

**User Manual** 



Certificate Number FM 55022

# **Revision History**

|            | Changes Made                                                                   | Issue | Initials |
|------------|--------------------------------------------------------------------------------|-------|----------|
| 11/10/05   | Original Document.                                                             | 1.0   | PSR      |
| 18/01/06   | Updates on ADC inputs and DAC outputs (impedances)                             | 1.1   | PSR      |
| 25/01/06   | Added details on PHSTR synch.                                                  | 1.2   | PSR      |
| 31/10/06   | Dac Trigger was missing. Corrected 0x0 and 0x1C register descriptions.         |       | PSR      |
| 11/12/06   | LED description added as well as J1 description.                               |       | PSR      |
| 25/01/2007 | Connector list added; Control structure corrected.                             |       | PSR      |
| 05/02/2007 | Figure 6 corrected.                                                            |       | PSR      |
| 21/02/2007 | Scratch Test register description corrected. ADC PLL register (0x2) corrected. |       | PSR      |
| 23/03/2007 | Details added to the clock circuitry.                                          |       | PSR      |
| 18/12/2007 | Ordering Information added                                                     |       | PSR      |
|            |                                                                                |       |          |

# **Table of Contents**

| Physical Properties              | 6  |
|----------------------------------|----|
| Ordering Information             | 6  |
| Precautions                      | 7  |
| Introduction                     | 8  |
| Overview                         | 8  |
| Module features                  | 8  |
| Possible applications            | 9  |
| Related Documents                | 9  |
| Functional Description           | 10 |
| Block Diagram                    | 10 |
| Module Description               | 10 |
| ADC Channels                     | 12 |
| ADC Main Characteristics.        | 12 |
| ADC Input Stage                  | 12 |
| Dual-Channel DAC                 | 13 |
| DAC Main characteristics         | 13 |
| DAC output stage                 | 13 |
| Clock Structure                  | 14 |
| Power Supply and Reset Structure | 17 |
| JumperJ1                         | 17 |
| Green LEDs                       | 17 |
| Mezzanine module Interface       | 17 |
| Control Register Settings        | 25 |
| Control Packet Structure         | 25 |
| Reading and Writing Registers    | 25 |
| Memory Map                       |    |
| Register Descriptions            | 27 |
| Reset Register – 0x0             | 27 |
| Test Register – 0x1              |    |
| ADCA Register 0 – 0x2.           |    |
| ADCA Register 1 – 0x3.           |    |
| ADCA Register 2 – 0x4.           | 29 |

| ADCB Register 0 – 0x5.                                           | 29 |
|------------------------------------------------------------------|----|
| ADCB Register 1 – 0x6.                                           | 29 |
| ADCB Register 2 – 0x7.                                           | 30 |
| DAC Register 0 – 0x8                                             | 30 |
| DAC Register 1 – 0x9                                             | 30 |
| DAC Register 2 – 0xA.                                            | 31 |
| DAC Register 3 – 0xB.                                            | 31 |
| DAC Register 4 – 0xC                                             | 31 |
| DAC Register 5 – 0xD.                                            | 31 |
| DAC Register 6 – 0xE                                             | 32 |
| DAC Register 7 – 0xF.                                            | 32 |
| CDCM7005 Register 0 – 0x10                                       | 32 |
| CDCM7005 Register 1 – 0x11                                       | 32 |
| CDCM7005 Register 2 – 0x12                                       | 33 |
| CDCM7005 Register 3 – 0x13                                       | 33 |
| CDCM7005 Register 4 – 0x14                                       | 33 |
| CDCM7005 Register 5 – 0x15                                       | 33 |
| CDCM7005 Register 6 – 0x16                                       | 34 |
| CDCM7005 Register 7 – 0x17                                       | 34 |
| Main Module Temperature (not implemented) – 0x18                 | 34 |
| Main Module FPGA Temperature (not implemented) – 0x19            | 34 |
| Mezzanine Module Temperature (not implemented) – 0x1A            | 34 |
| Mezzanine Module Converters Temperature (not implemented) – 0x1B | 35 |
| Miscellaneous Register – 0x1C                                    | 35 |
| Updates, Read-back and Firmware Version Registers – 0x1D         | 36 |
| DDS Register 0 – Start Phase Increment LSB - 0x20                | 37 |
| DDS Register 1 – Start Phase Increment MSB - 0x21                | 37 |
| DDS Register 2 – Stop Phase Increment LSB - 0x22                 | 38 |
| DDS Register 3 – Stop Increment MSB - 0x23                       | 38 |
| DDS Register 0 – Step Phase Increment LSB - 0x24                 | 38 |
| DDS Register 5 – Step Increment MSB - 0x25                       | 39 |
| FPGA Design                                                      | 40 |
| Serial Interfaces                                                | 40 |

| Block of registers      | . 41 |
|-------------------------|------|
| Space available in FPGA | . 41 |
| ⊃CB Layout              | . 42 |
| Connectors              | . 44 |
| Description             | . 44 |
| Location on the board   | . 45 |

# **Table of Figures**

| Figure 1 – Fan across PCI.                                                        | 7  |
|-----------------------------------------------------------------------------------|----|
| Figure 2 - Block Diagram                                                          | 10 |
| Figure 3 - Main features.                                                         | 12 |
| Figure 4 - ADC Input Stage.                                                       | 12 |
| Figure 5 - DAC Output Stage.                                                      | 14 |
| Figure 6 - Clock Structure.                                                       | 14 |
| Figure 7 - External Clock                                                         | 16 |
| Figure 8 - Clock Architecture Main Characteristics.                               | 17 |
| Figure 9 – Mezzanine module Connector Interface (SLB data and power connectors)   | 18 |
| Figure 10 – Mezzanine Module Interface Power Connector and Pinout.                | 20 |
| Figure 11 – Daughter Module Interface: Data Signals Connector and Pinout (Bank A) | 21 |
| Figure 12 – Daughter Module Interface: Data Signals Connector and Pinout (Bank B) | 23 |
| Figure 13 – Daughter Module Interface: Data Signals Connector and Pinout (Bank C) | 24 |
| Figure 14 – Setup Packet Structure.                                               | 25 |
| Figure 15 – Control Register Read Sequence.                                       | 25 |
| Figure 16 – Register Memory Map                                                   | 27 |
| Figure 17 - Firmware Block Diagram                                                | 40 |
| Figure 18 - Space available in FPGA                                               | 41 |
| Figure 19 – Main Module Component Side                                            | 42 |
| Figure 20 - Main Module (SMT368) Solder Side                                      | 42 |
| Figure 21 - Daughter Module Component Side                                        | 43 |
| Figure 22 - Daughter Module Solder Side                                           | 43 |
| Figure 23 - Connectors Location.                                                  | 45 |

# **Physical Properties**

| Dimensions      | 63.5mm x 106.7mm x 18mm |                                            |
|-----------------|-------------------------|--------------------------------------------|
| Weight          | 35 grams                |                                            |
| Supply Voltages |                         |                                            |
| Supply Current  | +12V                    | N/A                                        |
|                 | +5V                     | 1.2 Amps (reset<br>/ converters<br>active) |
|                 |                         | 1.4 Amps max                               |
|                 | +3.3V                   | 0.14 Amp (reset<br>/ converters<br>active) |
|                 |                         | 0.4 Amps max                               |
|                 | -5V                     | N/A                                        |
|                 | -12V                    | N/A                                        |
| MTBF            |                         |                                            |

# **Ordering Information**

*SMT350* (Standard Product): ADC inputs and DAC outputs are AC-coupled. **SMT350-DC**: ADCs inputs are DC-coupled and DAC outputs are AC-coupled.

# **Precautions**

In order to guarantee that Sundance's boards function correctly and to protect the module from damage, the following precautions should be taken:

- They are static sensitive products and should be handled accordingly. Always place the modules in a static protective bag during storage and transition.

- When operated in a closed environment make sure that the heat generated by the system is extracted e.g. a fan extracting heat or blowing cool air. Sundance recommends and uses PAPST 12-Volt fans (Series 8300) producing an air flow of 54 cubic meters per hour (equivalent to 31.8 CFM). Fans are placed so they blow across the PCI bus as show on the following picture:



Figure 1 – Fan across PCI.

# Introduction

# Overview

The *SMT350* is a single width expansion TIM that plugs onto the <u>SLB</u> base module <u>SMT368</u> (Virtex-4 FPGA) and incorporates 2 <u>Texas Instrument</u> Analog-to-Digital Converters (<u>ADS5500</u>) and a Texas Instrument dual-channel Digital-to-Analog Converter (<u>DAC5686</u>). The *SMT350* implements a comprehensive clock circuitry based on a <u>CDCM7005</u> chip that allows synchronisation among the converters and cascading modules for multiple receiver or transmitter systems as well as the use of an external reference clock. It provides a complete conversion solution and stands as a platform that can be part of a transmit/receive base station.

ADCs are 14-bit and can sample at up to 125 MHz. The DAC has a resolution of 16 bits and is able to update outputs at up to 500MHz. All converters are 3.3-Volt.

The <u>Xilinx FPGA</u> (Virtex-4) on the base module is responsible for handling data going/coming to/from one of the following destination/source: TI converters, **C**omport (<u>TIM-40 standard</u>), **S**undance **H**igh-speed **B**us (<u>SHB</u>). These interfaces are compatible with a wide range of Sundance's modules.

The memory on base module can be divided into two 16-bit wide independent blocks for storing incoming and/or outgoing samples.

Converter configuration, sampling and transferring modes are set via internal control registers stored inside the FPGA and accessible via Comport.

# Module features

The main features of the *SMT350* are listed below:

- Dual 14-bit 125MSPS ADC (ADS5500),
- Dual channel 16-bit 500MSPS DAC (DAC5686),
- On-board low-jitter clock generation (CDCM7005),

• One external clocks, two external triggers and one reference clock via <u>MMCX</u> connector,

- One <u>SLB</u> connector to link SMT350 and SMT368,
- Synchronisation signals,
- All Analogue inputs to be connected to 50-Ohm sources.
- All Analogue outputs to be connected to 50-Ohm loads.
- Temperature sensors.

## Possible applications

The *SMT350* can be used for the following application (this non-exhaustive list should be taken as an example):

- High Intermediate-Frequency (IF) sampling architecture,
- Cellular base station such as CDMA and TDMA,
- Baseband I&Q systems,
- Wireless communication systems,
- Communication instrumentation,
- ...

# **Related Documents**

ADS5500 Datasheet - Texas Instrument:

http://focus.ti.com/docs/prod/folders/print/ads5500.html

DAC5686 Datasheet - Texas Instrument:

http://focus.ti.com/docs/prod/folders/print/dac5686.html

CDCM7005 Datasheet – Texas Instrument:

http://focus.ti.com/docs/prod/folders/print/cdcm7005.html

Sundance High-speed Bus (SHB) specifications – Sundance.

<u>ftp://ftp2.sundance.com/Pub/documentation/pdf-files/SHB\_Technical\_Specification.pdf</u>

**S**undance LVDS **B**us (SLB) specifications – Sundance.

http://www.sundance.com/docs/SLB%20-%20Technical%20Specifications.pdf

TIM specifications.

ftp://ftp2.sundance.com/Pub/documentation/pdf-files/tim\_spec\_v1.01.pdf

Xilinx Virtex-4 FPGA.

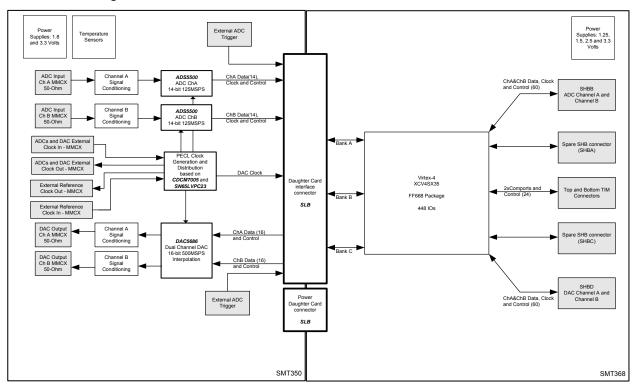
http://direct.xilinx.com/bvdocs/publications/ds031.pdf

MMCX Connectors – Hubert Suhner.

