SMT300Q

SMT300Q User Guide V1.6

Certificate Number FM 55022

User Manual (QCF42); Version 3.0, 8/11/00; © Sundance Multiprocessor Technology Ltd. 1999

Date	Comments	Engineer	Version
30-09-02	Original Document	SP	1.1
23/04/04	PLL register	SP	1.2
21/05/04	Power connector part number correction	TJW	1.3
16/11/04	Added: TIM sites location	SM	1.4
26/11/05	Corrected: location Pin 1 of J21	SM	1.5
7/12/05	Removed SDB references	AJP	1.6

Table of Contents

1	Intro	duction	8
2	Fund	tional Description	9
	2.1	Block Diagram	. 10
	2.2	ComPort Switching Matrix	. 11
	2.3	TIM Sites location	. 12
3	Setti	ng Up the SMT300Q	13
4	Host	Memory Map	.14
	4.1	CompactPCI Bridge Chip Internal Register (BAR0)	. 14
	4.2	I/O Space Register Assignments (BAR1)	. 14
	4.3	Memory Space Assignments(BAR2)	. 15
5	DSP	Resource Memory Map	. 16
6	Shar	ed Memory Resource	. 17
7	Com	Ports	. 18
	7.1	ComPort Switching (Quick Switches)	. 18
	7.2	Buffered ComPort	19
8	Com	Port to CompactPCI Interface	23
	8.1	ComPort Registers (Offset 0x10, BAR1)	23
	8.2	Control Register (Offset 0x14, BAR1)	. 23
	8.3	Status Register (Offset 0x14, BAR1 , Read-Only)	. 24
	8.4	Interrupt Control Register (Offset 0x18, BAR1)	. 25
9	PLL.		26
	9.1	PLLREG1 (BAR1 Offset 6016)	. 26
	9.2	PLLREG2 (BAR1 Offset 64 ₁₆)	. 26
	9.3	Frequency Select (Bank 2, 3 and 4)	. 26
	9.4	Phase Shift Select (Bank 2)	. 27
	9.5	Phase Shift Select (Bank 3 and 4)	. 27
1		G Controller	
1	1 Using	g the SMT300Q External/Internal JTAG with TI Tools.	. 30
1:	2 Firm	ware Upgrades	31
1:	3 Glob	al/Local Bus Transfers, DSP <-> CompactPCI	. 33
	13.1	Mailbox Accesses	33
	13.1.	1 Doorbell Interrupts	.34
	13.2	DSP Interrupt Control	34
	13.3	DSP To Local Aperture 0 control and Accessing	. 35
	13.3.	1 Global bus access protocol	. 36
1	4 Inter	rupts	40
	14.1	SMT300Q-To-CompactPCI Interrupts	. 40
	14.2	CompactPCI-To-SMT300Q Interrupts	. 41
	14.3	Interrupt Registers	
	14.3.		
	14.3.		
	14.3	3 Local Bus Interrupt Mask Register(Offset 0x77, BAR0)	. 44

	14.3.4	Local Bus Interrupt Status Register(Offset 0x76, BAR0)	45
	14.3.5 BAR0 Re	CompactPCI Mailbox WRITE/READ Interrupt Control Register(Offset: Writ ead 0xD2, BAR0)	
	14.3.6 Read 0x	Local Bus Mailbox WRITE/READ Interrupt Control Register(Offset Write 0xD- D6, BAR0)	
	14.3.7 BAR0)	Mailbox Write/Read Interrupt Status Register(Offset: Write 0xD8, BAR0 Rea 47	d 0xDA,
	14.3.8	INTREG Register(Offset 0x40, BAR1)	47
14	4.4 Exa	ample	48
	14.4.1 cleared	An Interrupt service routine must be set up, in this the following register will ne 48	ed to be
15	Stand-Al	lone Mode	50
16	Performa	ance Figures	51
10	6.1 Rel	lative JTAG speeds	52
17	Mechani	ical Dimensions	53
18	Power co	onsumption	53
19	Cables a	and Connectors	54
19	9.1 Co	mPorts	54
19	9.2 But	ffered ComPort Cabling	54
19		AG back panel cabling	
20		that Jumper?	
21	Expansion	on Header (J2)	59
22		terface circuits	
22	2.1 Sig	nal Description	60

Table of Figures

Figure 1 : Block Diagram for SMT300Q (Master site only)	10
Figure 2: ComPort Switching Matrix	11
Figure 3: TIM sites location	12
Figure 4 : Operation of quick switches	18
Figure 5 : TBC Data Routing	
Figure 6 : JTAG header pin numbers	32
Figure 7 : Local Bus to DSP Connectivity	
Figure 8 : DSP Transfer via the Local Aperture 0	
Figure 9 : Timing diagram for DSP local bus access	
Figure 10 : SMT300Q to CompactPCI Interrupts	40
Figure 11 : CompactPCI to SMT300Q Interrupts	41
Figure 12 : Auxiliary Power Connector	50
Figure 13 : JTAG speed Comparison chart	52
Figure 14 : Jumper Finder Diagram	58
Figure 15 : Expansion Header Pin Out Diagram	59
Figure 16 : JTAG Slave circuit	61

Table of Tables

Table 1 : Table of Abbreviations	7
Table 2 : I/O address space map	14
Table 3 : Memory space map	15
Table 4 : Memory space map	
Table 6 : COM-SWITCH Register	19
Table 7: Buffered ComPort 1 connections	20
Table 8: Buffered ComPort 2 connections	20
Table 9: Buffered ComPort 3 connections	20
Table 10: Buffered ComPort 4 connections	20
Table 11: Buffered ComPort 5 connections	21
Table 12: Buffered ComPort 6 connections	21
Table 13: Buffered ComPort 7 connections	21
Table 14: Buffered ComPort 8 connections	22
Table 15 : Buffered ComPort Additional Signals	22
Table 16 : Control Register	23
Table 17 : Status Register	
Table 18 : Interrupt Control Register	25
Table 19 : PLLREG1 Register	26
Table 20 : PLLREG2 Register	26
Table 21 : PLL Frequency Select	26
Table 22 : PLL Phase Shift Select (Bank 2)	
Table 23 : PLL Phase Shift Select (Bank 3 and 4)	27
Table 24 : JTAG Header pin function	32
Table 25 : CompactPCI Interrupt Configuration Register	43
Table 26 : CompactPCI Interrupt Status Register	44
Table 27 : Local Bus Interrupt Mask Register	45
Table 28 : Local Bus Interrupt Status Register	45
Table 29 : CompactPCI Mailbox WRITE/READ Interrupt Control Register	46
Table 30 : Local Bus Mailbox WRITE/READ Interrupt Control Register	46
Table 31 : Mailbox Write/Read Interrupt Status Register	47
Table 32 : INTREG Register	48
Table 33 : Performance Figures	51
Table 35 : Buffered ComPort connector pin out	55
Table 36 : Buffered JTAG connector pin functionality as JTAG source	56
Table 37 : Buffered JTAG connector pin functionality as JTAG master	57

Table Of Abbreviations

BAR	Base Address Region	
DMA	rect Memory Access	
EPLD	ctrically Programmable Logic Device	
CompactPCI	ompact Peripheral Component Interconnect	
SRAM	Static Random Access Memory	
TBC	Test Bus Controller	
TIM	Texas Instruments Module	

Table 1 : Table of Abbreviations

1 Introduction

The SMT300Q is a quad-site module carrier board that provides access to TIM modules over the CompactPCI bus.

The carrier can hold up to four 'C6x modules and these can exchange data using ComPorts. A ComPort routing matrix, using electronic "*quick switches*", is provided to allow module connectivity without external cables.

The first TIM on the carrier is known as the "Master Module" and an enhanced CompactPCI interface allows data packets to be exchanged between this module and the CompactPCI bus at burst speeds in the range of 60–100MB/s. The DSP has access to the CompactPCI Bridge internal registers to control DMAs, mailbox events, and interrupts.

1MB of SRAM is mapped on to the Global Bus and can be accessed as a global resource by the Host system across the CompactPCI Bridge or by the Master Module.

An on-board JTAG controller allows systems to be debugged using Code Composer Studio. This JTAG controller also has buffered outputs and inputs that can be accessed using connectors on the carrier's back panel. This allows off-board devices to be connected into the JTAG chain.

Headers are provided for RESET_IN and RESET_OUT to allow multiple SMT300Q carriers to be connected together and synchronised.

The board requires a 3.3-volt supply that is taken from the CompactPCI connector and is made available at the fixing pillars for each module.

The SMT300Q may also be used with 'C4x-based TIMs. When using these 'C4x modules you must ensure that a Master 'C4x Module does not use its global memory (if any is available) as this will prevent the SMT300Q from working.

If your SMT300Q does not have the Global Interface connector fitted (an ordering option), the Master Module will still be able to use its global bus resources. The module will not have access to the SMT300Q global resources, such as SRAM and CompactPCI Bridge, but full ComPort and JTAG control will still be available.

2 Functional Description

Figure 1 gives the block diagram of the SMT300Q. The Slave Module sites (2–4) are not shown, as they do not have any direct interface to the CompactPCI Bus, SRAM, ComPort or JTAG sections of the design. The connectivity of slave sites is shown in Figure 2.

The CompactPCI interface connects to a Quick Logic EPC363 bridge device. It has a 32-bit 33MHz CompactPCI interface that supports I^2C control, mailbox register access, and direct memory reads and writes. The CompactPCI bus is translated to a Local bus, which is connected to the following devices:

- Shared SRAM 1MB
- Control EPLD that manages ComPort access
- JTAG controller
- Module Global Bus
- CompactPCI Bridge device

An on-board arbitration unit controls which device, Master Module or CompactPCI Bridge, has access to this local bus resource.

