Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
<th>Engineer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/12/05</td>
<td>Initial Draft</td>
<td>AJP</td>
<td>1.0</td>
</tr>
<tr>
<td>20/06/06</td>
<td>Second Draft</td>
<td>AJP</td>
<td>1.1</td>
</tr>
<tr>
<td>03/07/06</td>
<td>Corrections</td>
<td>AJP</td>
<td>1.2</td>
</tr>
<tr>
<td>21/12/06</td>
<td>Added Diagram of video connectors</td>
<td>AJP</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Table of Contents

1. Introduction ... 6

2. Functional Description .. 7
 2.1. Block Diagram .. 7

2.2. Memory Map .. 8
 2.2.1. DSP Memory Map .. 8
 2.2.2. Virtex 4 Memory Map ... 8

2.3. DSP Unit ... 9
 2.3.1. EMIF Peripheral Configuration .. 9
 2.3.2. I²C Control .. 10

2.4. Flash ... 10

2.5. SDRAM .. 11

2.6. Virtex 4 FPGA ... 12
 2.6.1. Virtex 4 Peripherals .. 12
 2.6.1.1. LED Register ... 13
 2.6.1.2. Comports ... 13
 2.6.1.3. Video Encoder Register .. 14
 2.6.1.4. Video Decoder Register .. 14
 2.6.1.5. High Speed Nt (ZBT) Memory ... 16
 2.6.1.6. SLB Interface ... 16

2.6.2. SLB Power Supplies .. 17

3. Video Ports .. 19
 3.1. Video Encoder Setup ... 19
 3.1.1. Video Memory .. 20
 3.1.2. EDMA ... 21
 3.1.2.1. RGB656 Single Bank EDMA Setup .. 21
 3.1.2.2. BT656 with embedded Sync EDMA Setup ... 21

3.2. Video Decoder Setup ... 22

4. JTAG ... 22
 4.1. DSP JTAG Chain .. 22

4.2. Virtex 4 JTAG chain ... 22

5. SMT339 Video Input and Video Output Connections ... 23

6. Using the SMT339 JTAG with TI Tools ... 24

7. Firmware Upgrades .. 24

8. Power consumption .. 24
9 Cables and Connectors .. 25
 9.1 JP5 Virtex JTAG Header.. 25
 9.2 JP7 Connector.. 25
10 Where's that Jumper?... 27

Table of Figures

Figure 1 : Block Diagram for SMT339..7
Figure 2 : Flow from Video Memory to Encoder ..19
Figure 3 : Video Memory organisation in YCbCr output mode.................................20
Figure 4 : RGB565 organisation of the video memory..21
Figure 5 : Jumper Finder Diagram...27

Table of Tables

Table 1 : Table of Abbreviations ..5
Table 2 : DSP Memory Map ..8
Table 3 : Virtex 4 Internal Peripherals..8
Table 4 : EMIF Configurations ...9
Table 5 : Virtex 4 LED Register bit Definitions...13
Table 6 : Virtex 4, Video Encoder Register...14
Table 7 : Virtex 4, Video Decoder Register...14
Table 8 : Video Port 0 and Decoder connectivity ...15
Table 9 : Video Port 0 and Decoder Clock connectivity ...15
Table 10 : Video Port 0 Decoder Data to Video Port Data Mapping15

Table of Abbreviations

<table>
<thead>
<tr>
<th>BAR</th>
<th>Base Address Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA</td>
<td>Direct Memory Access</td>
</tr>
<tr>
<td>EPLD</td>
<td>Electrically Programmable Logic Device</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect</td>
</tr>
<tr>
<td>SDB</td>
<td>Sundance Digital Bus</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>SRAM</td>
<td>Static Random Access Memory</td>
</tr>
<tr>
<td>TBC</td>
<td>Test Bus Controller</td>
</tr>
<tr>
<td>TIM</td>
<td>Texas Instruments Module</td>
</tr>
</tbody>
</table>

Table 1: Table of Abbreviations
1 Introduction

The SMT339 is a dedicated high speed image processing module for use in a wide range of image analysis systems. The module can be plugged into a standard TIM single width slot and can be accessed by either a standard Comport, or Rocket Serial Link (RSL) Interface.