MMCX Connectors

Surface Mount MMCX connector

Sundance Multiprocessor Technology Ltd.


<u>SMT368</u>

# **Functional Description**

In this part, we will see the general block diagram and some comments on some the *SMT350* entities.

## Block Diagram

The following diagram describes the architecture of the SMT350, coupled – as an example – with an SMT368 to show how mezzanine and base modules are connected together:



#### Figure 2 - Block Diagram.

## Module Description

The module is built around two <u>TI ADS5500</u> 14-bit sampling analog-to-digital converters and one <u>TI DAC5686</u> dual 16-bit digital-to-analog converter.

<u>ADCs</u>: Analog data enters the module via two MMCX connectors, one for each channel. Both signals are then conditioned (AC coupling; DC optional) before being digitized. Both ADCs gets their own sampling clock, which can be either on-board generated or from an external reference or an external clock, common to ADCs and DAC (MMCX connector). Digital samples travel to the FPGA on the base module via

the inter-module connector ( $\underline{SLB} - \mathbf{S}$ undance LVDS **B**us, used in this case as 'single-ended').

<u>DAC</u>: Digital samples are routed from the FPGA to the DAC via the inter-module connector. Internal interpolation scheme allows reaching 500 Mega Samples per Second. The DAC shows other modes such as Dual DAC, Single side-band, Quadrature or up conversion. Both outputs are AC-coupled. By default they are single-ended but can optionally be differential. The DAC mode is selected via Jumper J1, that enables or disables the DAC Internal PLL (see DAC5686 datasheet for more details).

<u>Clock generator and distribution</u>: All samplings clocks are generated by the same chip. It allows having them all synchronized to a single reference clock.

<u>Multi-module Synchronization</u>: There are two types of synchronization available on the *SMT350*. The first one is frequency synchronization, by passing the external reference clock to an other module. It first goes through a 0-delay buffer and is then output. Note that the synchronization is in frequency and not in phase. The second type is register synchronization between DACs. It is achieved by the way of an extra link between several modules to synchronize DAC internal registers (DAC signal PHSTR passed from one module to the other and driven by the master FPGA – it resets the internal VCO).

<u>Inter-module Connector</u>: it is made of a power (33 pins) and data connectors (120 pins). It is called **S**undance LVDS **B**us. Please refer to <u>the SLB specifications</u> for more details. In the case of the SMT350, the SLB is used as 'single-ended'.

A global reset signal is mapped to the FPGA from the bottom TIM connector.

<u>External Clock signals</u>, used to generate Sampling clocks. There is one external clock, common to ADCs and DAC When used, the CDCM7005 is used as a clock multiplexer. Also available, an external reference clock that can be passed to an other SMT350 module with '0-delay'.

<u>External Trigger</u>: passed directly to base module. There are two, one for the ADCs and one for the DAC.

<u>Temperature Sensor</u>: available for constant monitoring. Not part of default firmware provided.

# ADC Channels.

ADC Main Characteristics.

The main characteristics of the SMT350 ADCs are gathered into the following table.

| Analogue Inputs                                                        |                                                                                                                                            |  |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| Input voltage range2.4 Vp-p (11.5 dbm - 50 Ohm) Full sca<br>AC coupled |                                                                                                                                            |  |
| Impedance                                                              | ADC single-ended inputs are to be connected to a $50\Omega$ source. Source impedance matching implemented between RF transformers and ADC. |  |
| Bandwidth                                                              | ADC bandwidth: 750 MHz.                                                                                                                    |  |
| ADCs Output                                                            |                                                                                                                                            |  |
| Output Data Width 14-Bits                                              |                                                                                                                                            |  |
| Data Format                                                            | 2's Compliment or offset binary                                                                                                            |  |
| Data Format                                                            | (Changeable via control register)                                                                                                          |  |
| SFDR                                                                   | 82dBs maximum (manufacturer)                                                                                                               |  |
| SNR                                                                    | 70dBs maximum (manufacturer)                                                                                                               |  |
| Minimum Sampling Clock                                                 | 10 MHz (ADC DLL off)                                                                                                                       |  |
| Maximum Sampling Frequency                                             | 125 MHz (ADC DLL on)                                                                                                                       |  |

#### Figure 3 - Main features.

## ADC Input Stage.

Each ADC Analogue input is AC-coupled via and RF transformer. The 50-Ohm resistor between the connector and the first RF transformer is not fitted because the source impedance match is implemented between the second RF transformer and the ADC by the way of two 25-Ohm resistors.

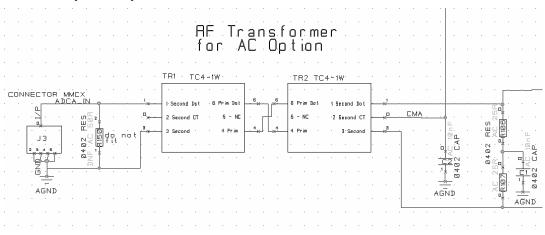
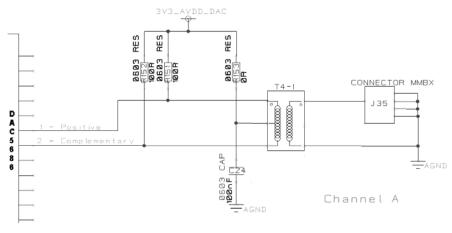



Figure 4 - ADC Input Stage.

# Dual-Channel DAC.

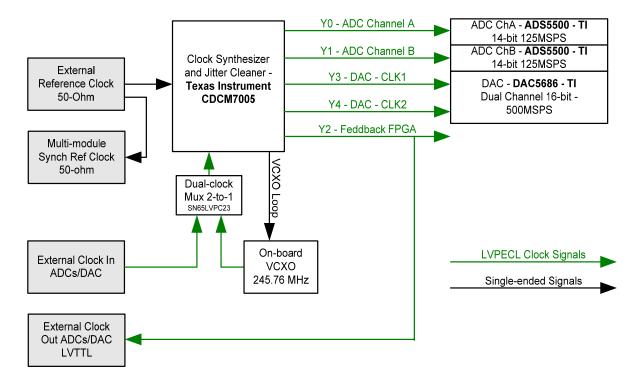
DAC Main characteristics.

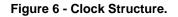

The main characteristics of the *SMT350* DAC are gathered into the following table.

| Analogue Outputs                                     |                                                                                                                                          |  |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Input voltage range 1 Vp-p – Full scale - AC coupled |                                                                                                                                          |  |
| Impedance                                            | DAC single-ended outputs are to be connected to a $50\Omega$ load, which impedance matching implemented between DAC and RF transformers. |  |
| Bandwidth TBD                                        |                                                                                                                                          |  |
| DAC Input                                            |                                                                                                                                          |  |
| Output Data Width per channel                        | 16-Bits                                                                                                                                  |  |
| Data Format                                          | 2's Compliment or offset binary                                                                                                          |  |
| Data Format                                          | (Changeable via control register)                                                                                                        |  |
| SFDR                                                 | 89dBs maximum (manufacturer)                                                                                                             |  |
| SNR                                                  | 80dBs maximum (manufacturer)                                                                                                             |  |
| Maximum input data rate                              | 160 MSPS (Clk1 – DAC5686)                                                                                                                |  |
| Maximum Sampling rate                                | 500 MSPS (Clk2 – DAC5686)                                                                                                                |  |

Jumper J1 disables (position 1-2; also called External Clock Mode) or enables (position2-3; also called Internal Clock Mode) the DAC internal PLL.

## DAC output stage.


The following piece of schematics shows how the DAC outputs are coupled. The DAC5686 generates differential output signals that are fed into an RF transformer (Ohm ratio 4), that makes both DAC channels AC coupled. 100-Ohm resistors to Vcc on the primary stage of the transformer allow balancing the secondary stage to 50 Ohm single-ended. (Note that R153 is not mounted).






## **Clock Structure**

There is one integrated clock generator on the module (CDCM7005 – Texas instrument). The user can either use this clock (on-board) or provide the module with an external clock (input via MMCX connector).





ADCs can both receive the same clock or the fraction of the CDCM7005 input clock (/2, /3, /4, /6, /8 or /16), the maximum being 125MHz for each ADC. This input clock can be coming from the on-board fixed VCXO or from an external source. Here is a list of possible sampling frequencies for the ADCs:

| ADC Sampling<br>Frequency          | CDCM7005 Setting                 | Clock source                       |
|------------------------------------|----------------------------------|------------------------------------|
| Not Allowed                        | /1                               | On-board VCXO (fixed<br>245.76MHz) |
| 122.88 MHz                         | /2                               | On-board VCXO (fixed<br>245.76MHz) |
| 81.92 MHz                          | /3                               | On-board VCXO (fixed<br>245.76MHz) |
| 61.44 MHz                          | /4                               | On-board VCXO (fixed<br>245.76MHz) |
| 40.96 MHz                          | /6                               | On-board VCXO (fixed<br>245.76MHz) |
| 30.72 MHz                          | /8                               | On-board VCXO (fixed<br>245.76MHz) |
| 15.36 MHz                          | /16                              | On-board VCXO (fixed<br>245.76MHz) |
| Anything between 10<br>and 125 MHz | /1, /2, /3, /4, /6, /8 or<br>/16 | External Clock                     |

The same applies to the DAC, with a maximum sampling frequency for clk1 of 160MHz and for clk2 of 500Mhz.

Below is shown how the external clock is fed to the system. By default it is singleended and AC-coupled before being converted into LVPECL format. The option of having a differential external clock is still possible on the hardware by the way of fitting or not some of the components.

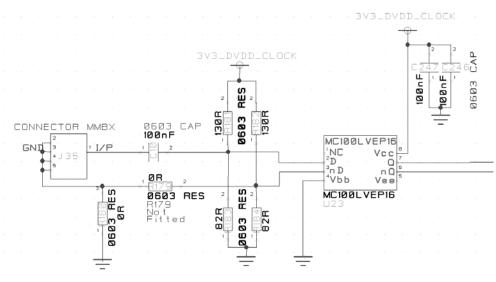



Figure 7 - External Clock.

The main characteristics of the SMT350 Clocks are gathered into the following table.

| External Reference Input                                      |                                                                                        |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| Input Voltage Level                                           | 0.5 – 3.3 Volts peak-to-peak (AC-coupled)                                              |  |  |
| Input Impedance 50-Ohm (Termination implemented at connector) |                                                                                        |  |  |
| Frequency Range                                               | 0 – 100 MHz.                                                                           |  |  |
| External Reference Output                                     |                                                                                        |  |  |
| Output Voltage Level                                          | 1.6 Volts peak-to-peak (AC-coupled)                                                    |  |  |
| Output Impedance                                              | 50-Ohm (Termination implemented at the connector)                                      |  |  |
| External Sampling Clock Input                                 |                                                                                        |  |  |
| Input Voltage Level                                           | 0.5 – 3.3 Volts peak-to-peak (AC-coupled)                                              |  |  |
| Input Format                                                  | Single-ended or differential on option (3.3V LVPECL).                                  |  |  |
| Frequency range 10-500 MHz                                    |                                                                                        |  |  |
| Externa                                                       | al Sampling Clock Output                                                               |  |  |
| Output Voltage Level 0-2.4 Volts fixed amplitude              |                                                                                        |  |  |
| Output Format LVTTL                                           |                                                                                        |  |  |
| Ex                                                            | External Trigger Inputs                                                                |  |  |
| Input Voltage Level                                           | 1.5-3.3 Volts peak-to-peak.                                                            |  |  |
| Format                                                        | t DC-coupled and Single-ended (Termination implemented at the connector). Differential |  |  |

|                                     | on option (3.3 V PECL). |  |
|-------------------------------------|-------------------------|--|
| Impedance                           | 50-Ohm.                 |  |
| Frequency range                     | 62.5 MHz maximum        |  |
| Delay                               |                         |  |
| External Ref. Input to Ext Ref. Out |                         |  |
|                                     |                         |  |

Figure 8 - Clock Architecture Main Characteristics.