The local bus has a 33MHz clock to control transfers between the various resources. This is available on the CLKIN pin on the Master site and should be selected in preference to the on-board oscillator to allow the DSP to synchronise its accesses to and from the CompactPCI Bridge registers. The CompactPCI Bridge has an input and output FIFO capable of transferring 256 32-bit words of data to and from the DSP at 33MHz, thus bursting a maximum local bus transfer rate of 132MB/s.

The Master Module can access the SRAM over the local bus at transfer rates up to 100MB/s. The number of wait states required by the Master Module will vary depending on the speed of the module. Maximum access rates use a 20ns strobe cycle.

The JTAG controller is based on the TI 8990 device, and drivers can be supplied for Code Composer Studio (Part Number <u>SMT6012</u>). The presence of a TIM in a module site causes its SENSE pin to switch the module into the JTAG chain.

ComPort communication from the Host to the Master Module site is switched through a quick-switch, as illustrated in Figure 1. This allows the following connectivity:

- Connect the Host to the Master Module's ComPort 3 (T1C3) and connect the FMS (C_BUF) directly to the external buffered ComPort. This allows any of the ComPorts on sites 1—4 to be connected to the external buffered ComPort with an FMS cable; or
- Connect the Host to the external buffered ComPort and connect ComPort 3 of the Master site to the FMS connector (C_BUF).

2.1 Block Diagram

Figure 1 shows the block diagram of the SMT300Q. For simplicity, only CompactPCI, JTAG, and Buffered ComPort connectivity to the Master site is illustrated. Connectivity between the Master site and the three other sites is shown in the ComPort Switching Matrix block diagram, Figure 2.

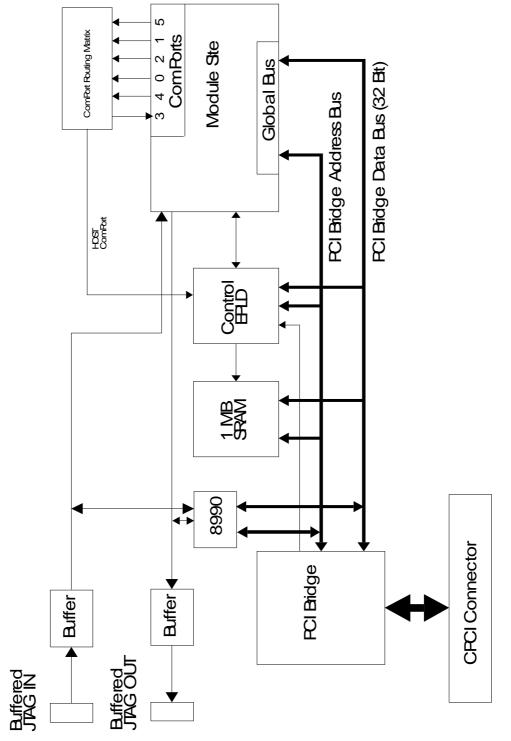


Figure 1 : Block Diagram for SMT300Q (Master site only)

2.2 ComPort Switching Matrix

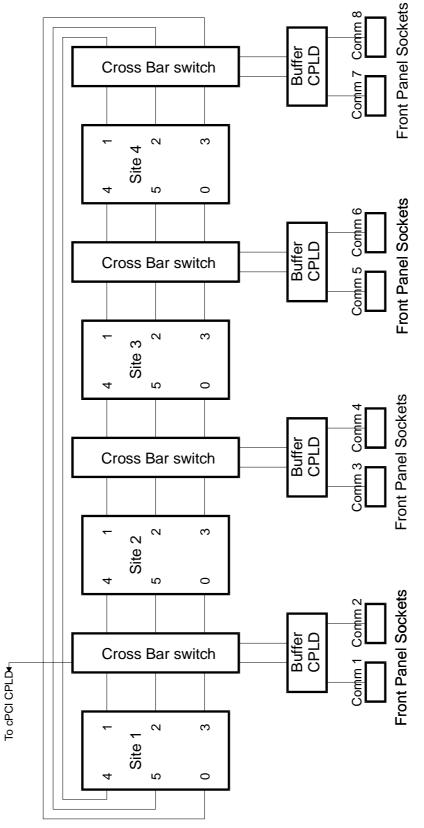


Figure 2: ComPort Switching Matrix

2.3 TIM Sites location

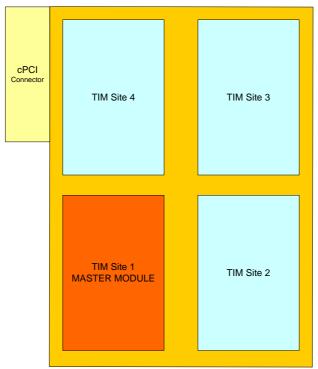


Figure 3: TIM sites location

3 Setting Up the SMT300Q

The SMT300Q should be set up in the following way.

- Turn the PC off and insert the card into a spare CompactPCI slot.
- Switch on PC and wait for the O/S to boot up.
- Windows 95/98/NT/2000 will detect new hardware.
- Windows should automatically find the drivers from the CD, if not browse to the CD or if you downloaded from the ftp site to the folder where you unzipped the SMT6300 software.
- You can run the SMTBoardInfo application to detect the number of SMT300Qs in your system and report their slot positions and I/O addresses. This information is required when setting up code composer for the board.

4 Host Memory Map

All address information is given in bytes :

4.1 CompactPCI Bridge Chip Internal Register (BAR0)

Please see V363EPC Local Bus CompactPCI Bridge User Manual (<u>http://www.quicklogic.com/home.asp?PageID=223&sMenuID=114#Docs</u>) for details of internal registers.

Where required, registers from the V^3 datasheet have been included.

4.2 I/O Space Register Assignments (BAR1)

In target mode, a host device accesses the SMT300Q across the CompactPCI bus, which gives access to the target mode registers. The operating system or BIOS will normally allocate a base address for the target mode registers of each SMT300Q. Access to each register within the SMT300Q is then made at offsets from this base address as shown in the table below.

Offset (Hex)	Register(Write)	Register(Read)	Width
0x00	-	-	
0x04	-	-	
0x08	-	-	
0x0C	-	-	
0x10	COMPORT_OUT	COMPORT_IN	32
0x14	CONTROL STATUS		32
0x18	0x18 INT_CONTROL		32
0x1C	C		
0x20 to 0x3F	COMPORT Configuration	COMPORT Configuration	
0x24	COM_SWITCH	COM_SWITCH	16
0x2C	COM_SWITCH_EX	COM_SWITCH_EX	32
0x40	INTREG	INTREG	16
0x80 to 0xAF	TBC Write	TBC Read	16

Table 2 : I/O address space map

4.3 Memory Space Assignments(BAR2)

Address (Hex)	Description	Notes
0x0000 0000 – 0x000F FFFF	Shared Memory Bank	1MB SRAM
0x00200090	ComPort Data Mirror	Mirror of COMPORT_OUT / COMPORT_IN in I/O Space Register Assignments (BAR1) See Note 2
0x00200094	ComPort Status Mirror	Mirror of Control / Status in I/O Space Register Assignments (BAR1) See Note 2
0x00200098	ComPort Int_Control Mirror	Mirror of Int_Control in I/O Space Register Assignments (BAR1) See Note 2
0x0020 0000-0x0020 007F	Global Bus	See Note 1

Table 3 : Memory space map

Note 1: In order for the TIM to respond to accesses for this area address line GADD30 and GADD19 of the TIM site connector must be decoded as high and GADD7 and GADD5 must be decoded as low.

Note 2: These mirrors of Addresses in the I/O Space (BAR1) allow increased transfer speeds across the host ComPort link (in excess of 10X increase).

5 DSP Resource Memory Map

The Master module on the SMT300Q can access the various board resources, including the Shared SRAM and the CompactPCI Bridge. This allows the DSP to control the CompactPCI Bridge's DMA engine and manipulate mailbox registers. The table below illustrates the resources and their corresponding address region when accessed by the Master module.

C60 Address Access	Description	Notes
0xD000 0000 – 0xD00F FFFF	Shared Memory Bank	1MB SRAM
0x1C00 0000 - 0x1C00 00FF	CompactPCI Bridge Registers	CompactPCI Bridge Internal resisters
0x1800 0000 – 0x183F FFFF	Local-to-CompactPCI Aperture 0	CompactPCI Bridge Aperture 0 Space

Table 4 : Memory space map

6 Shared Memory Resource

The SMT300Q has 1 MB of shared SRAM that can be accessed by both the CompactPCI host and the Master module. This allows applications to transfer data between the host PC and the DSP at data rates approaching 100MB/s. The address of the shared memory is shown in the memory map.

The CompactPCI Bridge DMA processor sees the shared memory at a different address from that used for normal accesses. For normal memory access the memory base address register offset is 0x0000 0000. For DMA access address line A28 (On hardware interface) must be high, therefore DMA memory access starts at 0x4000 0000 (Not 0x1000 0000 as addressing is in bytes).

7 ComPorts

Figure 2 shows how the ComPorts of each TIM site are connected.

The SMT300Q gives access to all six ComPorts on each of the four TIM sites. All of the ComPorts can be connected buffered connectors on the front panel of the carrier card.