The image processing engine is based upon the ‘Texas Instruments’ TMS320DM642 Video Digital Signal Processor. It is fully software compatible with C64x using Code Composer Studio.

The DM642 runs at a clock rate of 720MHz. It features a two level cache based architecture. There are 16K Bytes of level one program cache (Direct mapped), 16K Bytes of level one data cache (2-Way Set-Associative) and 256K Bytes of level two cache that is shared program and data space (Flexible RAM/Cache Allocation). The DM642 can perform 4, 16 x 16 Multiplies or 8, 8 x 8 Multiplies per clock cycle.

A powerful Vitrex-4 FPGA (XC4VFX60-10) is used onboard as the FPGA processing unit for image data. 8 Mbytes of ZBT SRAM is provided as a FPGA memory resource. Processing functions such as Colour Space Conversion (CSC), Discrete Cosine Transforms (DCT), Fast Fourier Transforms (FFT) and convolution can be implemented, without using any of the DSP’s resources. If required, the Virtex 4 has 2 Power PC hardware cores that can be incorporated into the system design.

The Module features a single ‘Philips Semiconductors’ SAA7109AE/108AE video decoder/encoder that accept most PAL and NTSC standards, and can output processed images in PAL/NTSC or VGA (1280x1024, or HD TV Y/Pb/Pr)

The DM642 has 128 Mbytes of high speed SDRAM (Micron MT48LC64M32F2S5) available onboard for image processing and an 8Mbytes FLASH device is fitted to store programs and FPGA configuration information.

The module supports a full Sundance LVDS Bus (SLB) interface for use with mezzanine cards providing the flexibility for other image formats to be accepted and other output formats to be generated.
2 Functional Description

The basic block diagram of the SMT339 and its components is illustrated in Figure 1.

2.1 Block Diagram

[Figure 1: Block Diagram for SMT339]
2.2 Memory Map

The various addresses and lengths of the peripherals shown in Figure 1 are shown in Table 2.

2.2.1 DSP Memory Map

<table>
<thead>
<tr>
<th>Address (bytes)</th>
<th>Length (Bytes)</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 0000</td>
<td></td>
<td>INTRAM</td>
<td>DSP Internal Memory</td>
</tr>
<tr>
<td>0x8000 0000</td>
<td>64MBytes</td>
<td>EXTRAM</td>
<td>External SDRAM 100MHz bus speed</td>
</tr>
<tr>
<td>0x9000 0000</td>
<td>8MBytes</td>
<td>FLASH</td>
<td>External FLASH Memory</td>
</tr>
<tr>
<td>0xA000 0000</td>
<td>---</td>
<td>VIRTEXMAP</td>
<td>Virtex 4 Memory Area</td>
</tr>
</tbody>
</table>

Table 2: DSP Memory Map

2.2.2 Virtex 4 Memory Map

<table>
<thead>
<tr>
<th>Address (bytes)</th>
<th>Length (Bytes)</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xA001 8000</td>
<td>4 Bytes</td>
<td>COM2_DATA</td>
<td>Communication Port 2 Data Register</td>
</tr>
<tr>
<td>0xA001 C000</td>
<td>4 Bytes</td>
<td>COM2_STAT</td>
<td>Communication Port 2 Status Register</td>
</tr>
<tr>
<td>0xA001 C000</td>
<td>4 Bytes</td>
<td>COM3_DATA</td>
<td>Communication Port 3 Data Register</td>
</tr>
<tr>
<td>0xA001 C000</td>
<td>4 Bytes</td>
<td>COM3_STAT</td>
<td>Communication Port 3 Status Register</td>
</tr>
<tr>
<td>0xA00D 0000</td>
<td>4 Bytes</td>
<td>LED_REG</td>
<td>LED Register</td>
</tr>
<tr>
<td>0xA00D 8000</td>
<td>4 Bytes</td>
<td>VID_ENC_REG</td>
<td>Video Encoder Register</td>
</tr>
<tr>
<td>0xA00E 0000</td>
<td>4 Bytes</td>
<td>VID_DEC_REG</td>
<td>Video Decoder Register</td>
</tr>
<tr>
<td>0xA00E 4000</td>
<td>4 Bytes</td>
<td>SLB_CTRL_REG</td>
<td>SLB Interface Control Register:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not Implemented in standard code.</td>
</tr>
</tbody>
</table>