### Power Supply and Reset Structure

The *SMT350* gets two power sources from the base module: 3.3 and 5 Volts. Linear regulators are used to provide a clean and stable voltage supply to the analog converters.

### JumperJ1

There is one jumper (3 pin header) on the board. It is to control the power supply of the DAC internal PLL. When fitted on positions 2 and 3, the PLL is enabled, whereas on positions 1 and 2, it is disabled. Please refer to the DAC5686 datasheet for more details.

### Green LEDs.

There are 7 LEDs on the SMT350 Daughter Module. Five are dedicated for power supplies monitoring: LED1 (1.8V DAC), LED2 (3.3V Clock), LED3 (3.3V DAC), LED4 (3.3V ADCA), LED6 (3.3V ADCB) should be all ON when the board is under power. They state that power supplies all work fine.

LED5 (ADCs) should be flashing once the ADC Clocks are set up. It is actually a divided version of ADCA sampling clock). LED7 (DAC) is a divided version of PLLLOCK coming from the Dac (DAC5686).

## Mezzanine module Interface

The daughter module interface is made up of two connectors (data and power). The first one is a 0.5mm-pitch differential Samtec connector. This connector is for transferring data such as ADC or DAC samples to and from the FPGA on the main module. The second one is a 1mm-pitch Samtec header type connector. This connector is for providing power to the daughter-card.

Sundance defines these two connectors as the **S**undance **L**VDS **B**us (*SLB*). It has originally been made for data transfers using LVDS format but can also be used with single-ended lines, which is the case for the *SMT350*. To know more about the SLB, please refer to the SLB specifications.

The figure underneath illustrates this configuration. The bottom view of the daughter card is shown on the right. This view must the mirrored to understand how it connects to the main module.

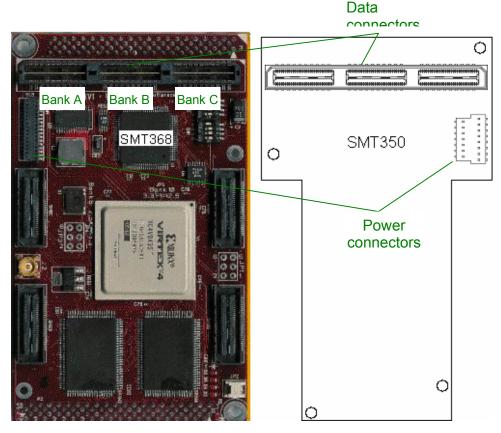
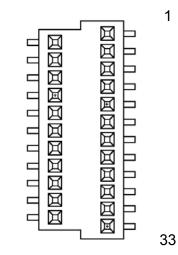



Figure 9 – Mezzanine module Connector Interface (SLB data and power connectors).

The female differential connector is located on the base module. The Samtec Part Number for this connector is QTH-060-01-F-D-DP-A.

The female power connector is located on the base module. The Samtec Part Number for this connector is BKS-133-03-F-V-A

The male differential connector is located on the mezzanine card. The Samtec Part Number for this connector is QSH-060-01-F-D-DP-A

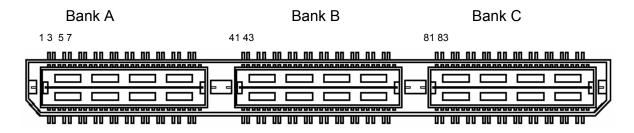

The male power connector is located on the mezzanine card. The Samtec Part Number for this connector is BKT-133-03-F-V-A

The mated height between the main module and the daughter card is 5 mm.

Some JTAG Lines are also mapped onto this connector to be used in case the Daughter module would have a TI Processor. They would allow debugging and programming via JTAG.

The following table shows the pin assignment on the power connector:

2




| Pin Number | Pin Name | Description of Signal                        |
|------------|----------|----------------------------------------------|
| 1          | D+3V3    | Digital 3.3 Volts                            |
| 2          | DGND     | Digital Ground                               |
| 3          | D+3V3    | Digital 3.3 Volts                            |
| 4          | DGND     | Digital Ground                               |
| 5          | D+3V3    | Digital 3.3 Volts                            |
| 6          | DGND     | Digital Ground                               |
| 7          | D+3V3    | Digital 3.3 Volts                            |
| 8          | DGND     | Digital Ground                               |
| 9          | D+5V0    | Digital 5.0 Volts                            |
| 10         | DGND     | Digital Ground                               |
| 11         | D+5V0    | Digital 5.0 Volts                            |
| 12         | DGND     | Digital Ground                               |
| 13         | D+5V0    | Digital 5.0 Volts                            |
| 14         | DGND     | Digital Ground                               |
| 15         | D+5V0    | Digital 5.0 Volts                            |
| 16         | DGND     | Digital Ground                               |
| 17         | D+12V0   | Digital +12.0 Volts – not used on the SMT350 |
| 18         | DGND     | Digital Ground                               |
| 19         | D+12V0   | Digital +12.0 Volts – not used on the SMT350 |
| 20         | DGND     | Digital Ground                               |

| 21 | D-12V0 | Digital –12.0 Volts – not used on the SMT350 |
|----|--------|----------------------------------------------|
| 22 | DGND   | Digital Ground                               |
| 23 | D-12V0 | Digital –12.0 Volts – not used on the SM350  |
| 24 | DGND   | Digital Ground                               |
| 25 | DGND   | Digital Ground                               |
| 26 | EMU0   | Emulation Control 0 – not used on SMT350     |
| 27 | EMU1   | Emulation Control 1 – not used on SMT350     |
| 28 | TMS    | JTAG Mode Control – not used on SMT350       |
| 29 | nTRST  | JTAG Reset – not used on SMT350              |
| 30 | тск    | JTAG Test Clock – not used on SMT350         |
| 31 | TDI    | JTAG Test Input – not used on SMT350         |
| 32 | TDO    | JTAG Test Output – not used on SMT350        |
| 33 | DGND   | Digital Ground                               |

Figure 10 – Mezzanine Module Interface Power Connector and Pinout.

The following few pages describes the signals on the data connector between the main module and the daughter card. Bank A on the connector is used for the ADC Channels A and B. Bank C is used for the DAC channels A and B. Bank B is used for system clock and trigger signals, ADC/DAC/Clock control signal.



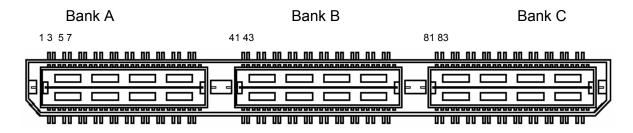
#### 2468

#### Bank A (ADCs)

| Pin No | Pin Name      | Signal Description         | Pin No | Pin Name                     | Signal Description        |  |
|--------|---------------|----------------------------|--------|------------------------------|---------------------------|--|
| Dir    | Daughter Card | d to Main Module           | Dir    | Daughter Ca                  | ard to Main Module        |  |
| 1      | DOAI0p        | Data Out 0, Channel A.     | 2      | DOBI0p                       | Data Out 1, Channel A.    |  |
| 3      | DOAI0n        | Data Out 2, Channel A.     | 4      | DOBI0n                       | Data Out 3, Channel A.    |  |
| Dir    | Daughter Card | d to Main Module           | Dir    | Daughter Ca                  | ard to Main Module        |  |
| 5      | DOAI1p        | Data Out 4, Channel A.     | 6      | DOBI1p                       | Data Out 5, Channel A.    |  |
| 7      | DOAl1n        | Data Out 6, Channel A.     | 8      | DOBI1n                       | Data Out 7, Channel A.    |  |
| Dir    | Daughter Card | d to Main Module           | Dir    | Daughter Ca                  | ard to Main Module        |  |
| 9      | DOAI2p        | Data Out 8, Channel A.     | 10     | DOBI2p                       | Data Out 9, Channel A.    |  |
| 11     | DOAl2n        | Data Out 10, Channel A.    | 12     | DOBI2n                       | Data Out 11, Channel A.   |  |
| Dir    | Daughter Card | d to Main Module           | Dir    | Daughter Ca                  | ard to Main Module        |  |
| 13     | DOAI3p        | Data Out 12, Channel A.    | 14     | DOBI3p                       | Data Out 13, Channel A.   |  |
| 15     | DOAl3n        | Over Range, Channel A.     | 16     | DOBI3n                       | Data Out 0, Channel B.    |  |
| Dir    | Daughter Card | d to Main Module           | Dir    | Daughter Ca                  | ard to Main Module        |  |
| 17     | DOAl4p        | Data Out 1, Channel B.     | 18     | DOBI4p                       | Data Out 2, Channel B.    |  |
| 19     | DOAl4n        | Data Out 3, Channel B.     | 20     | DOBI4n                       | Data Out 4, Channel B.    |  |
| Dir    | Daughter Card | d to Main Module           | Dir    | Daughter Ca                  | ghter Card to Main Module |  |
| 21     | DOAI5p        | Data Out 5, Channel B.     | 22     | DOBI5p                       | Data Out 6, Channel B.    |  |
| 23     | DOAI5n        | Data Out 7, Channel B.     | 24     | DOBI5n                       | Data Out 8, Channel B.    |  |
| Dir    | Daughter Card | d to Main Module           | Dir    | Daughter Card to Main Module |                           |  |
| 25     | DOAI6p        | Data Out 9, Channel B.     | 26     | DOBI6p                       | Data Out 10, Channel B.   |  |
| 27     | DOAl6n        | Data Out 11, Channel B.    | 28     | DOBI6n                       | Data Out 12, Channel B.   |  |
| Dir    | Daughter Card | d to Main Module           | Dir    | Daughter Ca                  | ard to Main Module        |  |
| 29     | DOAI7p        | Data Out 13, Channel B.    | 30     | DOBI7p                       | Over Range, Channel B.    |  |
| 31     | DOAI7n        | Led ADC                    | 32     | DOBI7n                       | Status Lock CDCM7005      |  |
| Dir    | Daughter Card | d to Main Module           | Dir    | Daughter Ca                  | ard to Main Module        |  |
| 33     | ClkOlp        | Data Clock Out, Channel A. | 34     | DOIRIp                       | IRIp Status VCXO CDCM7005 |  |
| 35     | ClkOln        | Data Clock Out, Channel B. | 36     | DOIRIn                       | Status Ref CDCM7005       |  |
| Dir    | Reserved.     |                            | Dir    | Reserved.                    |                           |  |
| 37     | Reserved.     | Reserved.                  | 38     | Reserved                     | ADC External Trigger, P.  |  |
| 39     | Reserved.     | Reserved.                  | 40     | Reserved                     | ADC External Trigger, N.  |  |

Figure 11 – Daughter Module Interface: Data Signals Connector and Pinout (Bank A).