There is a connection from the CompactPCI interface to ComPort 3 on TIM site 1 for booting the TIM. This connection can be severed with a quick switch (COM-SWITCH register offset 0x24, BAR1 bit 15)

7.1 ComPort Switching (Quick Switches)

Several of the TIM ComPorts can be linked together without the need for external cables. This is done using quick switches controlled by the COM-SWITCH register (BAR1, offset 0x24)

For all of the quick switches expect the one controlled by bit 15 of the COM-SWITCH register, the following diagrams show the effects of setting or clearing the control bit.

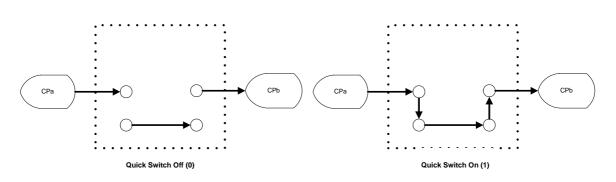


Figure 4 : Operation of quick switches

D15	D14	D13	D12	D11	D10	D9	D8
CompactP	T3C3-	T3C2-	T3C1-	T2C3-	T2C2-	T2C1-	T1C3-
CI-T1C3	T4C0	T4C5	T4C4	T3C0	T3C5	T3C4	T2C0

D7	D6	D5	D4	D3	D2	D1	D0
T1C2-	T1C1-	T4C3-	T4C2-	T4C1-	T4C3-	T4C2-	T4C1-
T2C5	T2C4	T1C0	T1C5	T1C4	T1C0	T1C5	T1C4

Bit	Clear (0)	Set (1)	Bit	Clear (0)	Set (1)
D0	Not Connected	T4C1—T1C4	D8	Not Connected	T1C3—T2C0
D1	Not Connected	T4C2—T1C5	D9	Not Connected	T2C1—T3C4
D2	Not Connected	T4C3—T1C0	D10	Not Connected	T2C2—T3C5
D3	Not Connected	T1C4—T4C1	D11	Not Connected	T2C3—T3C0
D4	Not Connected	T1C5—T4C2	D12	Not Connected	T3C1—T4C4
D5	Not Connected	T1C0—T4C3	D13	Not Connected	T3C2—T4C5
D6	Not Connected	T1C1—T2C4	D14	Not Connected	T3C3—T4C0
D7	Not Connected	T1C2—T2C5	D15	CompactPCI— T1C3	CompactPCI— External Buffered ComPort 2

7.2 Buffered ComPort

The buffered ComPorts on the front panel can be connected to ComPorts of the Tim Sites. Four of the buffered ComPorts are output only (BUF 2,4,6 and 8) and four are input only (BUF 1,3,5 and 7).

Connection is controlled by COM_SWITCH_EX register (BAR1, Offset 0x2C,), shown below,

D3	D2	D1	D0	Buffered ComPort 1 Connection (Input Only)				
0	Х	Х	Х	Buffered ComPort 1 Disabled				
1	0	1	1	Buffered ComPort 1 Connected to TIM Site 1 ComPort 3				
1	1	0	0	Buffered ComPort 1 Connected to TIM Site 2 ComPort 4				
1	1	0	1	Buffered ComPort 1 Connected to TIM Site 2 ComPort 5				

Table 6: Buffered ComPort 1 connections

D7	D6	D5	D4	Buffered ComPort 2 Connection (Output Only)			
0	Х	Х	Х	Buffered ComPort 2 Disabled			
1	0	0	0	Buffered ComPort 2 Connected to TIM Site 2 ComPort 0			
1	0	0	1	Buffered ComPort 2 Connected to TIM Site 1 ComPort 1			
1	0	1	0	Buffered ComPort 2 Connected to TIM Site 1 ComPort 2			

D11	D10	D9	D8	Buffered ComPort 3 Connection (Input Only)			
0	Х	Х	Х	Buffered ComPort 3 Disabled			
1	0	1	1	Buffered ComPort 3 Connected to TIM Site 2 ComPort 3			
1	1	0	0	Buffered ComPort 3 Connected to TIM Site 3 ComPort 4			
1	1	0	1	Buffered ComPort 3 Connected to TIM Site 3 ComPort 5			

Table 7: Buffered ComPort 2 connections

Table 8: Buffered ComPort 3 connections

D15	D14	D13	D12	Buffered ComPort 4 Connection (Output Only)			
0	Х	Х	Х	Buffered ComPort 2 Disabled			
1	0	0	0	Buffered ComPort 4 Connected to TIM Site 3 ComPort 0			
1	0	0	1	Buffered ComPort 4 Connected to TIM Site 2 ComPort 1			
1	0	1	0	Buffered ComPort 4 Connected to TIM Site 2 ComPort 2			

Table 9: Buffered ComPort 4 connections

D19	D18	D17	D16	Buffered ComPort 5 Connection (Input Only)			
0	Х	Х	Х	Buffered ComPort 5 Disabled			
1	0	1	1	Buffered ComPort 5 Connected to TIM Site 3 ComPort 3			
1	1	0	0	Buffered ComPort 5 Connected to TIM Site 4 ComPort 4			
1	1	0	1	Buffered ComPort 5 Connected to TIM Site 4 ComPort 5			

Table 10: Buffered ComPort 5 connections

D23	D22	D21	D20	Buffered ComPort 6 Connection (Output Only)				
0	Х	Х	Х	Buffered ComPort 6 Disabled				
1	0	0	0	Buffered ComPort 6 Connected to TIM Site 4 ComPort 0				
1	0	0	1	Buffered ComPort 6 Connected to TIM Site 3 ComPort 1				
1	0	1	0	Buffered ComPort 6 Connected to TIM Site 3 ComPort 2				

D27	D26	D25	D24	Buffered ComPort 7 Connection (Input Only)			
0	Х	Х	Х	Buffered ComPort 7 Disabled			
1	0	1	1	Buffered ComPort 7 Connected to TIM Site 4 ComPort 3			
1	1	0	0	Buffered ComPort 7 Connected to TIM Site 1 ComPort 4			
1	1	0	1	Buffered ComPort 7 Connected to TIM Site 1 ComPort 5			

Table 12: Buffered ComPort 7 connections

D31	D30	D29	D28	Buffered ComPort 8 Connection (Output Only)			
0	Х	Х	Х	Buffered ComPort 8 Disabled			
1	0	0	0	Buffered ComPort 8 Connected to TIM Site 1 ComPort 0			
1	0	0	1	Buffered ComPort 8 Connected to TIM Site 4 ComPort 1			
1	0	1	0	Buffered ComPort 8 Connected to TIM Site 4 ComPort 2			

Table 13: Buffered ComPort 8 connections

The front panel mounted connector is a 26 pin 3M type, (3M part number 10226-5212JL).

As well as the 12 C4x ComPort signals and signal grounds, there are 6 additional signals. Note that these signals are NOT essential for communications:

Name	Description
I/O_OUT	Output high when port is outputting data, output low when port is receiving data.
I/O_IN	Input which prevents bus contention if connected to I/O_OUT
/RST_OUT	Active low open collector copy of the board reset drive.
/RST_IN	Active low board reset input, pulled up to 3.3V by 100 ohms.
VCC	1 AMP +5 Volt supply, with resetable 1 Amp fuse, to power a remote buffer, if required.
SHIELD	Overall cable shield, connected to plug shells and chassis.

Table 14 : Buffered ComPort Additional Signals

The /RST_OUT is intended to allow synchronised reset of a number of boards by driving the /RST_IN input.

The SMT502-Buffer is the recommended cable assembly for the buffered Comport and can be purchased separately.

8 ComPort to CompactPCI Interface

The ComPort interface is memory mapped to the CompactPCI Bridge as illustrated in table 1 : I/O address space map. The ComPort uses the Control and Data registers to detect the state of the input and output FIFOs. The following section describes the bit definitions for these registers.

8.1 ComPort Registers (Offset 0x10, BAR1)

The host is connected to the first TIM site using Comport 3 (T1C3). This port is bidirectional and will automatically switch direction to meet a request from either the host or the DSP. Both input and output registers are 32 bits wide. Data can only be written to COMPORT_OUT when STATUS[OBF] is 0. Data received from the DSP is stored in COMPORT_IN and STATUS[IBF] is set to 1. Reading COMPORT_IN will clear STATUS[IBF] and allow another word to be received from the DSP.

8.2 Control Register (Offset 0x14, BAR1)

The CONTROL register can only be written. It contains flags, which control the boot modes of the first TIM site.

7-5	4	3	2	1	0
	notNMI	IIOF2	IIOF1	liof0	RESET

RESET	Write a 1 to this bit to assert the reset signal to the TIM module on the SMT300Q.
IIOF0 IIOF1 IIOF2	These bits connect to the corresponding pins on the TIM site 1. Writing 0 causes the corresponding IIOF line to go low.
NotNMI	A 0 written to this bit will assert the active low NMI to the TIM.

Table 15 : Control Register

Note. On CompactPCI system reset, RESET is asserted to the TIM site.