Table 3: Virtex 4 Internal Peripherals
2.3 DSP Unit

As illustrated in Figure 1 the SMT339 is based around the ‘Texas Instruments’ TMS320DM642 Video Imaging Processor. The processor is based around the second generation VelociTI Texas Instruments TMS320C6000 generation of processors. This processor has 3 built-in video imaging ports (each 20 bit) which each have 2 channels capable of sample rates up to 80MHz over a 10 bit bus, the direction of each channel being configurable as input or output. This allows Images to be DMA’ed directly to the SDRAM for processing, while the processed image can be viewed on one of the output channels. Input YCbCr formats with embedded sync information can be accepted by the video ports as well as RAW data modes. See Chapter 3 for details of the Video port operation.

The DM642 DSP has 128Mbytes of high speed SDRAM memory available for program and data space, an 8Mbyte FLASH allows FPGA configuring data and DSP program data to be stored. The DSP’s EMIF bus is also routed to the Virtex 4 FPGA, which allows the mapping of the Comports and the RSL directly into the DSP’s memory map.

The EMAC, serial ports and Audio channels are routed from the DSP to the Virtex 4, this allows the EMAC, SLB or Audio physical interfaces to be added to the system if required.

Software development and real-time debugging can be achieved using Code Composer Studio (Texas Instruments) via the JTAG interface.

Full specifications for the DSP can be downloaded from http://focus.ti.com/lit/ds/symlink/tms320dm642.pdf

2.3.1 EMIF Peripheral Configuration

The various peripherals are mapped into the DSP memory space into chip select spaces as illustrated in Table 4.

<table>
<thead>
<tr>
<th>Peripheral</th>
<th>DSP CS Area</th>
<th>Base Address</th>
<th>CE Space Control Register Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDRAM</td>
<td>CE0</td>
<td>0x8000 0000</td>
<td>0x0000 00D0</td>
<td>64 bit wide SDRAM Interface</td>
</tr>
<tr>
<td>FLASH</td>
<td>CE1</td>
<td>0x9000 0000</td>
<td>0xFFFF FF13</td>
<td>16 bit wide Asynchronous interface</td>
</tr>
<tr>
<td>VIRTEX 4</td>
<td>CE2</td>
<td>0xA000 0000</td>
<td>0x0000 0030</td>
<td>32 bit wide SDRAM Interface</td>
</tr>
<tr>
<td>VIRTEX 4</td>
<td>CE3</td>
<td>0xB000 0000</td>
<td>0xFFFF FF23</td>
<td>32 bit wide Asynchronous Interface</td>
</tr>
</tbody>
</table>

Table 4: EMIF Configurations
2.3.2 I^2C Control

The DM642 DSP has a built-in I^2C interface for controlling internal peripherals. This 2 wire serial bus is connected to 3 devices in the system. The devices and their respective I^2C addresses are illustrated in the table below.

<table>
<thead>
<tr>
<th>Device</th>
<th>Address (LSB ‘0’- wr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Decoder</td>
<td>0x40</td>
</tr>
<tr>
<td>Video Encoder</td>
<td>0x88</td>
</tr>
<tr>
<td>Virtex 4 **</td>
<td>NA</td>
</tr>
</tbody>
</table>

** No interface implemented in standard firmware.

2.4 Flash

8Mbytes of flash memory is provided with direct access by the DM642. This device contains boot code for the DSP and the configuration data for the FPGA.