#### 2468

#### Bank B

| Pin No | Pin Name                         | Signal Description        | Pin No         | Pin Name                     | Signal Description       |  |
|--------|----------------------------------|---------------------------|----------------|------------------------------|--------------------------|--|
| Туре   | Clock and Trigger System Signals |                           |                | Clock and Trigg              | ger System Signals       |  |
| Dir    | Daughter Card to Ma              | in Module                 | Dir            | Daughter Card to Main Module |                          |  |
| 41     | SMBClk                           | Temperature Sensor Clock. | 42             | SMBData                      | Temperature Sensor Data. |  |
| 43     | SMBnAlert                        | Temperature Sensor Alert. | 44             | SerialNo                     | Reserved                 |  |
| Dir    | Daughter Card to Ma              | in Module                 | Dir            | Reserved                     |                          |  |
| 45     | AdcVDacl                         | Reserved                  | 46             | AdcVDacQ                     | Reserved                 |  |
| 47     | AdcVRes                          | Reserved                  | 48             | AdcReset                     | Reserved                 |  |
| Dir    | Main Module to Daug              | ghter Card                | Dir            | Main Module to               | Daughter Card            |  |
| 49     | D3v3Enable                       | Reserved                  | 50             | D2v5Enable                   | Reserved                 |  |
| 51     | AdcMode                          | ADCA Serial Clock.        | 52             | AdcClock                     | ADCA Serial Data.        |  |
| Туре   | ADC Specific Signa               | ls                        | Туре           | ADC Specific S               | ignals                   |  |
| Dir    | Main Module to Daug              | ghter Card                | Dir            | Reserved                     |                          |  |
| 53     | AdcLoad                          | ADCA Serial Enable.       | 54             | AdcData                      | ADCB Serial Clock.       |  |
| 55     | AdcCal                           | ADCB Serial Data.         | 56             | AdjClkCntr0                  | ADCB Serial Enable.      |  |
| Dir    | Main Module to Daug              | Dir                       | Main Module to | Daughter Card                |                          |  |
| 57     | AdjClkCntr1                      | ADCs Format (binary, 2's) | 58             | AdjClkCntr2                  | ADCs Reset               |  |
| 59     | AdjClkCntr3                      | ADCs Output Enable        | 60             | PIICntr0                     | CDCM7005 serial Enable.  |  |
| Dir    | Daughter Card to Ma              | in Module                 | Dir            | Daughter Card to Main Module |                          |  |
| 61     | PIICntr1                         | CDCM7005 serial Clock.    | 62             | PIICntr2                     | CDCM7005 serial Data.    |  |
| 63     | PIICntr3                         | CDCM7005 Clock Selection. | 64             | AdcAClkSel                   | DAC PhStr.               |  |
| Туре   | Module Control Sig               | nals                      | Туре           | Module Control               | Signals                  |  |
| Dir    | Main Module to Daug              | ghter Card                | Dir            | Main Module to               | Daughter Card            |  |
| 65     | AdcBClkSel                       | DAC Reset.                | 66             | IntClkDivEn                  | DAC PII Lock.            |  |
| 67     | IntClkDivnReset                  | DAC Serial Enable.        | 68             | IntExtClkDivEn               | DAC Serial Clock.        |  |
| Dir    | Main Module to Daug              | ghter Card                | Dir            | Main Module to               | Daughter Card            |  |
| 69     | IntExtClkDivnReset               | DAC Serial Data.          | 70             | FpgaVRef                     | Reserved                 |  |
| 71     | FpgaTck Reserved                 |                           | 72             | FpgaTms                      | Reserved                 |  |
| Dir    | Daughter Card to Main Module     |                           | Dir            | Reserved                     |                          |  |
| 73     | FpgaTdi                          | Reserved                  | 74             | FpgaTdo                      | Reserved                 |  |
| 75     | MspVRef                          | Reserved                  | 76             | MspTck                       | Reserved                 |  |
| Dir    | Daughter Card to Ma              | in Module                 | Dir            | Reserved                     |                          |  |

| 77 | MspTms | Reserved | 78 | MspTdi   | Reserved. |
|----|--------|----------|----|----------|-----------|
| 79 | Msptdo | Reserved | 80 | MspnTrst | Reserved  |

Figure 12 – Daughter Module Interface: Data Signals Connector and Pinout (Bank B).



#### 2468

# Bank C (DAC)

| Pin No | Pin Name                     | Signal Description      | Pin No | Pin Name                     | Signal Description          |  |
|--------|------------------------------|-------------------------|--------|------------------------------|-----------------------------|--|
| Dir    | Daughter Card                | d to Main Module        | Dir    | Daughter Ca                  | ard to Main Module          |  |
| 81     | DOAQ0p                       | Data In 0, Channel A.   | 82     | DOBQ0p                       | Data In 1, Channel A.       |  |
| 83     | DOAQ0n                       | Data In 2, Channel A.   | 84     | DOBQ0n                       | Data In 3, Channel A.       |  |
| Dir    | Daughter Card                | d to Main Module        | Dir    | Daughter Ca                  | ard to Main Module          |  |
| 85     | DOAQ1p                       | Data In 4, Channel A.   | 86     | DOBQ1p                       | Data In 5, Channel A.       |  |
| 87     | DOAQ1n                       | Data In 6, Channel A.   | 88     | DOBQ1n                       | Data In 7, Channel A.       |  |
| Dir    | Daughter Card                | d to Main Module        | Dir    | Daughter Ca                  | ard to Main Module          |  |
| 89     | DOAQ2p                       | Data In 8, Channel A.   | 90     | DOBQ2p                       | Data In 9, Channel A.       |  |
| 91     | DOAQ2n                       | Data In 10, Channel A.  | 92     | DOBQ2n                       | Data In 11, Channel A.      |  |
| Dir    | Daughter Card                | d to Main Module        | Dir    | Daughter Ca                  | ard to Main Module          |  |
| 93     | DOAQ3p                       | Data In 12, Channel A.  | 94     | DOBQ3p                       | Data In 13, Channel A.      |  |
| 95     | DOAQ3n                       | Data In 14, Channel A.  | 96     | DOBQ3n                       | Data In 15, Channel A.      |  |
| Dir    | Daughter Card                | d to Main Module        | Dir    | Daughter Ca                  | ard to Main Module          |  |
| 97     | DOAQ4p                       | Data In 0, Channel B.   | 98     | DOBQ4p                       | Data In 1, Channel B.       |  |
| 99     | DOAQ4n                       | Data In 2, Channel B.   | 100    | DOBQ4n                       | Data In 3, Channel B.       |  |
| Dir    | Daughter Card                | d to Main Module        | Dir    | Daughter Ca                  | aughter Card to Main Module |  |
| 101    | DOAQ5p                       | Data In 4, Channel B.   | 102    | DOBQ5p                       | Data In 5, Channel B.       |  |
| 103    | DOAQ5n                       | Data In 6, Channel B.   | 104    | DOBQ5n                       | Data In 7, Channel B.       |  |
| Dir    | Daughter Card                | d to Main Module        | Dir    | Daughter Card to Main Module |                             |  |
| 105    | DOAQ6p                       | Data In 8, Channel B.   | 106    | DOBQ6p                       | Data In 9, Channel B.       |  |
| 107    | DOAQ6n                       | Data In 10, Channel B.  | 108    | DOBQ6n                       | Data In 11, Channel B.      |  |
| Dir    | Daughter Card                | d to Main Module        | Dir    | Daughter Ca                  | ard to Main Module          |  |
| 109    | DOAQ7p                       | Data Out 12, Channel B. | 110    | DOBQ7p                       | Data Out 13, Channel B.     |  |
| 111    | DOAQ7n                       | Data Out 14, Channel B. | 112    | DOBQ7n                       | Data Out 15, Channel B.     |  |
| Dir    | Daughter Card to Main Module |                         | Dir    | Daughter Ca                  | ard to Main Module          |  |
| 113    | Reserved.                    | DAC Clock P.            | 114    | Reserved.                    | DAC LED.                    |  |
| 115    | Reserved.                    | DAC Clock N.            | 116    | Reserved.                    | DAC Power Down.             |  |
| Dir    | Reserved.                    |                         | Dir    | Reserved.                    |                             |  |
| 117    | Reserved.                    | Reserved.               | 118    | Reserved.                    | DAC External Trigger, P.    |  |
| 119    | Reserved.                    | Reserved.               | 120    | Reserved.                    | DAC External Trigger, N.    |  |

Figure 13 – Daughter Module Interface: Data Signals Connector and Pinout (Bank C).

# **Control Register Settings**

The Control Registers control the complete functionality of the *SMT350*. They are setup via the Comport3 (standard firmware provided). The settings of the ADC, triggers, clocks and the configuration of the SHB interfaces and the internal FPGA data path settings can be configured via the Control Registers.

# Control Packet Structure

The data passed on to the *SMT350* over the Comport must conform to a certain packet structure. Only valid packets will be accepted and only after acceptance of a packet will the appropriate settings be implemented. Each packet will start with a command (4 bits – 0x1 for a write operation – 0x2 for a read operation) information, followed by a register address (12 bits – see table Memory Map), followed by a 16-bit data. This structure is illustrated in the following figure:

|      | Byte Content |              |              |              |            |            |           |           |  |
|------|--------------|--------------|--------------|--------------|------------|------------|-----------|-----------|--|
| Byte | Bit 7        | Bit 6        | Bit 5        | Bit 4        | Bit 3      | Bit 2      | Bit 1     | Bit 0     |  |
| 3    | Command<br>3 | Command<br>2 | Command<br>1 | Command<br>0 | Address 11 | Address 10 | Address 9 | Address 8 |  |
| 2    | Address 7    | Address 6    | Address 5    | Address 4    | Address 3  | Address 2  | Address 1 | Address 0 |  |
| 1    | Data 15      | Data 14      | Data 13      | Data 12      | Data 11    | Data 10    | Data 9    | Data 8    |  |
| 0    | Data 7       | Data 6       | Data 5       | Data 4       | Data 3     | Data 2     | Data 1    | Data 0    |  |

Figure 14 – Setup Packet Structure.

# Reading and Writing Registers

Control packets are sent to the *SMT350* over Comport3. This is a bi-directional interface. The format of a 'Read Packet' is the same as that of a write packet.

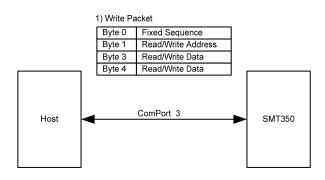



Figure 15 – Control Register Read Sequence.

# Memory Map

The write packets must contain the address where the data must be written to and the read packets must contain the address where the required data must be read. The following figure shows the memory map for the writable and readable Control Registers on the *SMT350*:

| Address | Writable Registers                             | Readable Registers                             |
|---------|------------------------------------------------|------------------------------------------------|
| 0x00    | Reset Register.                                | Reserved.                                      |
| 0x01    | Test Register.                                 | Test Register.                                 |
| 0x02    | ADCA Register 0.                               | Read-back (FPGA Register) ADCA Register 0.     |
| 0x03    | ADCA Register 1.                               | Read-back (FPGA Register) ADCA Register 1.     |
| 0x04    | ADCA Register 2.                               | Read-back (FPGA Register) ADCA Register 2.     |
| 0x05    | ADCB Register 0.                               | Read-back (FPGA Register) ADCB Register 0.     |
| 0x06    | ADCB Register 1.                               | Read-back (FPGA Register) ADCB Register 1.     |
| 0x07    | ADCB Register 2.                               | Read-back (FPGA Register) ADCB Register 2.     |
| 0x08    | DAC Register 0.                                | Read-back (FPGA Register) DAC Register 0.      |
| 0x09    | DAC Register 1.                                | Read-back (FPGA Register) DAC Register 1.      |
| 0x0A    | DAC Register 2.                                | Read-back (FPGA Register) DAC Register 2.      |
| 0x0B    | DAC Register 3.                                | Read-back (FPGA Register) DAC Register 3.      |
| 0x0C    | DAC Register 4.                                | Read-back (FPGA Register) DAC Register 4.      |
| 0x0D    | DAC Register 5.                                | Read-back (FPGA Register) DAC Register 5.      |
| 0x0E    | DAC Register 6.                                | Read-back (FPGA Register) DAC Register 6.      |
| 0x0F    | DAC Register 7.                                | Read-back (FPGA Register) DAC Register 7.      |
| 0x10    | CDCM7005 Register 0.                           | Read-back (FPGA Register) CDCM7005 Register 0. |
| 0x11    | CDCM7005 Register 1.                           | Read-back (FPGA Register) CDCM7005 Register 1. |
| 0x12    | CDCM7005 Register 2.                           | Read-back (FPGA Register) CDCM7005 Register 2. |
| 0x13    | CDCM7005 Register 3.                           | Read-back (FPGA Register) CDCM7005 Register 3. |
| 0x14    | CDCM7005 Register 4.                           | Read-back (FPGA Register) CDCM7005 Register 4. |
| 0x15    | CDCM7005 Register 5.                           | Read-back (FPGA Register) CDCM7005 Register 5. |
| 0x16    | CDCM7005 Register 6.                           | Read-back (FPGA Register) CDCM7005 Register 6. |
| 0x17    | CDCM7005 Register 7.                           | Read-back (FPGA Register) CDCM7005 Register 7. |
| 0x18    | Reserved                                       | Main Module Temperature                        |
| 0x19    | Reserved                                       | Main Module FPGA Temperature                   |
| 0x1A    | Reserved                                       | Mezzanine Module Temperature                   |
| 0x1B    | Reserved                                       | Mezzanine Module Converter Temperature         |
| 0x1C    | Misc Register (Trigger, Clock Selection, etc). | Read-back Misc Register.                       |
| 0x1D    | Update and Read-back command Register          | Firmware Version and Status bits.              |
| 0x20    | DDS Register 0 – Start Phase Increment LSB     | Read-back (FPGA Register) DDS Register 0.      |
| 0x21    | DDS Register 1 – Start Phase Increment MSB     | Read-back (FPGA Register) DDS Register 1.      |
| 0x22    | DDS Register 2 – Stop Phase Increment LSB      | Read-back (FPGA Register) DDS Register 2.      |
| 0x23    | DDS Register 3 – Stop Phase Increment MSB      | Read-back (FPGA Register) DDS Register 3.      |

| 0x24 | DDS Register 4 – Step Phase Increment LSB | Read-back (FPGA Register) DDS Register 4. |
|------|-------------------------------------------|-------------------------------------------|
| 0x25 | DDS Register 5 – Step Phase Increment MSB | Read-back (FPGA Register) DDS Register 5. |

