevice deviceNr 2 

this will target the second FPGA. When debug is launched you will get a message (I think) saying that 

there is already a connection - so I guess it is attempting to make a connection to maybe the 1st 

device. You'll also get a message saying that the FPGA is not programmed. 

When changing debug devices type  

 disconnect 0 

 

In SDK it you can also configure the JTAG chain manually using: 

Virtex6:   ID Code is 0x6424A093 and IR Length is 10, and 

CoolRunner:  ID Code is 0x16D7E093 and IR Length is 8. 

 

 

When using SDK to display printf (or xil_printf) and this output is required to be in the SDK console, 

type the following two commands in the XMD console: 

connect mdm -uart 

terminal -jtag_uart_server 

 

Also note that the debug configurations STDIO connection tab should have the check box ticked to 

allow STDIO to connect to console using port:JTAG UART. 

  



Appendix 

 

SPI Initialisation 

 

void setup_941(int n, int freq) 

{ 

 unsigned int *SPI_data; 

 unsigned int *SPI_control; 

 unsigned int rfreq; 

 

 if(n==0) { 

  SPI_data  = 0x82400004; 

  SPI_control = 0x82400008; 

 } 

 else { 

  SPI_data  = 0x83400004; 

  SPI_control = 0x83400008; 

 } 

 

 if(freq==125) 

  rfreq=0x00800000; 

 else 

  rfreq=0x00400000; 

 

// Set nreset and npwrdwn high (inactive) 

    *SPI_control = slb_clk_nreset | slb_clk_npwrdwn; 

    *SPI_control =                  slb_clk_npwrdwn;   // pulse clock reset low 

    *SPI_control = slb_clk_nreset | slb_clk_npwrdwn | slb_chab_reset; // pulse adc reset high 

    *SPI_control = slb_clk_nreset | slb_clk_npwrdwn | spi_rst;  // pulse spi reset high 

    *SPI_control = slb_clk_nreset | slb_clk_npwrdwn; 

 

// Setup clock chip. Use "CDCE72010_Control_GUI.exe" to calculate register contents. 

    *SPI_control = slb_clk_nreset | slb_clk_npwrdwn | spi_sel_clk; // select clk_pll for spi  

          // transfers. 

    *SPI_data=0x683C0240; while((*SPI_control)&8);  // 0 - o/p 0 - nc  0x683C0200 

    *SPI_data=0x82000001 | rfreq; while((*SPI_control)&8); // 1 - o/p 1 - chcd clk1 0x80400001 

    *SPI_data=0x83000002 | rfreq; while((*SPI_control)&8); // 2 - o/p 2 - chcd clk2 0x83400002 

    *SPI_data=0x82000003 | rfreq; while((*SPI_control)&8); // 3 - o/p 3 - chab clk1 [8140* = low-

         // swing, 8340* = high-swing] 0x68400003 

    *SPI_data=0x83000004 | rfreq; while((*SPI_control)&8); // 4 - o/p 4 - chab clk2 0x83400004 

    *SPI_data=0x68800005;  while((*SPI_control)&8); // 5 - o/p 5 - nc  0x68000005 

    *SPI_data=0x68800006;  while((*SPI_control)&8); // 6 - o/p 6 - nc  0x68000006 

    *SPI_data=0x83000127 | rfreq; while((*SPI_control)&8); // 7 - o/p 7 - ext clk out 0x83400127 

    *SPI_data=0x68800178;  while((*SPI_control)&8); // 8 - o/p 8 - nc  0x68000178 

    *SPI_data=0x68050049;  while((*SPI_control)&8); // 9 - o/p 9 - ext clk in 0x68050049 

    *SPI_data=0x0BFC07CA;  while((*SPI_control)&8); // A - M & N dividers  0x0BFC07CA 

    *SPI_data=0x9000041B;  while((*SPI_control)&8); // B - Control   0x9000041B 

         // (0x92..=ext clk) 

*SPI_data=0x0000180C;  while((*SPI_control)&8); // C - Status & diagnostic 0x0000180C 

 

// ADC SPI data needs to be bit reversed as firmware only shifts in one direction 

*SPI_control = slb_clk_nreset | slb_clk_npwrdwn | spi_sel_adc;// select adc for spi transfers 

*SPI_data=0x0004; while((*SPI_control)&8); // 

*SPI_data=0x00FC; while((*SPI_control)&8); // 

*SPI_data=0x1002; while((*SPI_control)&8); // Normal operation 

*SPI_data=0x0182; while((*SPI_control)&8); // DDR output 

*SPI_data=0x2D22; while((*SPI_control)&8); // clock edge control. was 3F22 

    *SPI_data=0x200A; while((*SPI_control)&8); // 2s comp 200A=single, 220A=independant 

control 

    *SPI_data=0x00CA; while((*SPI_control)&8); // offset corr. 

    *SPI_data=0x00AA; while((*SPI_control)&8); // gain = 0dB 

    *SPI_data=0x00EA; while((*SPI_control)&8); // fine gain 

    *SPI_data=0x2046; while((*SPI_control)&8); // Use 0x2046 for ramp test pattern ch.A / 

Normal 0046 / Toggle C046 

    *SPI_data=0x00C6; while((*SPI_control)&8); // pedestal 

    *SPI_data=0x20AE; while((*SPI_control)&8); // Use 0x20AE for ramp test pattern ch.B / 

Normal 00AE / Toggle C0AE 

 

    *SPI_control = slb_clk_nreset | slb_clk_npwrdwn | spi_sel_dac; // select dac for spi transfers 

          // (on a 941 dac is 2nd adc) 

    *SPI_data=0x0004; while((*SPI_control)&8);   // 



    *SPI_data=0x00FC; while((*SPI_control)&8); // 

    *SPI_data=0x1002; while((*SPI_control)&8); // Normal operation 

    *SPI_data=0x0182; while((*SPI_control)&8); // DDR output 

    *SPI_data=0x2D22; while((*SPI_control)&8); // clock edge control 

    *SPI_data=0x200A; while((*SPI_control)&8); // 2s comp 

    *SPI_data=0x00CA; while((*SPI_control)&8); // offset corr. 

    *SPI_data=0x00AA; while((*SPI_control)&8); // gain = 0dB 

    *SPI_data=0x00EA; while((*SPI_control)&8); // fine gain 

    *SPI_data=0x2046; while((*SPI_control)&8); // Use 0x2046 for ramp test pattern ch.A 

    *SPI_data=0x00C6; while((*SPI_control)&8); // pedestal 

    *SPI_data=0x20AE; while((*SPI_control)&8); // Use 0x20AE for ramp test pattern ch.B 

} 

 