This is a 16-bit wide device.

The flash device can be re-programmed by the DM642 at any time. There is a software protection mechanism to stop most errant applications from destroying the device’s contents. For extra safety a jumper (JP1) must be inserted to allow write operations.

Note that the flash memory is connected as a 16 bit device, but during a DM642 boot (internal function of the C6x) only the bottom 8 bits are used.

There are a number of DSP General Purpose pins connected to the FLASH devices Bank Pins in order to allow access to the upper FLASH areas. The Table below shows the GPIO pins values and associated memory access areas.

<table>
<thead>
<tr>
<th>GPIO10</th>
<th>GPIO9</th>
<th>DSP Memory Address</th>
<th>FLASH Access Address (16bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0x9000 0000 -> 0x900F FFFF</td>
<td>0x0000 0000 -> 0x000F FFFF</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0x9000 0000 -> 0x900F FFFF</td>
<td>0x0010 0000 -> 0x001F FFFF</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0x9000 0000 -> 0x900F FFFF</td>
<td>0x0020 0000 -> 0x002F FFFF</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0x9000 0000 -> 0x900F FFFF</td>
<td>0x0030 0000 -> 0x003F FFFF</td>
</tr>
</tbody>
</table>
For more detailed information on the programming of the FLASH see the manufacturer's data sheet, Am29LV641D.

2.5 SDRAM

There are 128 Mbytes of SDRAM connected to the DM642 processor via its external memory interface (EMIF). The EMIF clock runs at 100 MHz and the bus width is 64 bits, organized as 2 banks of 32 bits. This allows a peak data transfer rate of 400 Mbytes/second.
2.6 Virtex 4 FPGA

The FPGA on the SMT339 is a Virtex 4 FX60 device (XC4VFX6010FF1152). It is connected to the DSP’s EMIF and therefore allows its internal peripherals to be accessed at 100MHz clock rates and a bus width of 64bits. This allows high speed transfers to be initiated at request. It should, however, be noted that sustained large transfer will affect the DSP’s peak performance if the DSP’s algorithm is running in external SDRAM memory. To avoid this, the application can be run in internal DSP memory.

Some of the FPGA’s features are listed below.

- The Virtex-4 enhanced PowerPC™ 405 core delivers 680 DMIPS performance at 450 MHz and the new Auxiliary Processor Unit (APU) controller
- 400+ MHz clock rates
- 2.8Mbits of internal block RAM available.
- Up to 444 18X18 embedded multipliers
- Extensive library of DSP algorithms

2.6.1 Virtex 4 Peripherals

The Standard firmware supplied with a SMT339 contains interfaces for the peripherals listed below.

- Mapping of 2 Video Ports and related control registers
- Mapping of 2 communication ports
- LED Register Mapping
- Video Encoder Control Register
- Video Decoder Control Register
2.6.1.1 LED Register

There are 4 LEDs mapped in the Virtex 4 firmware that can be accessed via the DSP over the EMIF. The register is located at 0xA00D0000 and is mapped as follows.

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LED D8</td>
<td>LED D7</td>
<td>LED D6</td>
<td>LED D5</td>
</tr>
</tbody>
</table>

Table 5: Virtex 4 LED Register bit Definitions

The location of the LED’s is shown in the figure below.

2.6.1.2 Comports

There are 2 Comports implemented in the standard FPGA configuration file. Comport 3 and Comport 2. Comport 3 is usually routed via the carrier module to the Host CPU for setup and control by 3L or other applications. See the SMT6400 for detailed operation of how they can be used.
2.6.1.3 Video Encoder Register

The Video Encoder Register (0xA00D 8000) in the Virtex 4 allows various firmware parameters to be setup correctly. By default Video Port 1 is connected to the video encoder.

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X_MUX</td>
<td>X</td>
<td>TRI_C</td>
<td>TVD</td>
<td>ENC_RST</td>
</tr>
</tbody>
</table>

Table 6 : Virtex 4, Video Encoder Register

ENC_RST – Encoder Reset, when ‘1’ the Reset pin on the video decoder is active.