#### Figure 16 – Register Memory Map.

### **Register Descriptions**

#### <u>Reset Register – 0x0.</u>

|         | Reset Register – 0x0 |             |              |       |       |                   |           |               |  |
|---------|----------------------|-------------|--------------|-------|-------|-------------------|-----------|---------------|--|
| Byte    | Bit 7                | Bit 6       | Bit 5        | Bit 4 | Bit 3 | Bit 2             | Bit 1     | Bit 0         |  |
| 0       | Reserved             | Reserved    | DDS<br>Reset | PHSTR |       | CDCM7005<br>Reset | DAC Reset | ADCs<br>Reset |  |
| Default | <b>'</b> 0'          | <b>'</b> 0' | '1'          | ʻ00'  |       | '1'               | '1'       | '1'           |  |

|         |         | Reset Register – 0x0                                                      |
|---------|---------|---------------------------------------------------------------------------|
| Setting | Bit 0   | Description                                                               |
| 0       | 0       | Normal Operation.                                                         |
| 1       | 1       | Resets both ADC devices as well as their corresponding Serial Interfaces. |
| Setting | Bit 1   | Description                                                               |
| 0       | 0       | Normal Operation.                                                         |
| 1       | 1       | Resets both DAC device as well as its Serial Interfaces.                  |
| Setting | Bit 2   | Description                                                               |
| 0       | 0       | Normal Operation.                                                         |
| 1       | 1       | Resets both CLK device as well as its Serial Interfaces.                  |
| Setting | Bit 4&3 | Description                                                               |
| 0       | 00      | Normal Operation – DAC PHSTR is Tri-Stated.                               |
| 1       | 01      | DAC PHSTR line is driven High.                                            |
| 2       | 10      | DAC PHSTR line is driven Low.                                             |
| 3       | 11      | Normal Operation – DAC PHSTR is Tri-Stated.                               |
| Setting | Bit 5   | Description                                                               |
| 0       | 0       | DDS Activated and SHB put on hold.                                        |
| 1       | 1       | Resets DDS Core (SHB samples are routed to the DAC)                       |

<u>Note 1</u>: What is mentioned as DAC PHSTR line is the physical net on the board that connects together the FPGA to the PHSTR pin (DAC5686) as well as to J5 (+). In a multiple board system, one board can be used as a master and its PHSTR pin can be driven high or low and an other one as slave, in which case its DAC PHSTR pin must be tri-stated.

<u>Note 2</u>: The Reset bits don't get cleared automatically, so a device can remain reset while not used to reduce the global power consumption.

### Test Register – 0x1.

Any 8-bit value written in this register can be read-back to check that the Comport used works properly.

|      | Test Register – 0x1 |       |       |       |       |       |       |       |  |
|------|---------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Byte | Bit 7               | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |
| 0    |                     |       |       |       |       |       |       |       |  |

# ADCA Register 0 - 0x2.

For more details, refer to ADS5500 datasheet.

|         | ADCA Register 0 – 0x2 |                   |       |       |       |       |       |       |  |  |
|---------|-----------------------|-------------------|-------|-------|-------|-------|-------|-------|--|--|
| Byte    | Bit 7                 | Bit 6             | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |  |
| 1       | Reserved              |                   |       |       |       |       |       |       |  |  |
| Default |                       | '0000000'         |       |       |       |       |       |       |  |  |
| 0       |                       | Reserved PLL Rese |       |       |       |       |       |       |  |  |
| Default |                       |                   | '000  | 000'  |       |       | ʻ0'   | ·0'   |  |  |

|         | ADCA Register 0 – 0x2 |                                                          |  |  |  |  |  |  |
|---------|-----------------------|----------------------------------------------------------|--|--|--|--|--|--|
| Setting | Bit 1                 | 3it 1 Description                                        |  |  |  |  |  |  |
| 0       | 0                     | PLL OFF – for sampling frequencies between 10 and 80 MHz |  |  |  |  |  |  |
| 1       | 1                     | PLL ON – for sampling frequencies between 60 and 125 MHz |  |  |  |  |  |  |

# ADCA Register 1 – 0x3.

For more details, refer to ADS5500 datasheet.

|         |       | ADCA Register 1 – 0x3 |          |       |       |          |       |       |  |
|---------|-------|-----------------------|----------|-------|-------|----------|-------|-------|--|
| Byte    | Bit 7 | Bit 6                 | Bit 5    | Bit 4 | Bit 3 | Bit 2    | Bit 1 | Bit 0 |  |
| 1       |       |                       | Reserved | TP1   | TP0   | Reserved |       |       |  |
| Default |       |                       | '00000'  |       | '0'   | ʻ0'      | ·0'   |       |  |
| 0       |       | Reserved              |          |       |       |          |       |       |  |
| Default |       |                       |          | '0000 | 0000' |          |       |       |  |

|         |     | ADCA Register 1 – 0x3 |                           |  |  |  |  |  |
|---------|-----|-----------------------|---------------------------|--|--|--|--|--|
| Setting | TP1 | TP0                   | Description               |  |  |  |  |  |
| 0       | 0   | 0                     | Normal Mode of Operation  |  |  |  |  |  |
| 1       | 0   | 1                     | All outputs are zeroes    |  |  |  |  |  |
| 2       | 1   | 0                     | All outputs are ones      |  |  |  |  |  |
| 3       | 1   | 1                     | Continuous stream of '10' |  |  |  |  |  |

# ADCA Register 2 – 0x4.

#### For more details, refer to ADS5500 datasheet.

|         |       | ADCA Register 2 – 0x4 |       |       |       |          |       |       |  |  |
|---------|-------|-----------------------|-------|-------|-------|----------|-------|-------|--|--|
| Byte    | Bit 7 | Bit 6                 | Bit 5 | Bit 4 | Bit 3 | Bit 2    | Bit 1 | Bit 0 |  |  |
| 1       |       | Rese                  | erved |       | PDN   | Reserved |       |       |  |  |
| Default |       | ,000,                 |       |       |       | ·000'    |       |       |  |  |
| 0       |       | Reserved              |       |       |       |          |       |       |  |  |
| Default |       |                       |       | 6000  | 0000' |          |       |       |  |  |

|         |     | ADCA Register 2 – 0X4     |  |  |  |  |  |  |  |
|---------|-----|---------------------------|--|--|--|--|--|--|--|
| Setting | PDN | PDN Description           |  |  |  |  |  |  |  |
| 0       | 0   | Normal Mode of Operation  |  |  |  |  |  |  |  |
| 1       | 1   | Device in Power Down Mode |  |  |  |  |  |  |  |

# ADCB Register 0 – 0x5.

### For more details, refer to ADS5500 datasheet.

|         |       | ADCB Register 0 – 0x5 |       |       |       |       |       |          |  |
|---------|-------|-----------------------|-------|-------|-------|-------|-------|----------|--|
| Byte    | Bit 7 | Bit 6                 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0    |  |
| 1       |       | Reserved              |       |       |       |       |       |          |  |
| Default |       | ·0000000'             |       |       |       |       |       |          |  |
| 0       |       | Reserved PLL Reserve  |       |       |       |       |       | Reserved |  |
| Default |       |                       | ·000  | 000'  |       |       | '0'   | ʻ0'      |  |

|         | ADCB Register 0 – 0x5 |                                                          |  |  |  |  |  |  |
|---------|-----------------------|----------------------------------------------------------|--|--|--|--|--|--|
| Setting | Bit 1                 | it 1 Description                                         |  |  |  |  |  |  |
| 0       | 0                     | PLL OFF – for sampling frequencies between 10 and 80 MHz |  |  |  |  |  |  |
| 1       | 1                     | PLL ON – for sampling frequencies between 60 and 125 MHz |  |  |  |  |  |  |

# ADCB Register 1 – 0x6.

#### For more details, refer to ADS5500 datasheet.

|         |       | ADCB Register 1 – 0x6 |          |              |       |          |       |       |  |  |
|---------|-------|-----------------------|----------|--------------|-------|----------|-------|-------|--|--|
| Byte    | Bit 7 | Bit 6                 | Bit 5    | Bit 4        | Bit 3 | Bit 2    | Bit 1 | Bit 0 |  |  |
| 1       |       |                       | Reserved | TP1          | TP0   | Reserved |       |       |  |  |
| Default |       |                       | '00000'  |              | '0'   | '0'      | ʻ0'   |       |  |  |
| 0       |       | Reserved              |          |              |       |          |       |       |  |  |
| Default |       |                       |          | <b>'0000</b> | 0000' |          |       |       |  |  |

|         |     | ADCB Register 1 – 0x6 |                          |  |  |  |  |  |
|---------|-----|-----------------------|--------------------------|--|--|--|--|--|
| Setting | TP1 | TP0                   | Description              |  |  |  |  |  |
| 0       | 0   | 0                     | Normal Mode of Operation |  |  |  |  |  |

| 1 | 0 | 1 | All outputs are zeroes    |
|---|---|---|---------------------------|
| 2 | 1 | 0 | All outputs are ones      |
| 3 | 1 | 1 | Continuous stream of '10' |

# ADCB Register 2 - 0x7.

For more details, refer to ADS5500 datasheet.

|         |       | ADCB Register 2 – 0x7 |       |       |       |          |       |       |  |  |
|---------|-------|-----------------------|-------|-------|-------|----------|-------|-------|--|--|
| Byte    | Bit 7 | Bit 6                 | Bit 5 | Bit 4 | Bit 3 | Bit 2    | Bit 1 | Bit 0 |  |  |
| 1       |       | Rese                  | erved |       | PDN   | Reserved |       |       |  |  |
| Default |       | ,000,                 |       |       |       | ·000'    |       |       |  |  |
| 0       |       | Reserved              |       |       |       |          |       |       |  |  |
| Default |       |                       |       | ʻ0000 | 0000' |          |       |       |  |  |

|         |     | ADCB Register 2 – 0x7     |  |  |  |  |  |  |  |
|---------|-----|---------------------------|--|--|--|--|--|--|--|
| Setting | PDN | PDN Description           |  |  |  |  |  |  |  |
| 0       | 0   | Normal Mode of Operation  |  |  |  |  |  |  |  |
| 1       | 1   | Device in Power Down Mode |  |  |  |  |  |  |  |

### DAC Register 0 – 0x8.

For more details, refer to DAC5686 datasheet.

|         | DAC Register 0 – 0x8 |                                                 |  |              |       |  |  |  |  |  |
|---------|----------------------|-------------------------------------------------|--|--------------|-------|--|--|--|--|--|
| Byte    | Bit 7                | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |              |       |  |  |  |  |  |
| 0       |                      | atest Version                                   |  |              |       |  |  |  |  |  |
| Default |                      | ,000,                                           |  |              |       |  |  |  |  |  |
| 1       |                      | Freq_int[7:0]                                   |  |              |       |  |  |  |  |  |
| Default |                      |                                                 |  | <b>'0000</b> | 0000' |  |  |  |  |  |

# DAC Register 1 – 0x9.

For more details, refer to DAC5686 datasheet.