8.3 Status Register (Offset 0x14, BAR1 , Read-Only)

31:22	21	20	19	18	17	16	15:12	11	10	9	8
	CONFIG_L	TBC RDY	0	MASTER	IBF	OBF		IM2	IM1	IM0	INTD

7	6	5	4	3	2	1	0
C40 INT	TBC INT	IBF INT	OBE INT	C40 IE	TBC IE	IBF IE	OBE IE

OBE IE	Set if ComPort output buffer empty interrupts enabled.
IBF IE	Set if ComPort input buffer full interrupts enabled
TBC IE	Set if JTAG interrupts enabled
C40 IE	Set if interrupt from TIM DSP enabled
OBE INT	Set if the ComPort output buffer becomes empty. Cleared by writing a 1 to the corresponding bit in the interrupt control register.
IBF INT	Set if the ComPort input buffer receives a word. Cleared by writing a 1to the corresponding bit in the interrupt control register
TBC INT	Set when the TBC asserts its interrupt. Cleared by removing the source of the interrupt in the TBC.
C40 INT	Set when the TIM DSP sets its host interrupt bit. Cleared by writing a 1 to the corresponding bit in the interrupt control register.
INTD	The logical OR of bits 7—4 in this register gated with each one's enable bit.
OBF	Set when a word is written to the ComPort output register. Cleared when the word has been transmitted to the DSP.
IMO	Interrupt mask 0. Returns Interrupt Control Register Bit 8.
IM1	Interrupt mask 1. Returns Interrupt Control Register Bit 9.
IM2	Interrupt mask 2. Returns Interrupt Control Register Bit 10.
IBF	Set when a word is in the ComPort input register.
MASTER	Set when the SMT300Q bridge owns the ComPort interface token.
TBC RDY	Reflects the current state of the TBC RDY pin. This bit is active high and therefore and inversion of the TBC pin.
CONFIG_L	Reflects the state of the TIMs' CONFIG signal. Active low.
	•

Table 16 : Status Register

INTD is the input interrupt into the CompactPCI Bridge from the SMT300Q, this can

be routed to either INTA, INTB, or INTC using the CompactPCI Interrupt Configuration Register (offset 0x4C, BAR0)

8.4 Interrupt Control Register (Offset 0x18, BAR1)

This write-only register controls the generation of interrupts on the CompactPCI bus. Each interrupt source has an associated enable and clear flag. This register can be written with the contents of bits 7:0 of the Status Register.

10	9
DSP-PC IIOF2 En	DSP-PC IIOF1 En

8	7	6	5	4	3	2	1	0
DSP-PC IIOF0 En	CLEAR C40 INT	0	CLEAR IBF INT	CLEAR OBE INT	C40 IE	TBC IE	IBF IE	OBE IE

DSP-PC IIOF2 En	Enables DSP-PC interrupts on IIOF2
DSP-PC IIOF1 En	Enables DSP-PC interrupts on IIOF1
DSP-PC IIOF0 En	Enables DSP-PC interrupts on IIOF0
IBF IE	ComPort Input Buffer Full Interrupt Enable. Allows an interrupt to be generated when the host ComPort input register is loaded with data from the C40.
OBE IE	ComPort Output Buffer Empty Interrupt. Allows an interrupt to be generated when the host ComPort register has transmitted its contents.
TBC IE	Test Bus Controller Interrupt Enable. Interrupts from the Texas JTAG controller are enabled when set.
C40 IE	C40 Interrupt Enable. Allows a programmed interrupt to be generated by the C40 when set.

CLEAR OBE INT	Write a one to this bit to clear the interrupt resulting from a ComPort output event.
CLEAR IBF INT	Write a one to this bit to clear the interrupt event resulting from ComPort input.
CLEAR C40 INT	Write a one to this bit to clear down the C40 INT event.

Table 17 : Interrupt Control Register

The JTAG controller, which generates TBC INT, must be cleared of all interrupt sources in order to clear the interrupt.

9 PLL

The PLL produces three programmable clocks that are available on the user-defined pins of the TIM connectors (Bank2CLK pin 1 on J24, Bank3CLK pin 3 on J24, Bank4CLK pin 8 on J23).

These clocks are programmable through registers PLLREG1 and PLLREG2 (BAR1 Offset 60_{16} and 64_{16}).

9.1 PLLREG1 (BAR1 Offset 60₁₆)

D15	D14	D13	D12	D11	D10	D9	D8
В	ank3CLK Fre	equency Sele	ct	Ba	ank3CLK Pha	ase Shift Sele	ect

D7	D6	D5	D4	D3	D2	D1	D0
В	ank2CLK Fre	equency Sele	ct	Ba	ank2CLK Pha	ase Shift Sele	ect

Table 18 : PLLREG1 Register

9.2 PLLREG2 (BAR1 Offset 64₁₆)

D7	D6	D5	D4	D3	D2	D1	D0
В	ank4CLK Fre	equency Sele	ct	Ba	ank4CLK Pha	ase Shift Sele	ect

Table 19 : PLLREG2 Register

9.3 Frequency Select (Bank 2, 3 and 4)

Frequency (MHz)	MSB			LSB
66 / 1	0	1	0	1
66 / 3	0	1	1	1
66 / 8	1	1	0	1
66 / 12	1	1	1	1

Table 20 : PLL Frequency Select

Each clock output has a programmable phase shift in steps of t_u.

Where $t_u = 1 / (F_{NOM} * N)$ $F_{NOM} = 66 \text{ MHz}$ N = 32So $t_u = 473.5 \text{ ps}$

0

1

LSB

1

1

1

1

Phase Shift MSB -4 t_u 0 1 0 -2 t_u 0 1 1

9.4 Phase Shift Select (Bank 2)

Table 21 : PLL Phase Shift Select (Bank 2)

1

1

1

1

9.5 Phase Shift Select (Bank 3 and 4)

+2 t_u

+4 t_u

Phase Shift	MSB			LSB
-8 t _u	0	1	0	1
-6 t _u	0	1	1	1
+6 t _u	1	1	0	1
+8 t _u	1	1	1	1

Table 22 : PLL Phase Shift Select (Bank 3 and 4)

10 JTAG Controller

The SMT300Q has an on board Test Bus Controller (TBC), an SN74ACT8990 from Texas Instruments. The TBC is controlled from the CompactPCI bus giving access to the on-site TIMs and/or any number of external TIMs. Please refer to the Texas Instruments data sheet for details of this controller. The TBC is accessed in I/O space BAR1 offset 0x80.

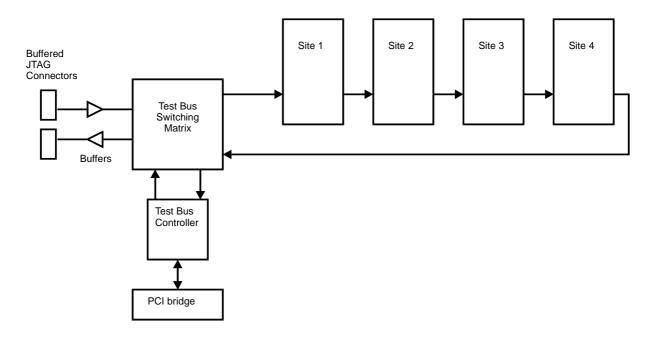


Figure 5 : TBC Data Routing

The SMT300Q can operate in two TBC modes; Master mode and Slave mode. In Master mode, the Test Bus Controller on the SMT300Q drives the JTAG scan chain through the TIM sites on the SMT300Q. If any or all the sites are not populated with a TIM then the modules SENSE signal is used to enable a tri-state buffer connecting the TDI and TDO (JTAG Data In and Data Out) on the specific site, maintaining the integrity of the JTAG data path. This switching is automatic. The SMT300Q auto detects external JTAG connections and switches the JTAG circuitry accordingly.

When the SMT300Q is configured in Slave mode, the TBC on the SMT300Q is disabled, as the TBC is assumed to be on another device connected to the SMT300Q.

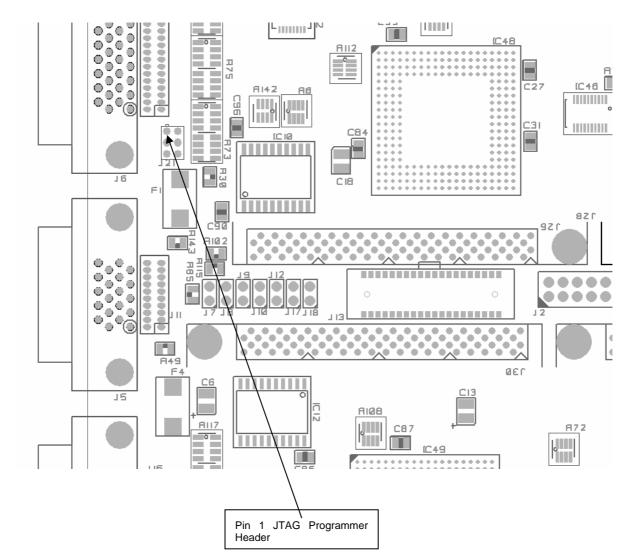
The SMT501-JTAG is designed to connect two SMTxxx carrier boards i.e., SMT300Q controlling an SMT328 VME carrier. The length of SMT501-JTAG is 1 meter.

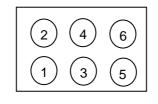
There are two external JTAG connectors (JTAG IN, JTAG OUT). JTAG OUT is used when in master mode to connect to slave devices and JTAG IN is used in slave mode to connect master devices to the SMT300Q. Both connectors can be used at the same time to produce a chain of boards.

When using the JTAG chain with multiple carriers that have a large number of vacant TIM sites it may be necessary to reduced the speed of the JTAG clock (mater board only) to improve reliability. This can be done by inserting jumper J7 (Figure 14 : Jumper Finder Diagram) which halves the JTAG clock frequency.

11 Using the SMT300Q External/Internal JTAG with TI Tools.

For details on using the SMT300Q with T.I. Code Composer range, see the <u>SMT6012</u> documentation.