TRI_C – When ‘0’ the Video port Control Lines (HSync and VSync) are driven by the Encoder. The Encoder is in Master Sync mode. When ‘1’ the Video Port Sync Pins are Tri-Stated.

TVD – TV Detected. Read only bit that returns a 1 in a load is detected on the CVBS video output.

D_MUX – When this bit is ‘0’ the Video Port D[9..2] is fed directly to the encoder pins D[7..0]. When set to a logic ‘1’ the data stream from the video port is assumed to be RGB656 and is de-multiplexed from the Lower 16 bits of the Video Port 1 before driving the encoder pins.

2.6.1.4 Video Decoder Register

The Video Decoder Register (0xA00E 0000) in the Virtex 4 allows various firmware parameters to be setup correctly. By default Video Port 0 is connected to the video decoder.

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>CTRL_DIR</td>
<td>CLK_DIR</td>
<td>DEC_RST</td>
</tr>
</tbody>
</table>

Table 7 : Virtex 4, Video Decoder Register

DEC_RST – Decoder Reset, when ‘1’ the Reset pin on the video decoder is active.
CLK_DIR – When ‘0’ the Video Port 0 clk0 and clk1 pins are both driven by the decoders pixel clock. When ‘1’ the Virtex pins are tri-stated.

CTRL_DIR – Driving of the various Video 0 control signals.

The tables below shows the state of video port control and data signals for different values of CTRL_DIR and CLK_DIR.

Table 8: Video Port 0 and Decoder connectivity

<table>
<thead>
<tr>
<th>CTRL_DIR</th>
<th>Vp0_ctrl0 - ‘1’</th>
<th>Vp0_ctrl1 - ‘1’</th>
<th>Vp0_ctrl2 - ‘Z’</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘0’ (this mode used for embedded sync input)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘1’</td>
<td>Vp0_ctrl0 - Dec Hsync</td>
<td>Vp0_ctrl1 - Dec Vsync</td>
<td>Vp0_ctrl2 - Dec ODD</td>
</tr>
</tbody>
</table>

Table 9: Video Port 0 and Decoder Clock connectivity

<table>
<thead>
<tr>
<th>CLK_DIR</th>
<th>Vp0_clk0 - dec_pclk</th>
<th>Vp0_clk1 - pclk</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘0’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘1’</td>
<td>Vp0_clk0 - ‘Z’</td>
<td>Vp0_clk1 - ‘Z’</td>
</tr>
</tbody>
</table>

Table 10: Video Port 0 Decoder Data to Video Port Data Mapping

<table>
<thead>
<tr>
<th>Video Port 0 Data Pins</th>
<th>Video Decoder Data Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP0_D(19..12)</td>
<td>Decoder_C(7 .. 0)</td>
</tr>
<tr>
<td>VP0_D(11..10)</td>
<td>‘00’</td>
</tr>
<tr>
<td>VP0_D(9..2)</td>
<td>Decoder_Y(7 .. 0)</td>
</tr>
<tr>
<td>VP0_D(1..0)</td>
<td>‘00’</td>
</tr>
</tbody>
</table>
2.6.1.5 High Speed Nt (ZBT) Memory

There is just over 8Mbytes of high speed, no turnaround, (Nt) SRAM is connected to the FPGA allowing high speed data storage capability to FPGA cores that require external memory. The memory is based on two separate Samsung K7N321801M devices which are each 2M by 18-bit devices, allowing independent access of each device.

Please contact us if you require further information on using this device.

2.6.1.6 SLB Interface

The Sundance LVDS Bus (SLB) is a dual-port parallel interconnection link that is capable of supporting data transfers at up to 700 MHz. Each port can be assigned with a 16-bit differential bus, a clock and an over range differential lines.

The SLB is a link for data and clocks but also for control signals; it is based on a Samtec QSH/QTH-DP series (0.5mm pitch) connectors.