|         | DAC Register 1 – 0x9 |                                                 |  |       |       |  |  |  |  |  |  |
|---------|----------------------|-------------------------------------------------|--|-------|-------|--|--|--|--|--|--|
| Byte    | Bit 7                | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |       |       |  |  |  |  |  |  |
| 0       |                      | Freq_int[15:8]                                  |  |       |       |  |  |  |  |  |  |
| Default |                      | ·0000000'                                       |  |       |       |  |  |  |  |  |  |
| 1       |                      | Freq_int[23:16]                                 |  |       |       |  |  |  |  |  |  |
| Default |                      |                                                 |  | ·0000 | 0000' |  |  |  |  |  |  |

# DAC Register 2 – 0xA.

For more details, refer to DAC5686 datasheet.

|         | DAC Register 2 – 0xA |                                                 |  |       |       |  |  |  |  |  |
|---------|----------------------|-------------------------------------------------|--|-------|-------|--|--|--|--|--|
| Byte    | Bit 7                | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |       |       |  |  |  |  |  |
| 0       |                      | Freq_int[31:24]                                 |  |       |       |  |  |  |  |  |
| Default |                      | ʻ0000000)'                                      |  |       |       |  |  |  |  |  |
| 1       |                      | Phase_int[7:0]                                  |  |       |       |  |  |  |  |  |
| Default |                      |                                                 |  | ʻ0000 | 0000' |  |  |  |  |  |

# DAC Register 3 – 0xB.

For more details, refer to DAC5686 datasheet.

|         | DAC Register 3 – 0xB |                                                 |  |                |       |  |  |  |  |  |  |
|---------|----------------------|-------------------------------------------------|--|----------------|-------|--|--|--|--|--|--|
| Byte    | Bit 7                | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |                |       |  |  |  |  |  |  |
| 0       |                      | Phase _int[15:8]                                |  |                |       |  |  |  |  |  |  |
| Default |                      |                                                 |  | <b>'0000</b> ' | 0000' |  |  |  |  |  |  |
| 1       | Mode                 | Mode[1:0] Div[1:0] Sel[1:0] Counter Full bypass |  |                |       |  |  |  |  |  |  |
| Default | '0                   | ,00, ,00, ,00, ,0, ,0,                          |  |                |       |  |  |  |  |  |  |

# DAC Register 4 – 0xC.

For more details, refer to DAC5686 datasheet.

|         | DAC Register 4 – 0xC |               |             |        |            |        |        |         |  |  |
|---------|----------------------|---------------|-------------|--------|------------|--------|--------|---------|--|--|
| Byte    | Bit 7                | Bit 6         | Bit 5       | Bit 4  | Bit 3      | Bit 2  | Bit 1  | Bit 0   |  |  |
| 0       | Ssb                  | Interl        | Sinc        | Dith   | Sync Phstr | Nco    | Sif4   | Twos    |  |  |
| Default | ʻ0'                  | '0'           | <b>'</b> 0' | '0'    | ʻ0'        | '0'    | ʻ0'    | ʻ0'     |  |  |
| 1       | Dual_clk             | DSS_gain[1:0] |             | Rspect | Qflag      | PII_rn | g[1:0] | Rev_bus |  |  |
| Default | '0'                  | ·00'          |             | ʻ0'    | ʻ0'        | ·00'   |        | ʻ0'     |  |  |

# DAC Register 5 - 0xD.

For more details, refer to DAC5686 datasheet.

|         | DAC Register 5 – 0xD |                                                 |  |      |       |  |  |  |  |  |  |
|---------|----------------------|-------------------------------------------------|--|------|-------|--|--|--|--|--|--|
| Byte    | Bit 7                | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |      |       |  |  |  |  |  |  |
| 0       |                      | Daca_offset[7:0]                                |  |      |       |  |  |  |  |  |  |
| Default |                      | ,0000000,                                       |  |      |       |  |  |  |  |  |  |
| 1       |                      | Daca_gain[7:0]                                  |  |      |       |  |  |  |  |  |  |
| Default |                      |                                                 |  | 6000 | 0000' |  |  |  |  |  |  |

# DAC Register 6 – 0xE.

### For more details, refer to DAC5686 datasheet.

|         |       |                  |       | DAC Regis | ter 6 – 0xE                   |         |           |  |  |  |
|---------|-------|------------------|-------|-----------|-------------------------------|---------|-----------|--|--|--|
| Byte    | Bit 7 | Bit 6            | Bit 5 | Bit 4     | Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |         |           |  |  |  |
| 0       | D     | aca_offset[10:   | 8]    | sleepa    |                               | Daca_ga | ain[11:8] |  |  |  |
| Default |       |                  |       | '0'       |                               | ·00     | 00'       |  |  |  |
| 1       |       | Dacb_offset[7:0] |       |           |                               |         |           |  |  |  |
| Default |       |                  |       | ʻ0000     | 0000'                         |         |           |  |  |  |

# DAC Register 7 – 0xF.

### For more details, refer to DAC5686 datasheet.

|         | DAC Register 7 – 0xF |                                                 |  |  |  |  |  |  |  |  |  |
|---------|----------------------|-------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Byte    | Bit 7                | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |  |  |  |  |  |  |  |  |
| 0       |                      | Dacb_gain[7:0]                                  |  |  |  |  |  |  |  |  |  |
| Default |                      | ,0000000,                                       |  |  |  |  |  |  |  |  |  |
| 1       | Dacb                 | Dacb_offset[10:8] sleepb Dacb_gain[11:8]        |  |  |  |  |  |  |  |  |  |
| Default |                      | ,000, ,0, ,0000,                                |  |  |  |  |  |  |  |  |  |

# CDCM7005 Register 0 - 0x10.

## For more details, refer to CDCM7005 datasheet.

|         | CDCM7005 Register 0 – 0x10 |            |               |            |       |           |              |               |  |  |
|---------|----------------------------|------------|---------------|------------|-------|-----------|--------------|---------------|--|--|
| Byte    | Bit 7                      | Bit 6      | Bit 5         | Bit 4      | Bit 3 | Bit 2     | Bit 1        | Bit 0         |  |  |
| 1       |                            | VCXO_divid | er[3:0]       |            |       | Reference | Divider[9:6] |               |  |  |
| Default |                            | '0000'     |               |            |       | '00       | 00'          |               |  |  |
| 0       |                            |            | Reference Div | vider[5:0] |       |           | Register Se  | election[1:0] |  |  |
| Default |                            |            | '00000        | 0'         |       |           | '0           | 0'            |  |  |

## CDCM7005 Register 1 – 0x11.

For more details, refer to CDCM7005 datasheet.

|         |             |                        | CDCM7                                               | 005 Registe | r 1 – 0x11 |  |       |  |  |
|---------|-------------|------------------------|-----------------------------------------------------|-------------|------------|--|-------|--|--|
| Byte    | Bit 7       | Bit 6                  | Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit                   |             |            |  |       |  |  |
| 1       | Freq Detect | Manual or Auto<br>Ref. | Programmable Delay N[2:0] Programmable Delay M[2:0] |             |            |  |       |  |  |
| Default | <b>'O'</b>  | ʻ0'                    |                                                     | '000'       |            |  | '000' |  |  |
| 0       |             | VCXO_divider[11:4]     |                                                     |             |            |  |       |  |  |
| Default |             |                        |                                                     | '0000000'   |            |  |       |  |  |

## CDCM7005 Register 2 - 0x12.

#### For more details, refer to CDCM7005 datasheet.

|         | CDCM7005 Register 2 – 0x12 |        |                                                    |             |       |       |       |       |  |  |
|---------|----------------------------|--------|----------------------------------------------------|-------------|-------|-------|-------|-------|--|--|
| Byte    | Bit 7                      | Bit 6  | Bit 5                                              | Bit 4       | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |  |
| 1       | OUT2A0                     | OUT1B1 | OUT1B1 OUT1B0 OUT1A1 OUT1A0 OUT0B1 OU              |             |       |       |       |       |  |  |
| Default | <b>'</b> 0'                | ʻ0'    | <b>'</b> 0'                                        | <b>'</b> 0' | '0'   | '0'   | '0'   | ·0'   |  |  |
| 0       | OUT0A0                     |        | Output Signaling Selcetion[5:0] Register Selection |             |       |       |       |       |  |  |
| Default | <b>'</b> 0'                |        | '00000' '01'                                       |             |       |       |       |       |  |  |

## CDCM7005 Register 3 - 0x13.

### For more details, refer to CDCM7005 datasheet.

|         | CDCM7005 Register 3– 0x13 |                                                 |             |                |             |        |        |        |  |  |
|---------|---------------------------|-------------------------------------------------|-------------|----------------|-------------|--------|--------|--------|--|--|
| Byte    | Bit 7                     | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |             |                |             |        |        |        |  |  |
| 1       | 90Div8                    | 90Div4                                          | ADClock     | Status<br>VCXO | Status Ref  | OUT4B1 | OUT4B0 | OUT4A1 |  |  |
| Default | ʻ0'                       | ʻ0'                                             | <b>'</b> 0' | <b>'</b> 0'    | <b>'</b> 0' | '0'    | ʻ0'    | ʻ0'    |  |  |
| 0       | OUT4A0                    | OUT3B1                                          | OUT3B0      | OUT3A1         | OUT3A0      | OUT2B1 | OUT2B0 | OUT2A1 |  |  |
| Default | '0'                       | ʻ0'                                             | ʻ0'         | ʻ0'            | '0'         | '0'    | ʻ0'    | ʻ0'    |  |  |

# CDCM7005 Register 4 – 0x14.

### For more details, refer to CDCM7005 datasheet.

|         |       |        | CDC   | M7005 Regist | er 4 – 0x14 |           |             |               |
|---------|-------|--------|-------|--------------|-------------|-----------|-------------|---------------|
| Byte    | Bit 7 | Bit 6  | Bit 5 | Bit 4        | Bit 3       | Bit 2     | Bit 1       | Bit 0         |
| 1       |       | Y0_MUX |       | W            | /idth FB_MU | PDF Pulse |             |               |
| Default |       | '000'  |       | '000' 'C     |             |           |             | 0'            |
| 0       |       | CP Cu  | rrent |              | PRECP       | CP_DIR    | Register Se | election[1:0] |
| Default |       | ʻ000   | 00'   |              | '0'         | ʻ0'       | '1          | 0'            |

## CDCM7005 Register 5 - 0x15.

For more details, refer to CDCM7005 datasheet.

|         |       |       | CD            | CM7005 Reg    | jister 5– 0x15        |        |       |     |  |
|---------|-------|-------|---------------|---------------|-----------------------|--------|-------|-----|--|
| Byte    | Bit 7 | Bit 6 | Bit 5         | Bit 4         | Bit 3 Bit 2 Bit 1 Bit |        |       |     |  |
| 1       | Hold  | Reset | ResHold       | Power<br>Down |                       | Y3_MUX |       |     |  |
| Default | '0'   | ʻ0'   | ʻ0'           | ʻ0'           | ·000'                 |        |       | '0' |  |
| 0       | Y3    | B_MUX | Y2_MUX Y1_MUX |               |                       |        |       |     |  |
| Default |       | ·00'  |               | '000'         |                       |        | '000' |     |  |

# CDCM7005 Register 6 - 0x16.

#### For more details, refer to CDCM7005 datasheet.

|         |             |            | CDC   | M7005 Regist | er 6 – 0x16 |               |                   |             |
|---------|-------------|------------|-------|--------------|-------------|---------------|-------------------|-------------|
| Byte    | Bit 7       | Bit 6      | Bit 5 | Bit 3        | Bit 2       | Bit 1         | Bit 0             |             |
| 1       |             | Rese       | rved  |              | Hold        | Reserved      | Hold<br>Function1 | Reserved    |
| Default |             | ·00        | 00'   |              | <b>'</b> 0' | ʻ0'           | <b>'</b> 0'       | <b>'</b> 0' |
| 0       | Reserved    | Cycle Slip | Lock  | Window       | Register Se | election[1:0] |                   |             |
| Default | <b>'</b> 0' | ʻ0'        | '00   | "(           | 00'         | '1            | 1'                |             |