The SMT6012 is Sundance's driver for the T.I. Code Composer range of products and can be purchased separately. The SMT6012 is free of charge when the SMT300Q is bought with the Code Composer software from Sundance.


The Texas Instruments Evaluation Module (EVM) kits can be used as stand-alone devices with a SMT300Q as the JTAG master. When running with the EVM kits ensure that the EVM jumper has been set up correctly. i.e. External JTAG has been selected and the DSP boot location is valid (set for internal memory space).

12 Firmware Upgrades

Much of the SMT300Q's control interface is achieved using EPLDs. Sometime customers require slightly different interface protocols, which can be catered for by a firmware upgrade. To upgrade firmware Xilinx JTAG programming software is required together with a lead to connect to the SMT300Q's header. The image below shows the location of pin 1 of the JTAG connector J21. This connector is a 2x3 2mm pin header.

-		
Pin Number	Function	
1	Vcc (5v)	
2	Gnd	
3	ТСК	
4	TDO	
5	TDI	
6	TMS	

Figure 6 : JTAG header pin numbers

Table 23 : JTAG Header pin function

13 Global/Local Bus Transfers, DSP <-> CompactPCI.

The traditional global bus interface on C6x DSP modules interfaces to the SMT300Q via a local bus. This allows Global bus transfers on the DSP to be converted into local bus accesses. This allows direct DSP accesses to the CompactPCI Bridge chip. The resources in the CompactPCI Bridge chip are illustrated in the figure below.

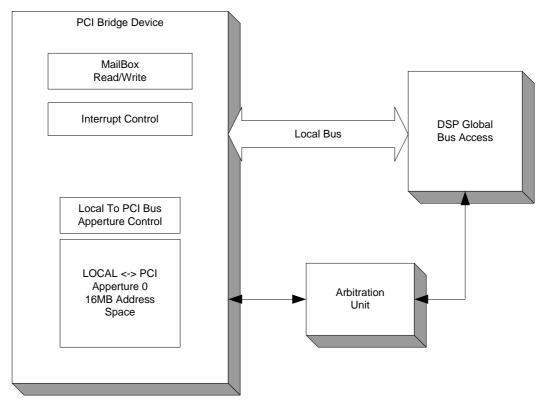


Figure 7 : Local Bus to DSP Connectivity

13.1 Mailbox Accesses

The mailbox registers can be used if small amounts of data or commands between the CompactPCI bus and the DSP, via the local bus, need to be transferred. Rather than sending ComPort data, and therefore require the DSP to be checking its ComPort for commands, a mailbox write by the CompactPCI bus can be initialized to generate an interrupt on an DSP IIOF line indicating, to the DSP, that data is available. The CompactPCI Bridge device provides 16 8-bit mailbox registers, which may be used to transmit and receive data between the DSP and Host.

The mailbox registers are accessed from the DSP through the Local-to-Internal Register (LB_IO_BASE) aperture. As illustrated in section 5, table 4 of this document this region is accessed by the DSP via a global bus access to the CompactPCI Bridge Registers (Address : 0x1C00 0000).

The mailbox registers themselves are on byte boundaries with offsets $0xC0 \rightarrow 0xCF$, from the LB_IO_BASE. As DSP global bus accesses are carried out on WORD (32-bit) boundaries a write access over the global bus to $0x1C00\ 0000 + 0xC0$ will write to the first 4 mailbox registers in the CompactPCI Bridge device.

The mailbox registers are accessed from the CompactPCI bus through the CompactPCI-to-Internal Register (CompactPCI_IO_BASE) aperture. This is accessed via the CompactPCI Bridge Chip Internal Register (BAR0), byte offset 0xC0 -> 0xCF.

13.1.1 Doorbell Interrupts

Each of the 16 mailbox registers can generate four different interrupt requests called doorbell interrupts. Each of these requests can be independently masked for each mailbox register. The four doorbell interrupt types are:

- DSP interrupt request on read from CompactPCI side
- DSP interrupt request on write from CompactPCI side
- CompactPCI interrupt request on read from DSP side
- CompactPCI interrupt request on write from DSP side

The CompactPCI read and DSP read interrupts are OR'd together and latched in the mailbox read interrupt status register (MAIL_RD_STAT). Similarly, the CompactPCI write and DSP write interrupts are OR'd together and latched in the mailbox write interrupt status register (MAIL_WR_STAT). All of the interrupt request outputs from the status registers are OR'd together to form a single mailbox unit interrupt request and routed to both the Local and CompactPCI Interrupt Control Units.

When a block of mailbox registers are accessed simultaneously, for example when 4 mailbox registers are read as a word quantity, then each register affected will request a separate interrupt if programmed to do so.

See section 14 for further information on Interrupts.

13.2 DSP Interrupt Control

Interrupts can be enabled from a number of different sources i.e. DSP-> Host and Host -> DSP. See section 14 for a description of these functions.

13.3 DSP To Local Aperture 0 control and Accessing

The quickest way to transfer information from the DSP to CompactPCI Bus or vice versa is to use the Local-to-CompactPCI Aperture 0 in the CompactPCI Bridge device. A DSP unit may be required to transfer large amounts of acquired data to the PC host for data storage or post-processing etc. Allowing the DSP to take control of the CompactPCI bus means that the HOST only requires to transfer data, from an internal allocated region of memory, after the transfer has been completed by the DSP. Alerting the Host that data has been transferred can be accomplished in a number of ways i.e. writing to the mailbox register, which can then generate an interrupt.

The Local-to-CompactPCI Aperture 0 is mapped as a region of addressable space from $0x1800\ 0000 - 0x183F$ FFFF (words), as shown in Table 4, section 5.

There are a number of registers in initialise before data can be read or written via this address space.

- Unlock the CompactPCI Bridge System register. This requires a write to the LB_CFG_SYSTEM (offset 0x78, BAR 0) with the value 0xA05F.
- Write the upper 8 bits of your destination address (in bytes) to the upper 8 bits of the 32-bit Local Bus to CompactPCI Map 0 register (LB_MAP0_RES, offset in bytes 0x5c).
- Convert you lower 24-bit address to a word aligned value.
- Write/Read data from Local-to-CompactPCI Aperture 0.

The diagram below illustrates this procedure.

In the example below the *WritetoCompactPCIregisters(offset,data)* function writes data over the DSP's Global bus, at a base address of 0x1800 0000 (words), the first parameter passed to this function in the offset address in words, and the second is the data to be written.

Receive Target address via Com-Port Link i.e. 0xFE12 3000

Unlock the system register in PCI bridge #define LB_CFG_SYSTEM (0x78>>2) (divide by 4 to word align offset address of PCI bridge register) // Unlock Code WritePCIRegisters((unsigned int)LB_CFG_SYSTEM,0xA05F); // Restore Value WritePCIRegisters((unsigned int)LB_CFG_SYSTEM,0x22008800); Write Lower 24 bits of byte TargetAddress to the LB_MAP0_RES register #define LB_MAP0_RES (0x5C>>2) #define LB_MAP0_MEMORY_RW 0x00060000 #define LB_MAP0_ADDRESS_MASK 0xFF000000 WritePCIRegisters((unsigned int)LB MAP0 RES,(unsigned int)(TargetAddress & LB_MAP0_ADDRESS_MASK) | LB_MAP0_MEMORY_RW); // The LB MAPO MEMORY RW must be Or'ed with the data to ensure the other register in // the 32-bit word has its correct value. Write WORD Aligned data to Local Aperture space 0. WritePCIApperture0((ByteToWord32(((TargetAddress) & ~LB_MAP0_ADDRESS_MASK))),Length,buffer); Where void WritePCIApperture0(unsigned int address, unsigned long Length, unsigned int *buffer) unsigned int Index; globalbuswriteClockMB(0x18000000 + address, Length, buffer); }

13.3.1 Global bus access protocol

In Figure 8, the WriteCompactPCIApperture function calls a function C6xGlobalWriteClockMB().

This function enables the DSP's global bus to transfer *Length* words from the DSP's internal memory map pointed to by *buffer*. The function puts the Global bust into burst

mode. This interface allows a synchronous stream of data to be written to the 256 WORD input FIFO of the Local To CompactPCI aperture 0. For more information on setting this mode from the DSP can be found in the *SMT335 Users Guide*. This section concentrates on the burst mode interface and arbitration mechanism for the DSP to CompactPCI Bridge aperture access.

The Global bus interface of the DSP uses the following signals to interface to the local bus of the SMT300Q.

DSP Signals.

AE*, DE*, CE0*

AE*/DE* are active low address/Data enable signal driven by the SMT300Q, when the DSP has ownership of the Bus this signal is driven low by the SMT300Q allowing the DSP to drive the Address pins and Data pins.

CE0* is the Tri-state control for the DSP's global bus control pins. This is permanently tied low by the SMT300Q as the control signals are always enable.

STRB1*

This is the data strobe signal from the DSP's global bus. It is driven low when the DSP is carrying out an access cycle. The DSP waits for the RDY1* to be driven low by the SMT300Q to indicate transfer has been completed. This transfer is carried out in synchronous burst mode. The DSP signals when the burst transfer is completed by pulling STAT0 low.

RDY1*

This is an active low transfer acknowledgement, driven by the SMT300Q to indicate that the current transfer has been completed.

STAT0..STAT3

These comprise the DSP Status line. When all of the signals are logic '1' then the DSP Global bus interface is in an idle state. When any of these signals is driven low the DSP is requesting ownership of the SMT300Q's local bus. STAT0 has a special meaning and is driven low by the DSP to indicate the last data packet transfer.