The use of the SLB means that other customer specific input or output methods can be supported without the need for re-design of the hardware. Some examples of IO interfaces are listed below.

Input

- Camera Link
- Firewire
- CMOS Sensor
- Fiber Channel
- DVI

Output

- USB
- IDE
- Fiber Channel
- LCD/Plasma Display drivers
- DVI
The standard Virtex firmware does not contain any SLB interfacing. During manufacture the SLB connectors connectivity is tested.

2.6.2 SLB Power Supplies

When using the SLB interface a separate SLB power header (BKT) is used to supply the Daughterboard. Details of this connector pinout can be found in the SLB Reference Guide.
2.7 Video Encoder/Decoder

The encoder/decoder is based on the ‘Philips Semiconductors’ SAA7109AE/108AE. This provides decoding of PAL, NTSC and SECAM signal standards. On-board scaling circuitry allows the output image size to be specified by the DSP using the I2C interface. Two inputs are available through on-board connectors. These can be defined as 2x CVBS or 1 Y/C channel, again configured over the I2C interface.

Image data from the decoder flows through the FPGA, for potential pre-processing, before being routed to the DSP video ports.

The video encoder section of the device allows data from the DSP (which can be post processed by the FPGA) to be displayed in a number of different output formats. These include PAL, NTSC and VGA with resolutions up to 1280x1024 at 60Hz. Alternatively the encoder can output High Definition (HDTV) resolution images of 1920x1080 interlaced (or 1920 x 720 progressive) at 50Hz or 60Hz. The input format to the encoder is selectable between YCrCb and RGB.

The encoder also has output look-up tables and a hardware cursor sprite which can be implemented by the user via the I2C bus.
3 Video Ports

The SMT339 has 3 video ports connected from the DSP to the Virtex 4 FPGA. Video port 0 is, by default, routed to the video decoder and video port 1 is connected to the video encoder. Video Port 1 is unused in the default fpga configuration and is reserved for upgraded firmware when the SMT339 is used with carrier boards such as the SMT114, or SLB cards such as the SMT339. The port is reserved for either: an extra video input/output or, the port is reserved for use as a SPI interface.

This section describes how to set the video port hardware and software up for basic operation. For further detailed information please refer to the relevant TI documentation ([TMS320C64x DSP Video Port/ VCXO Interpolated Control (VIC) Port Reference Guide](https://www.ti.com/lit/ds/symlink/tms320c64x.pdf)).

3.1 Video Encoder Setup

The video encoder has a wide range of operational features; such has output format, lookup tables, and cursor insertion and colour space conversions. This section describes the basics operation of the encoder. The figure below illustrates the flow from data in DSP memory to final output by the encoder together with the necessary stages that require initialising.

![Figure 2: Flow from Video Memory to Encoder](image-url)
3.1.1 Video Memory

The memory in these examples is organised in 2 different ways, this is illustrated below.

The second example illustrates the memory organisation for RGB565 output. This time there is a single bank and each RGB element is 20-bits. The data stored is modified so that only the lower 16 bits are actually used.
3.1.2 EDMA

The next step is instruct the EDMA to transfer data the video data into the Video Ports input FIFO channel. For the RGB656 format this will involve a single EDMA channel. For the YCrCb format 3 separate EDMA channels require initialisation.

3.1.2.1 RGB656 Single Bank EDMA Setup

Requests to the EDMA controller are set by the Video Port Input FIFO threshold levels.

Usually each request transfers a complete video line output.

DMA transfers are done 64-bits at a time as the video port input FIFO is 64-bits wide, therefore, an even number of words must be transferred.

The Video Encode Register at 0xA0001 D000 bit 4 must be set to ‘1’ when in RGB656 output mode. This allows demultiplexing of the data before being sent to the Encoder.

3.1.2.2 BT656 with embedded Sync EDMA Setup

Three separate EDMA channels must me setup for this mode. One for the Y channel, one for the Cr channel and one for the Cb channel.
The size of the EDMA is 180 (64bit transfers) for the Y channel which represent 720 pixels (as data is transferred line by line). The Cb and Cr channels must be half of this representing the chroma content of the YCrYCb data stream.