# CDCM7005 Register 7 - 0x17.

For more details, refer to CDCM7005 datasheet.

|         |       | CDCM7005 Register 7 – 0x17                      |  |           |                |  |  |  |  |  |  |  |  |
|---------|-------|-------------------------------------------------|--|-----------|----------------|--|--|--|--|--|--|--|--|
| Byte    | Bit 7 | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |           |                |  |  |  |  |  |  |  |  |
| 1       |       | Reserved                                        |  |           |                |  |  |  |  |  |  |  |  |
| Default |       |                                                 |  | ·00000000 | ) <sup>2</sup> |  |  |  |  |  |  |  |  |
| 0       |       |                                                 |  | Reserved  |                |  |  |  |  |  |  |  |  |
| Default |       |                                                 |  | ·00000000 | )'             |  |  |  |  |  |  |  |  |

## Main Module Temperature (not implemented) – 0x18

|         |       |                                                 | Main M | Iodule Temper | ature – 0x18 | ; |  |  |  |  |  |  |
|---------|-------|-------------------------------------------------|--------|---------------|--------------|---|--|--|--|--|--|--|
| Byte    | Bit 7 | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |        |               |              |   |  |  |  |  |  |  |
| 0       |       | Temperature in Celcius Degrees                  |        |               |              |   |  |  |  |  |  |  |
| Default |       |                                                 |        | ·0000000      | )'           |   |  |  |  |  |  |  |

#### Main Module FPGA Temperature (not implemented) – 0x19

|         |       |                                                 | Main Mod | ule FPGA Tem | perature – 0 | x19 |  |  |  |  |  |  |
|---------|-------|-------------------------------------------------|----------|--------------|--------------|-----|--|--|--|--|--|--|
| Byte    | Bit 7 | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |          |              |              |     |  |  |  |  |  |  |
| 0       |       | Temperature in Celcius Degrees                  |          |              |              |     |  |  |  |  |  |  |
| Default |       |                                                 |          | ,0000000     | )'           |     |  |  |  |  |  |  |

# Mezzanine Module Temperature (not implemented) - 0x1A

|         |       |                                                 | Mezzanine | e Module Tem | perature – 0 | x1A |  |  |  |  |  |  |
|---------|-------|-------------------------------------------------|-----------|--------------|--------------|-----|--|--|--|--|--|--|
| Byte    | Bit 7 | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |           |              |              |     |  |  |  |  |  |  |
| 0       |       | Temperature in Celcius Degrees                  |           |              |              |     |  |  |  |  |  |  |
| Default |       | ,0000000,                                       |           |              |              |     |  |  |  |  |  |  |

# Mezzanine Module Converters Temperature (not implemented) – 0x1B

|         |       | N                                               | lezzanine Mod | lule Converters | s Temperatu | ire – 0x1B |  |  |  |  |  |  |
|---------|-------|-------------------------------------------------|---------------|-----------------|-------------|------------|--|--|--|--|--|--|
| Byte    | Bit 7 | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |               |                 |             |            |  |  |  |  |  |  |
| 0       |       | Temperature in Celcius Degrees                  |               |                 |             |            |  |  |  |  |  |  |
| Default |       |                                                 |               | ·0000000        | )'          |            |  |  |  |  |  |  |

# Miscellaneous Register - 0x1C.

|         | Miscellaneous Register – 0x1C                           |                                                     |                            |                           |                           |                 |                    |                        |  |  |
|---------|---------------------------------------------------------|-----------------------------------------------------|----------------------------|---------------------------|---------------------------|-----------------|--------------------|------------------------|--|--|
| Byte    | Bit 7                                                   | Bit 6                                               | Bit 5                      | Bit 4                     | Bit 3                     | Bit 2           | Bit 1              | Bit 0                  |  |  |
| 0       | Rese                                                    | erved                                               | ADC Trigger<br>- Selection | ADC Trigger<br>- Polarity | ADC Trigger<br>- Internal | ADCs<br>Data    | Clock<br>Selection | Reference<br>Selection |  |  |
| Default | ʻ0                                                      | 0'                                                  | ʻ0'                        | ʻ0'                       | ʻ0'                       | ʻ0'             | ʻ0'                | '0'                    |  |  |
| 1       | Rese                                                    | erved                                               | DAC Trigger<br>- Selection | DAC Trigger<br>- Polarity | DAC Trigger<br>- Internal | Reserved        | SHB S              | election               |  |  |
| Default | ʻC                                                      | 0'                                                  | ʻ0'                        | ʻ0'                       | ʻ0'                       | '0'             | ʻC                 | 0'                     |  |  |
|         |                                                         |                                                     | Miscell                    | aneous Registe            | er – 0x1C                 |                 |                    |                        |  |  |
| Setting | Bit 13                                                  | Description                                         |                            |                           |                           |                 |                    |                        |  |  |
| 0       | 0                                                       | Internal DAC                                        | CTrigger (from re          | egister 0x1C – b          | it 11) selected.          |                 |                    |                        |  |  |
| 1       | 1                                                       | External DA                                         | C Trigger (from            | connector J24) s          | elected.                  |                 |                    |                        |  |  |
|         |                                                         | -                                                   | Miscell                    | aneous Registe            | er – 0x1C                 |                 |                    |                        |  |  |
| Setting | Bit 12                                                  | Description                                         |                            |                           |                           |                 |                    |                        |  |  |
| 0       | 0                                                       | Polarity DAC                                        | CTrigger signal s          | selected – Non-I          | nverting.                 |                 |                    |                        |  |  |
| 1       | 1                                                       | Polarity DAC                                        | CTrigger signal s          | selected – Invert         | ing.                      |                 |                    |                        |  |  |
|         |                                                         | Miscellaneous Register – 0x1C                       |                            |                           |                           |                 |                    |                        |  |  |
| Setting | Bit 11                                                  | Description                                         |                            |                           |                           |                 |                    |                        |  |  |
| 0       | 0                                                       | Internal DAC                                        | C Trigger set to '         | D'.                       |                           |                 |                    |                        |  |  |
| 1       | 1                                                       | Internal DAC                                        | CTrigger set to "          | 1'.                       |                           |                 |                    |                        |  |  |
|         |                                                         |                                                     | Miscell                    | aneous Regist             | er – 0x1C                 |                 |                    |                        |  |  |
| Setting | Bit 9/8                                                 | Description                                         | า                          |                           |                           |                 |                    |                        |  |  |
| 0       | 00                                                      | ADC Chann                                           | el A and B ; 1 s           | ample of each A           | DC channel pac            | ked onto one 3  | 32-bit word. [C    | ChB ChA]               |  |  |
| 1       | 01                                                      | ADC Chann                                           | iel A only ; 2 sar         | nples packed or           | ito one 32-bit wo         | rd [word(t+1) \ | word(t)]           |                        |  |  |
| 2       | 10                                                      | ADC Chann                                           | iel B only ; 2 sar         | nples packed on           | ito one 32-bit wo         | rd [word(t+1) \ | word(t)]           |                        |  |  |
| 3       | 11                                                      | ADC Chann                                           | el A and B ; 1 s           | ample of each A           | DC channel pac            | ked onto one 3  | 32-bit word. [C    | ChB ChA]               |  |  |
|         |                                                         |                                                     | Miscell                    | aneous Regist             | er – 0x1C                 |                 |                    |                        |  |  |
| Setting | Bit 5                                                   | Description                                         | า                          |                           |                           |                 |                    |                        |  |  |
| 0       | 0                                                       | Internal AD                                         | C Trigger (from I          | register 0x1C – I         | oit 3) selected.          |                 |                    |                        |  |  |
| 1       | 1                                                       | External AD                                         | C Trigger (from            | connector J24)            | selected.                 |                 |                    |                        |  |  |
|         | Miscellaneous Register – 0x1C                           |                                                     |                            |                           |                           |                 |                    |                        |  |  |
| Setting | Bit 4 Description                                       |                                                     |                            |                           |                           |                 |                    |                        |  |  |
| 0       | 0 Polarity ADC Trigger signal selected – Non-Inverting. |                                                     |                            |                           |                           |                 |                    |                        |  |  |
| 1       | 1                                                       | 1 Polarity ADC Trigger signal selected – Inverting. |                            |                           |                           |                 |                    |                        |  |  |
|         |                                                         |                                                     | Miscell                    | aneous Regist             | er – 0x1C                 |                 |                    |                        |  |  |

| Setting | Bit 3 | Description                               |
|---------|-------|-------------------------------------------|
| 0       | 0     | Internal ADC Trigger set to '0'.          |
| 1       | 1     | Internal ADC Trigger set to '1'.          |
|         |       | Miscellaneous Register – 0x1C             |
| Setting | Bit 2 | Description                               |
| 0       | 0     | Binary Format.                            |
| 1       | 1     | 2's Complement.                           |
|         |       | Miscellaneous Register – 0x1C             |
| Setting | Bit 1 | Description                               |
| 0       | 0     | VCXO selection.                           |
| 1       | 1     | External Source Selected.                 |
|         |       | Miscellaneous Register – 0x1C             |
| Setting | Bit 0 | Description                               |
| 0       | 0     | On-Board 10-MHz Reference Clock selected. |
| 1       | 1     | External Reference Selected.              |

#### Updates, Read-back and Firmware Version Registers – 0x1D

The Update bit activates the corresponding Serial Interface to pass registers previously written in the FPGA, into the corresponding device (ADCA, ADCB, DAC or CLK devices).

The Read-back bit activates the corresponding Serial Interface to read-back register values from the corresponding device and to pass them to the FPGA. This operation must be followed by Read-back register operations.

Note that only the DAC allows proper read-back operation. Other devices read-back commands would only perform a read-back of the FPGA register.

|         |          |                                                 | Update             | and Read-ba         | ck command    | s – 0x1D         |                |                |  |  |
|---------|----------|-------------------------------------------------|--------------------|---------------------|---------------|------------------|----------------|----------------|--|--|
| Byte    | Bit 7    | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |                    |                     |               |                  |                |                |  |  |
| 0       | Reserved | DDS Step<br>Update                              | DDS Stop<br>Update | DDS Start<br>Update | CLK<br>Update | DAC<br>Update    | ADCB<br>Update | ADCA<br>Update |  |  |
| Default | '0'      | ʻ0'                                             | <b>'</b> 0'        | '0'                 | '0'           | '0'              | ʻ0'            | <b>'</b> 0'    |  |  |
| 1       |          |                                                 |                    |                     |               | DAC<br>Read-back |                |                |  |  |
| Default | '0'      | ʻ0'                                             | <b>'</b> 0'        | '0'                 | '0'           | '0'              | ʻ0'            | ʻ0'            |  |  |

Reading-back this register returns the Firmware version as well as some Status signals coming from the CDCM7005.

|         |       | Firmware Version – 0x1D                         |     |             |     |                            |                        |                         |  |  |  |  |  |
|---------|-------|-------------------------------------------------|-----|-------------|-----|----------------------------|------------------------|-------------------------|--|--|--|--|--|
| Byte    | Bit 7 | Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |     |             |     |                            |                        |                         |  |  |  |  |  |
| 0       |       | Firmware Version                                |     |             |     |                            |                        |                         |  |  |  |  |  |
| Default |       | ,0000000,                                       |     |             |     |                            |                        |                         |  |  |  |  |  |
| 1       |       |                                                 |     |             |     | CDCM7005<br>Status<br>VCXO | CDCM7005<br>Status Ref | CDCM7005<br>Status Lock |  |  |  |  |  |
| Default | ʻ0'   | ,0,                                             | ʻ0' | <b>'</b> 0' | '0' | <b>'</b> 0'                | ʻ0'                    | <b>'</b> 0'             |  |  |  |  |  |

## DDS Register 0 - Start Phase Increment LSB - 0x20

|         | DDS Register 0 – 0x20          |       |       |       |       |       |       |       |
|---------|--------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Byte    | Bit 7                          | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| 1       | DDS Start Phase Increment[158] |       |       |       |       |       |       |       |
| Default | ʻ0000000'                      |       |       |       |       |       |       |       |
| 0       | DDS Start Phase Increment [70] |       |       |       |       |       |       |       |
| Default |                                |       |       | ʻ0000 | 0000' |       |       |       |

## DDS Register 1 – Start Phase Increment MSB - 0x21

|         | DDS Register 1 – 0x21            |       |       |        |       |       |       |       |
|---------|----------------------------------|-------|-------|--------|-------|-------|-------|-------|
| Byte    | Bit 7                            | Bit 6 | Bit 5 | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| 1       | DDS Start Phase Increment [3124] |       |       |        |       |       |       |       |
| Default | ʻ0000000'                        |       |       |        |       |       |       |       |
| 0       | DDS Start Phase Increment [2316] |       |       |        |       |       |       |       |
| Default |                                  |       |       | ʻ00000 | 000'  |       |       |       |

The Start Phase Increment value is coded on 32 bits (DDS Data registers 0x20 and 0x21). Each value corresponds to a frequency generated worked out as follows:

# Fout = Start Phase Increment \* F<sub>DAC sampling</sub> (MHz) / 2<sup>32</sup>

When the DDS is used in sweep mode, **Start Phase Increment** should be lower than **Stop Phase Increment** and **Step Phase Increment** should be greater than 0. When used to generate a fixed frequency, **Start Phase Increment** should be equal to **Stop Phase Increment** and **Step Phase Increment** should be equal to **Stop Phase Increment** and **Step Phase Increment** should be equal to **1**.