A0..A30 The DSP's global Bus address lines D0..D31 The DSP's global Bus data lines IIOF0, IIOF1 & IIOF2

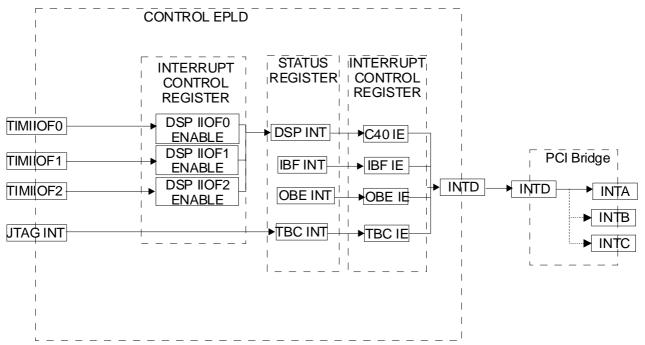
The DSP's Interrupt signals. These are open collector signals on the SMT300Q. They can be driven by the DSP to generate an interrupt to the host, or they can be driven by the host to interrupt the DSP.

In the timing diagram below all signals change relative to the rising LCLK signal. This signal is the H1 clock signal of the DSP when using the DSP global bus in synchronous mode (see SMT335 User Guide).

	TIMReq
LCLK	
STAT[1.3]	
STRB1	
RDY1	
STAT0	
AE/DE	
A[300]	
D[310] * <i>L</i> (Figure 9 : Timing diagram for DSP local bus access CLK Period =30nS, frequency is 33MHz.

The DSP initiates a global bus R/W by asserting the STRB1 low and STAT[1:3] change (see TIM Spec for details of STAT[1..3]). Once the arbitration unit detects this, it waits for the last cycle of the Local bus to be completed by the CompactPCI Bridge, before allowing the DSP to become Bus Master. Once the DSP is Master the arbitration unit drives AE and DE low to enable the DSP's address and data lines. RDY1 is driven low by the arbitor to indicate to the DSP, on the next rising LCLK, that the data packet has been transferred. If the input FIFO (256 Words Deep) becomes full, the arbitration logic de-asserts the RDY1 signal to indicate a hold-off state. Once the data has been transferred from the FIFO to the CompactPCI bus RDY1 is reasserted to continue the transfer. The end of the burst access is indicated by asserting STAT0 low. If RDY1 is not active then STAT0 should remain asserted until ready is asserted and the final data transaction has been completed.

It is possible for a deadlock condition to arise, i.e. the CompactPCI bus is trying to read from the SMT300Q resources while the DSP is reading from the CompactPCI


Bus. If this happens, the arbitration unit gives the CompactPCI Bridge device priority and services the HOST CompactPCI access before giving bus ownership back to the DSP.

When running code composer applications to debug the DSP a reduction in the speed of the debugger may be noticed. The DSP has priority when accessing the local bus and any other accesses will only occur under the following conditions.

- Burst access finishes
- A deadlock condition occurs which forces the DSP to release ownership of the Bus.

For multi-threaded applications the length of the DSP burst can be lowered to allow CompactPCI bus R/W cycles to snatch cycles from the DSP.

14 Interrupts

14.1 SMT300Q-To-CompactPCI Interrupts

Figure 10 : SMT300Q to CompactPCI Interrupts

Interrupts can also be caused by the SMT300Q by writing or reading the mailbox registers in the CompactPCI Bridge.

14.2 CompactPCI-To-SMT300Q Interrupts

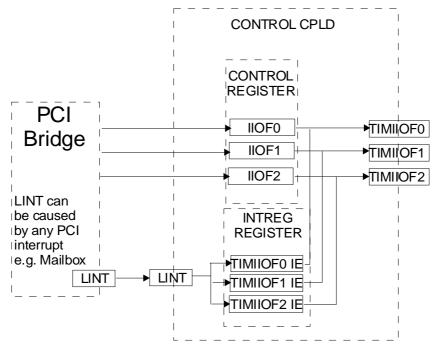


Figure 11 : CompactPCI to SMT300Q Interrupts

14.3 Interrupt Registers

The following register are used to control CompactPCI-To-DSP and DSP-To-CompactPCI interrupts:

Note that Control Register (Offset 0x14, BAR1) and Interrupt Control Register (Offset 0x18, BAR1) are also used to control interrupts.

14.3.1 CompactPCI Interrupt Configuration Register(Offset 0x4C, BAR0)

Bits	Name	Description
31	MAILBOX	Mailbox Interrupt Enable: Enables a CompactPCI interrupt from the mailbox unit
30	LOCAL	Local Bus Direct Interrupt Enable: Enables direct local bus to CompactPCI interrupts
29	MASTER_PI	CompactPCI Master Local Interrupt Enable: (see V3 datasheet)
28	SLAVE_PI	CompactPCI Slave Local Interrupt Enable: (see V3 datasheet)
27	OUT-POST	I2O Outbound Post List Not Empty: (see V3 datasheet)

26	-	Reserved
25	DMA1	DMA Channel 1 interrupt enable
24	DMA0	DMA Channel 0 interrupt enable
23-22	MODE_D	INTD interrupt mode: Determines use of corresponding interrupt pin
		00 Active low level triggered input
		01 High-to-low edge triggered input
		10 Software cleared output. INTD pin is asserted via an interrupt event and cleared through CompactPCI_INT_STAT register
		11 Reserved
21-20	MODE_C	INTC interrupt mode (as MODE_D)
19-18	MODE_B	INTB interrupt mode (as MODE_D)
17-16	MODE_A	INTA interrupt mode (as MODE_D)
15	INTD_TO_LB	1=INTD will request LICU interrupts when the input is active 0=INTD will never request LICU interrupts
14	INTC_TO_D	When set INTC will act as interrupt request for INTD output
13	INTB_TO_D	When set INTB will act as interrupt request for INTD output
12	INTA_TO_D	When set INTA will act as interrupt request for INTD output
11	INTD_TO_C	When set INTD will act as interrupt request for INTC output
10	INTC_TO_LB	1=INTC will request LICU interrupts when the input is active 0=INTC will never request LICU interrupts
9	INTB_TO_C	When set INTB will act as interrupt request for INTC output
8	INTA_TO_C	When set INTA will act as interrupt request for INTC output
7	INTD_TO_B	When set INTD will act as interrupt request for INTB output
6	INTC_TO_B	When set INTC will act as interrupt request for INTB output
5	INTB_TO_LB	1=INTB will request LICU interrupts when the input is

		active 0=INTB will never request LICU interrupts
4	INTA_TO_B	When set INTA will act as interrupt request for INTB output
3	INTD_TO_A	When set INTD will act as interrupt request for INTA output
2	INTC_TO_A	When set INTC will act as interrupt request for INTA output
1	INTB_TO_A	When set INTB will act as interrupt request for INTA output
0	INTA_TO_LB	1=INTA will request LICU interrupts when the input is active 0=INTA will never request LICU interrupts

Table 24 : CompactPCI Interrupt Configuration Register

14.3.2 CompactPCI Interrupt Status Register(Offset 0x48, BAR0)

Bits	Name	Description
31	MAILBOX	Mailbox Interrupt:
		1=Mailbox interrupt request active
		0=No mailbox interrupts pending
		Cleared by clearing MAIL_RD_STAT and MAIL_WR_STAT
30	LOCAL	Local bus direct interrupt:
		1=Local bus master requests a CompactPCI interrupt
		0=No operation
		This bit is set by writing 1 and cleared by writing 0
29-28	-	Reserved
27	OUT_POST	I2O outbound post list not empty: (see V3 datasheet)
26	-	Reserved
25	DMA1	DMA channel 1 interrupt
24	DMA0	DMA channel 0 interrupt
23-15	-	Reserved
14	INTC_TO_D	INTD output from INTC input: when set (1) an interrupt has occurred on INTC
13	INTB_TO_D	INTD output from INTB input: when set (1) an interrupt has occurred on INTB

12	INTA_TO_D	INTD output from INTA input: when set (1) an interrupt has occurred on INTA
11	INTD_TO_C	INTC output from INTD input: when set (1) an interrupt has occurred on INTD
10	-	Reserved
9	INTB_TO_C	INTC output from INTB input: when set (1) an interrupt has occurred on INTB
8	INTA_TO_C	INTC output from INTA input: when set (1) an interrupt has occurred on INTA
7	INTD_TO_B	INTB output from INTD input: when set (1) an interrupt has occurred on INTD
6	INTC_TO_B	INTB output from INTC input: when set (1) an interrupt has occurred on INTC
5	-	Reserved
4	INTA_TO_B	INTB output from INTA input: when set (1) an interrupt has occurred on INTA
3	INTD_TO_A	INTA output from INTD input: when set (1) an interrupt has occurred on INTD
2	INTC_TO_A	INTA output from INTC input: when set (1) an interrupt has occurred on INTC
1	INTB_TO_A	INTA output from INTB input: when set (1) an interrupt has occurred on INTB
0	-	Reserved

Table 25 : CompactPCI Interrupt Status Register

14.3.3 Local Bus Interrupt Mask Register(Offset 0x77, BAR0)

Bits	Name	Description
7	MAILBOX	Global mailbox interrupt enable
6	CompactPCI_RD	CompactPCI read error interrupt enable
5	CompactPCI_WR	CompactPCI write error interrupt enable
4	CompactPCI_INT	Global CompactPCI interrupt to local interrupt enable
3	CompactPCI_PERR	CompactPCI parity error interrupt enable
2	I2O_QWR	I2O inbound post queue write interrupt enable
1	DMA1	DMA channel 1 interrupt enable