For detailed information on setting up the DSP’s EDMA please refer to the TI user guide (TMS320C6000 DSP Enhanced Direct Memory Access (EDMA) Controller Reference Guide).

3.2 Video Decoder Setup

The video decoder can be setup to output data in a number of different modes. Connectivity from the decoder to the Virtex 4 is via 2 separate data busses. One 8-bit bus carries the Y data and the other 8-bit bus carries the Chroma information. Five control lines are also connected for the various synchronising signals.

See Table 8 to Table 10 for details of how the hardware is mapped from the video decoder to Video port 0.

The decoder can be setup to encode the data as BT656 with embedded syncs. This allows just 8bits and a pixel clock to be used to transfer the images to the DSP. Video port 0 can also be initialised to accept and decoder this data to the DSP’s external SDRAM. See the (TMS320C64x DSP Video Port/ VCXO Interpolated Control (VIC) Port Reference Guide) for more information.

4 JTAG

There are two separate JTAG chains on the SMT39 module. One allows the DSP chain to be accessed while the other allows the Virtex 4 to be configured.

4.1 DSP JTAG Chain

This is used by code composer studio to access the DSP. There is provision to extend the number of processors in the chain by adding a DSP via a SLB mezzanine card. If this is added then the SLB JTAG bypass jumper (JP3) should be removed.

4.2 Virtex 4 JTAG chain

This can be accessed via the JP5 connector using Xilinx tools. The pinout for the connector is shown in Section 10.
5 SMT339 Video Input and Video Output Connections

Composite Video Input 1 or Y when in YC input mode

Composite Video Input 2 or Chroma on YC input mode

RGB Sync Output Connector

Composite Video Output
6 Using the SMT339 JTAG with TI Tools.

For details on setting up Code Composer Studio with the SMT339 and associated carrier card please refer to the help with the SMT6012 package.

7 Firmware Upgrades

See the SMT6500 software supplied for help on firmware upgrades and custom applications.

8 Power consumption

This module must have 5V supplied through the TIM connectors. In addition, a 3.3V supply is required and should be supplied through the TIM mounting holes.

Contained on the module are linear regulators for the DM642 and FPGA.

The DM642 core voltage is provided through a linear regulator from 3.3V.

All supplies are guaranteed to meet the worst possible requirements of the FPGAs.
9 Cables and Connectors

9.1 JP5 Virtex JTAG Header

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.3V</td>
</tr>
<tr>
<td>2</td>
<td>TCK</td>
</tr>
<tr>
<td>3</td>
<td>TMS</td>
</tr>
<tr>
<td>4</td>
<td>TDI</td>
</tr>
<tr>
<td>5</td>
<td>TDO</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
</tr>
</tbody>
</table>

9.2 JP7 Connector

Mixed RGB/VGA channel Output
The pinout of the connector is show below.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>Red/Cr/CVBS 1</td>
</tr>
<tr>
<td>3</td>
<td>Green/Y/ CVBS 2</td>
</tr>
<tr>
<td>4</td>
<td>Blue/Cb/ CVBS 3</td>
</tr>
<tr>
<td>5</td>
<td>V Sync</td>
</tr>
<tr>
<td>6</td>
<td>H Sync</td>
</tr>
</tbody>
</table>
For pinout and information of the SLB signal and power connectors see:

Sundance LVDS Bus (SLB) Specifications – Sundance.

For pinout and information of the TIM signals see:

TIM specifications.
10 Where’s that Jumper?

- JP1 - Flash Write Protect jumper – Fit to write enable
- JP2 - Virtex Program Enable – Remove to Erase FPGA
- JP3 - DSP JTAG chain – If removed the DSP JTAG chain is extended to an extra SLB interface card DSP. Fit for normal operation.

Figure 5: Jumper Finder Diagram