For Registers 0x20 and 0x21 to take effect, Bit 4 of register 0x1D must be set to 1.

DAC Channel A is the Sine output of the DDS and DAC Channel B is the Cosine output of the DDS. Both outputs are therefore is quadrature.

The Maximum Phase increment value supported by the design is 0x40000000, which corresponds to a frequency of 30.72MHz when sampling at 122.88MHz with no interpolation.

### DDS Register 2 – Stop Phase Increment LSB - 0x22

|         | DDS Register 2 – 0x22          |       |       |       |       |       |       |           |  |  |  |  |  |  |
|---------|--------------------------------|-------|-------|-------|-------|-------|-------|-----------|--|--|--|--|--|--|
| Byte    | Bit 7                          | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0     |  |  |  |  |  |  |
| 1       | DDS Stop Phase Increment [158] |       |       |       |       |       |       |           |  |  |  |  |  |  |
| Default | ·0000000'                      |       |       |       |       |       |       |           |  |  |  |  |  |  |
| 0       | DDS Stop Phase Increment [70]  |       |       |       |       |       |       |           |  |  |  |  |  |  |
| Default |                                |       |       | ʻ0000 | 0000' |       |       | ,0000000, |  |  |  |  |  |  |

### DDS Register 3 – Stop Increment MSB - 0x23

|         | DDS Register 3 – 0x23           |       |       |       |       |       |       |       |
|---------|---------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Byte    | Bit 7                           | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| 1       | DDS Stop Phase Increment [3124] |       |       |       |       |       |       |       |
| Default | ,0000000,                       |       |       |       |       |       |       |       |
| 0       | DDS Stop Phase Increment [2316] |       |       |       |       |       |       |       |
| Default |                                 |       |       | 60000 | 000'  |       |       |       |

The Stop Phase Increment value is coded on 32 bits (DDS Data registers 0x22 and 0x23). Each value corresponds to a frequency generated worked out as follows :

# Fout = Stop Phase Increment \* F<sub>DAC sampling</sub> (MHz) / 2<sup>32</sup>

When the DDS is used in sweep mode, **Start Phase Increment** should be lower than **Stop Phase Increment** and **Step Phase Increment** should be greater than 0. When used to generate a fixed frequency, **Start Phase Increment** should be equal to **Stop Phase Increment** and **Step Phase Increment** should be equal to **Stop Phase Increment** and **Step Phase Increment** should be equal to **1**.

For Registers 0x22 and 0x23 to take effect, Bit 5 of register 0x1D must be set to 1.

DAC Channel A is the Sine output of the DDS and DAC Channel B is the Cosine output of the DDS. Both outputs are therefore is quadrature.

The Maximum Phase increment value supported by the design is 0x40000000, which corresponds to a frequency of 30.72MHz when sampling at 122.88MHz with no interpolation.

|         | DDS Register 4 – 0x24          |           |       |       |       |       |       |       |
|---------|--------------------------------|-----------|-------|-------|-------|-------|-------|-------|
| Byte    | Bit 7                          | Bit 6     | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| 1       | DDS Step Phase Increment [158] |           |       |       |       |       |       |       |
| Default | ·0000000'                      |           |       |       |       |       |       |       |
| 0       | DDS Step Phase Increment [70]  |           |       |       |       |       |       |       |
| Default |                                | ,0000000, |       |       |       |       |       |       |

DDS Register 0 - Step Phase Increment LSB - 0x24

#### DDS Register 5 – Step Increment MSB - 0x25

|         | DDS Register 5 – 0x25           |       |       |        |       |       |       |       |
|---------|---------------------------------|-------|-------|--------|-------|-------|-------|-------|
| Byte    | Bit 7                           | Bit 6 | Bit 5 | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| 1       | DDS Step Phase Increment [3124] |       |       |        |       |       |       |       |
| Default | ·0000000'                       |       |       |        |       |       |       |       |
| 0       | DDS Step Phase Increment [2316] |       |       |        |       |       |       |       |
| Default |                                 |       |       | ʻ00000 | 000'  |       |       |       |

The Step Phase Increment value is coded on 32 bits. It corresponds to the increment in phase on each sampling clock cycle (Sweep Mode).

When used to generate a fixed frequency, **Start Phase Increment** should be equal to **Stop Phase Increment** and **Step Phase Increment** should be equal to 1.

For Registers 0x24 and 0x25 to take effect, Bit 6 of register 0x1D must be set to 1.

DAC Channel A is the Sine output of the DDS and DAC Channel B is the Cosine output of the DDS. Both outputs are therefore is quadrature.

# **FPGA** Design

The following block diagram shows how the default FPGA design is structured:

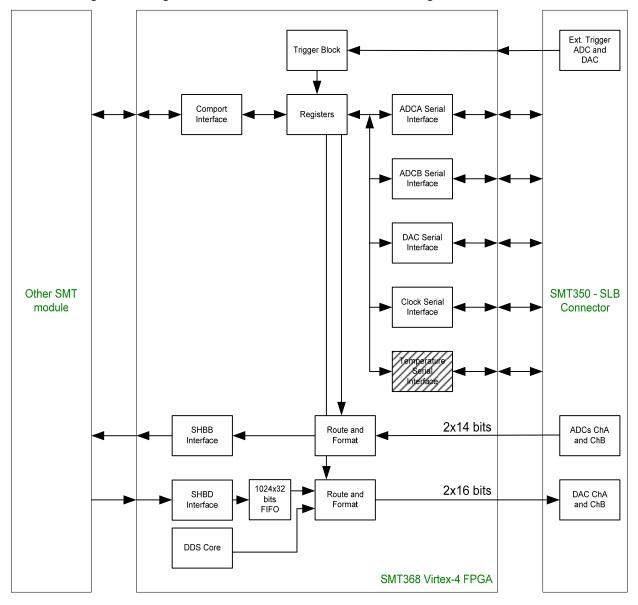



Figure 17 - Firmware Block Diagram.

# Serial Interfaces

All serial interfaces have been designed in accordance with manufacturers datasheets and validated by probing and checking against timing provided.

# **Block of registers**

This implements what has previously been described in this document.

# Space available in FPGA

This is the summary provided by Xilinx ISE 7.1.04i regarding the amount of resources required by the default FPGA design – this is targeting a Virtex4 XC4VSX35.

| Logic Utilization                               | Used  | Available | <b>Utilization</b> | Note(s) |
|-------------------------------------------------|-------|-----------|--------------------|---------|
| Number of Slice Flip Flops:                     | 2,276 | 30,720    | 7%                 |         |
| Number of 4 input LUTs:                         | 2,292 | 30,720    | 7%                 |         |
| Logic Distribution:                             |       |           |                    |         |
| Number of occupied Slices:                      | 2,170 | 15,360    | 14%                |         |
| Number of Slices containing only related logic: | 2,170 | 2,170     | 100%               |         |
| Number of Slices containing unrelated logic:    | 0     | 2,170     | 0%                 |         |
| Total Number 4 input LUTs:                      | 2,391 | 30,720    | 7%                 |         |
| Number used as logic:                           | 2,292 |           |                    |         |
| Number used as a route-thru:                    | 95    |           |                    |         |
| Number used as Shift registers:                 | 4     |           |                    |         |
| Number of bonded IOBs:                          | 194   | 448       | 43%                |         |
| Number of BUFG/BUFGCTRLs:                       | 1     | 32        | 3%                 |         |
| Number used as BUFGs:                           | 1     |           |                    |         |
| Number used as BUFGCTRLs:                       | 0     |           |                    |         |
| Number of FIF016/RAMB16s:                       | 8     | 192       | 4%                 |         |
| Number used as FIF016s:                         | 0     |           |                    |         |
| Number used as RAMB16s:                         | 8     |           |                    |         |

Figure 18 - Space available in FPGA

# **PCB** Layout

The following figures show the top and bottom view of the main module, the top view of the daughter-card and the module composition viewed from the side.



Figure 19 – Main Module Component Side.



Figure 20 - Main Module (SMT368) Solder Side.

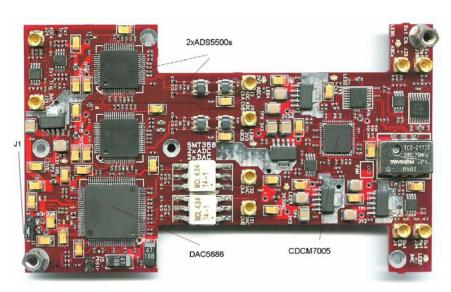



Figure 21 - Daughter Module Component Side.



Figure 22 - Daughter Module Solder Side.

# Connectors

# Description

The following table gathers all connectors on the board and describes their function.

| Connector nan<br>(silkscreen ar<br>schematics) |                           | Location on the board |
|------------------------------------------------|---------------------------|-----------------------|
| J13                                            | ADCA Analog Input         | Middle / Left         |
| J11                                            | ADCB Analog Input         | Middle / Left         |
| J32                                            | DACA Analog Output        | Middle / Right        |
| J31                                            | DACB Analog Output        | Middle / Right        |
| J30                                            | External Reference Input  | Top / Left            |
| J29                                            | External Clock Input      | Top / Left            |
| J34                                            | External Reference Output | Top / Right           |
| J4                                             | External Clock Output     | Top / Right           |
| J24                                            | External Trigger ADCs     | Bottom / Left         |
| J25                                            | External Trigger DAC      | Bottom / Left         |

# Location on the board

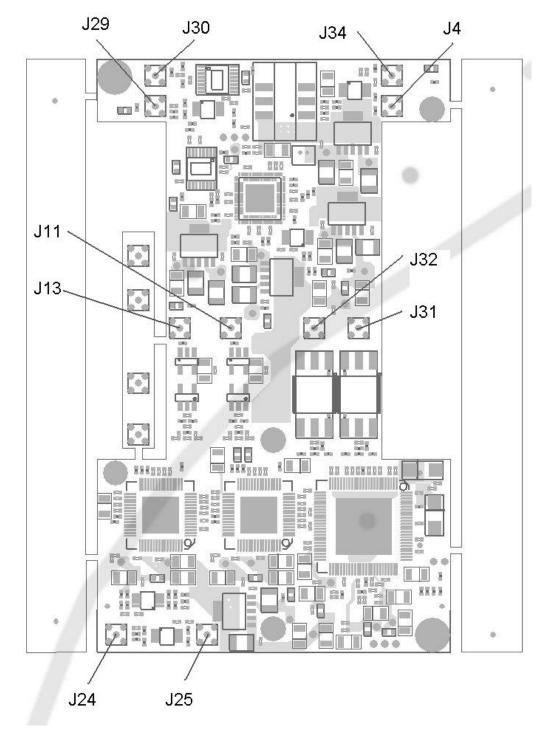



Figure 23 - Connectors Location.