0	DMA0	DMA channel 0 interrupt enable
---	------	--------------------------------

Table 26 : Local Bus Interrupt Mask Register

14.3.4 Local Bus Interrupt Status Register(Offset 0x76, BAR0)

Bits	Name	Description
7	MAILBOX	1=interrupt has been requested by one or more of the mailbox registers0=no mailbox interrupts pending
6	CompactPCI_RD	See V3 datasheet
5	CompactPCI_WR	See V3 datasheet
4	CompactPCI_INT	See V3 datasheet
3	CompactPCI_PERR	See V3 datasheet
2	I2O_QWR	See V3 datasheet
1	DMA1	See V3 datasheet
0	DMA0	See V3 datasheet

Table 27 : Local Bus Interrupt Status Register

14.3.5 CompactPCI Mailbox WRITE/READ Interrupt Control Register(Offset: Write 0xD0, BAR0 Read 0xD2, BAR0)

Bits	Name	Description
15	EN15	Local interrupts on CompactPCI bus writes/reads to mailbox15 enable
14	EN14	Same as above for mailbox 14
13	EN13	Same as above for mailbox 13
12	EN12	Same as above for mailbox 12
11	EN11	Same as above for mailbox 11
10	EN10	Same as above for mailbox 10
9	EN9	Same as above for mailbox 9
8	EN8	Same as above for mailbox 8
7	EN7	Same as above for mailbox 7
6	EN6	Same as above for mailbox 6
5	EN5	Same as above for mailbox 5
4	EN4	Same as above for mailbox 4
3	EN3	Same as above for mailbox 3

2	EN2	Same as above for mailbox 2
1	EN1	Same as above for mailbox 1
0	EN0	Same as above for mailbox 0

Table 28 : CompactPCI Mailbox WRITE/READ Interrupt Control Register

14.3.6 Local Bus Mailbox WRITE/READ Interrupt Control Register(Offset Write 0xD4, BAR0 Read 0xD6, BAR0)

Bits	Name	Description
15	EN15	CompactPCI interrupts on Local bus writes/reads to mailbox15 enable
14	EN14	Same as above for mailbox 14
13	EN13	Same as above for mailbox 13
12	EN12	Same as above for mailbox 12
11	EN11	Same as above for mailbox 11
10	EN10	Same as above for mailbox 10
9	EN9	Same as above for mailbox 9
8	EN8	Same as above for mailbox 8
7	EN7	Same as above for mailbox 7
6	EN6	Same as above for mailbox 6
5	EN5	Same as above for mailbox 5
4	EN4	Same as above for mailbox 4
3	EN3	Same as above for mailbox 3
2	EN2	Same as above for mailbox 2
1	EN1	Same as above for mailbox 1
0	EN0	Same as above for mailbox 0

Table 29 : Local Bus Mailbox WRITE/READ Interrupt Control Register

	Read UXDA, BARU)				
Bits	Name	Description			
15	EN15	1=Mailbox 15 has requested a CompactPCI or Local write/read interrupt 0=Mailbox 15 has not requested a CompactPCI or Local write/read interrupt			
14	EN14	Same as above for mailbox 14			
13	EN13	Same as above for mailbox 13			
12	EN12	Same as above for mailbox 12			
11	EN11	Same as above for mailbox 11			
10	EN10	Same as above for mailbox 10			
9	EN9	Same as above for mailbox 9			
8	EN8	Same as above for mailbox 8			
7	EN7	Same as above for mailbox 7			
6	EN6	Same as above for mailbox 6			
5	EN5	Same as above for mailbox 5			
4	EN4	Same as above for mailbox 4			
3	EN3	Same as above for mailbox 3			
2	EN2	Same as above for mailbox 2			
1	EN1	Same as above for mailbox 1			
0	EN0	Same as above for mailbox 0			

14.3.7 Mailbox Write/Read Interrupt Status Register(Offset: Write 0xD8, BAR0 Read 0xDA, BAR0)

Register cleared by writing 1, writing 0 has no effect

Table 30 : Mailbox Write/Read Interrupt Status Register

14.3.8 INTREG Register(Offset 0x40, BAR1)

	0	
Bits	Name	Description
15	-	Reserved
14	-	Reserved
13	-	Reserved
12	-	Reserved
11	-	Reserved
10	-	Reserved

9	-	Reserved		
8	-	Reserved		
7	-	Reserved		
6	-	Reserved		
5	-	Reserved		
4	-	Reserved		
3	-	Reserved		
2	IIOF2EN	PC to DSP TIMIIOF2 interrupt enable		
1	IIOF1EN	PC to DSP TIMIIOF1 interrupt enable		
0	IIOF0EN	PC to DSP TIMIIOF0 interrupt enable		

Table 31 : INTREG Register

14.4 Example

The example below shows how the DSP can cause an interrupt on the PC by writing to mailbox register 0.

The PC must first enable the interrupts, to do this the following register bits must be altered, and an interrupt thread handler needs to be created.

CompactPCI Interrupt Configuration Register(Offset 0x4C, BAR0) – bit 31 must be set.

Local Bus Interrupt Mask Register(Offset 0x77, BAR0) – bit 7 must be set.

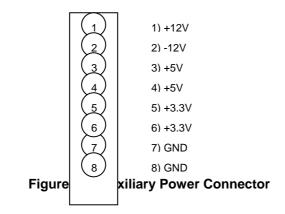
Local Bus Mailbox WRITE/READ Interrupt Control Register(Offset Write 0xD4, BAR0 Read 0xD6, BAR0) – bit 0 of the write register (0xD4) must be set.*

An Interrupt service routine must be set up, in this the following register will need to be cleared

Mailbox Write/Read Interrupt Status Register(Offset: Write 0xD8, BAR0 Read 0xDA, BAR0) – bit 0 of the write register (0xD8) must be cleared.**

Local Bus Interrupt Status Register(Offset 0x76, BAR0) – bit 7 must be cleared.

To cause the interrupt the DSP needs to write to the mailbox register in the V^3 chip, this is done by writing to address 0x1C0000C0 (this will write to the first four mailboxes).


*These are two separate registers, one to enable interrupts on reads from the mailbox registers the other to enable interrupts on writes to the mailbox registers.

**These are two separate registers, one shows interrupt status for reads from the mailbox register the other to show interrupt status on writes to the mailbox registers.

15 Stand-Alone Mode

For the SMT300Q to operate in stand-alone mode Jumper J8 (**Figure 14 : Jumper Finder Diagram**) must be installed and the Auxiliary power header (J1) connected. The plug for the power connector is AMP part N^o 640440-8. The connector requires wiring as shown in the pin diagram below. Wire of 0.3 mm² core (22 AWG) should be used.

16 Performance Figures

The following performance figures are for the SMT300Q with the Rev. A1 V^3 CompactPCI bridging device fitted and using a SMT335. Further performance figures will be issued as faster V^3 CompactPCI bridging devices become available and are fitted to the SMT300Q.

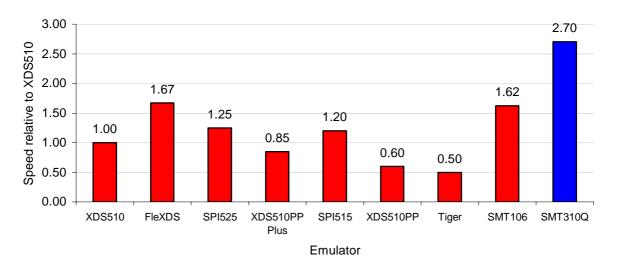
The figures shown below may vary greatly depending on the application. Some of the issues are:

PC Architecture and performance

Transfer parameters.

- The transfer size.
- Frequency of transfer.
- The layout of the target memory. (Scatter/Gather or contiguous)

Availability of the CompactPCI bus.


- Other devices on the CompactPCI bus.
- Debugging traffic on the bus.
- ComPort traffic.

Transfer type	MIN (Mb/s)	MAX (Mb/s)	AVERAGE (Mb/s)	Comments
C60 Burst Read To Host Memory	45	82	70	Will Vary depending on CompactPCI traffic
C60 Burst Write To Host Memory	11	88	68	Will Vary depending on CompactPCI traffic

 Table 32 : Performance Figures

16.1 Relative JTAG speeds

Relative Emulator Speeds

Figure 13 : JTAG speed Comparison chart

17 Mechanical Dimensions

The board size is 234 mm by 160 mm

18 Power consumption

The SMT300Q takes 3.3V and 5V power from the PC's internal power supply. The following current consumption figures were measured using a LEM current clamp during a quiescent period.

Current drawn from 3.3v supply	:	440 mA
Current drawn from 5v supply	:	100 mA

19 Cables and Connectors

19.1 ComPorts

The cables used with FMS connectors are not supplied with the SMT300Q. You can order them separately from Sundance with part number SMT500-FMSxx, where xx is the cable length in centimetres.

19.2 Buffered ComPort Cabling

Connecting between buffered ComPorts requires a 1 to 1 cable; the SMT502-Buffer is the recommended cable assembly and can be purchased separately.

Cable plugs 3M Scotchflex 10126-6000EL FES part 038740A

Plug shells 3M Scotchflex 10326-A200-00 FES part 038760D

Cable type 3M Scotchflex KUCKMPVVSB28-13PAIR FES part 038781E

This cable has 13 individual pairs, with an overall shield, and an outer diameter of 7mm. Cable length should be as short as possible. The maximum tested cable length is 1 meter.

On reset, each ComPort initialises to being either an input or an output.

Do not connect 'Reset to Input' ComPorts together.

Do not connect 'Reset to Output' ComPorts together.

However if this should occur, no damage will result, because ComPort direction signals disable relevant ComPorts.

The following table shows connector pin-out and cable pair connections. This is important, as the critical signals must be paired with a ground as shown. The allocation to twisted pairs is based on grouping the data signals because they change at the same time, so that crosstalk is not an issue. Each control signal has its own ground:

Pin	Twisted Pair	RTI Signal	RTO Signal	Pin	Twisted Pair	RTI Signal	RTO Signal
1	1	I/O_OUT	I/O_IN	15	8	D2	D2
2	1	GND	GND	16	8	D3	D3
3	2	I/O_IN	I/O_OUT	17	9	D4	D4
4	2	GND	GND	18	9	D5	D5
5	3	/CSTRB	/CSTRB	19	10	D6	D6
6	3	GND	GND	20	10	D7	D7
7	4	/CRDY	/CRDY	21	11	VCC	VCC
8	4	GND	GND	22	11	GND	GND
9	5	/CREQ	/CREQ	23	12	/RST_OUT	/RST_IN
10	5	GND	GND	24	12	GND	GND
11	6	/CACK	/CACK	25	13	/RST_IN	/RST_OUT
12	6	GND	GND	26	13	GND	GND
13	7	D0	D0	SHELL	-	SHIELD	SHIELD
14	7	D1	D1				

Table 33 : Buffered ComPort connector pin out

The overall shield is attached to the body of the metal plug shell.

The signal VCC is fused on the board at 1 amp; it automatically resets when the load is removed.

When the buffered ComPort is reset to input, pins 1 and 23 are always driven and pins 3 and 25 are always receivers. When the buffered ComPort is reset to output, pins 3 and 25 are always driven and pins 1 and 23 are always receivers.

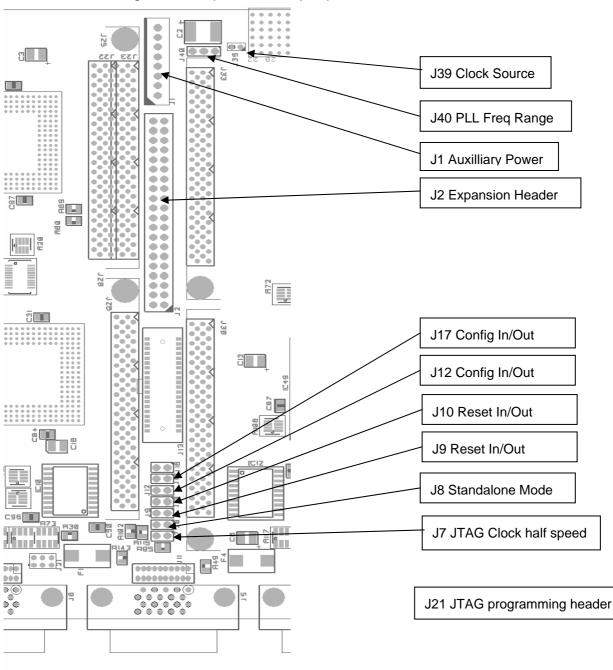
19.3 JTAG back panel cabling

The 20-way JTAG connectors require the following cabling components:

Cable plugs	3M Scotchflex 10120-6000EL, FES part 038739R
Plug shells	3M Scotchflex 10320-A200-00, FES part 038759A
Cable type	3M Scotchflex KUCKMPVVSB28-10PAIR, FES part 038780G

When the SMT300Q is configured as a Slave using the Buffered JTAG connector as a JTAG source, the buffered connector pins are used as follows:

Pin	Signal	Direction	Description	
1	TDI	IN	JTAG data in	
2	GND			
3	TDO	OUT	JTAG data out	
4	GND			
5	TMS	IN	JTAG Test mode select	
6	GND			
7	ТСК	IN	JTAG clock, up to 10MHz	
8	GND			
9	TCK_RET	OUT	JTAG clock return	
10	GND			
11	/TRST	IN	JTAG Reset	
12	GND			
13	/RESET	IN	Board Reset in	
14	PD	OUT	Presence detect, +5V 1A fused	
15	/DETECT	IN	Detect external JTAG controller when grounded	
16	CONFIG	OPEN COLL	Global open collector C4x CONFIG	
17	EMU0	OUT	Buffered EMU0 output	
18	EMU1	OUT	Buffered EMU1 output	
19	SPARE1			
20	SPARE2			


Table 34 : Buffered JTAG connector pin functionality as JTAG source

When the SMT300Q is configured as a Master, using the Buffered JTAG connector to connect to a JTAG slave, the buffered connector pins are used as follows:

Pin	Signal	Direction	Description
1	TDI	OUT	JTAG data out
2	GND		
3	TDO	IN	JTAG data in
4	GND		
5	TMS	OUT	JTAG Test mode select
6	GND		
7	TCK	OUT	JTAG clock 10MHz
8	GND		
9	TCK_RET	IN	JTAG clock return
10	GND		
11	/TRST	OUT	JTAG Reset
12	GND		
13	/RESET	OUT	Board Reset out
14	PD	IN	Presence detect when pulled high
15	/DETECT	OUT	Detect external JTAG controller when grounded
16	CONFIG	OPEN COLL	Global open collector C4x CONFIG
17	EMU0	IN	Buffered EMU0 output
18	EMU1	IN	Buffered EMU1 output
19	SPARE1		
20	SPARE2		

Table 35 : Buffered JTAG connector pin functionality as JTAG master

20 Where's that Jumper?

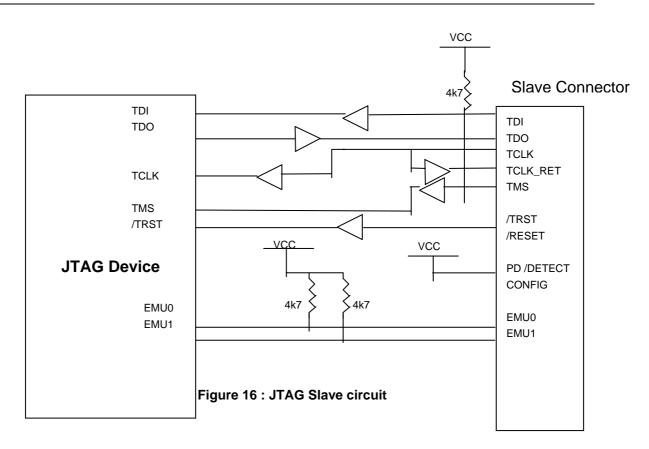
Below is a diagram to help locate the jumpers:

Figure 14 : Jumper Finder Diagram

21 Expansion Header (J2)

The expansion header is a 40 pin interleaved ground header which provides access to the three interrupt lines (IIMOF0, IIMOF01, IIMOF2) and two clock lines (TCK0, TCK1) of each of the four TIM sites. The pin out for the header is shown below:

			7
	IIMOF0	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$	GND
	IIMOF1	(3) (4)	GND
TIM SITE 1	IIMOF2	(5) (6)	GND
	тско	(7) (8)	GND
	TCK1	9 10	GND
	IIMOF0	$\begin{pmatrix} 11 \end{pmatrix} \begin{pmatrix} 12 \end{pmatrix}$	GND
	IIMOF1	(13) (14)	GND
TIM SITE 2	IIMOF2	(15) (16)	GND
	тско		GND
	TCK1	(19) (20)	GND
	IIMOF0	(21) (22)	GND
	IIMOF1	(23) (24)	GND
TIM SITE 3	IIMOF2	(25) (26)	GND
	тско	(27) (28)	GND
	TCK1	(29) (30)	GND
	IIMOF0	(31) (32)	GND
	IIMOF1	(33) (34)	GND
TIM SITE 4	Figure ^l MoSF₂Exp	35 36	erciRiin Out Diagram
	тско	37 38	GND
	TCK1	(39) (40)	GND


22 JTAG Interface circuits

The buffered JTAG circuit on the SMT300Q allows connection between SMT300Q cards and other compatible carrier modules. This section describes the JTAG interfacing circuitry to customers custom-built slave devices.

22.1 Signal Description

- TDI : JTAG Test Data In. This signal is driven by the **master** device.
- TDO: JTAG Test Data Out. This signal is driven by the **slave** device (i.e. SMT300Q)
- TMS : Test Mode Select. Driven by the **master** device.
- TCK : JTAG Clock. Driven by the master
- TCK_RET JTAG Clock Return, driven by the **slave**.
- /TRST JTAG Reset, driven by the **master**.
- /RESET Board Reset. Driven my master. (unused on SMT300Q)
- PD Pod Detect signal. This signal should be connected 3.3V or 5V on the slave device to indicate to the master that an external device is present.
- /DETECT This signal is pulled to GND by a master. If connecting two SMT300Q together a jumper is used on one of the carriers (switching it to slave mode) to prevent two masters being connected together.
- CONFIG This signal is unused and should be left unconnected.
- EMU0,EMU1 These are open collector JTAG emulation pins and should be connected to the DSP. Pull-up resistors are required.

The JTAG circuit for a slave target board is shown in Figure 16. Using the correct buffers and connectivity is essential to achieving a working JTAG interface.

All buffers are of type 74FCT244 (5V) / 74LV244 (3.3V) or equivalent.

N.B. When the JTAG device is NON 5v tolerant ensure that 3.3v buffers are used.