Sundance Multiprocessor Technology Limited User Manual

Unit / Module Description:	1Gsps dual channel 14bits DAC
Unit / Module Number:	SMT381
Document Issue Number:	1.0
Issue Date:	06/2007
Original Author:	Jean-Philippe Arnaud

User Manual for SMT381

Sundance Multiprocessor Technology Ltd, Chiltern House, Waterside, Chesham, Bucks. HP5 1PS.

This document is the property of Sundance and may not be copied nor communicated to a third party without prior written permission. © Sundance Multiprocessor Technology Limited 2006

Certificate Number FM 55022

Revision History

Issue	Changes Made	Date	Initial s	
1.0	New document	06/2007	JPA	

Table of Contents

1		Introduction	.6
	1.1	Module Features	.6
	1.2	Possible applications	.6
2]	Related Documents	.7
	2.1	Referenced Documents	.7
	2.2	Applicable Documents	.7
3		Acronyms, Abbreviations and Definitions	.8
	3.1	Acronyms and Abbreviations	.8
	3.2	Definitions	.8
4		Functional Description	.9
	4.1	Block Diagram	.9
	4.2	Main analogue features	10
	4.3	Clock structure	10
	4.4	Analogue output	12
	4.5	SLB	14
5]	Performance	14
	5.1	Waveform Memory	14
6		Footprint	18
	6.1	Components location	18
	6.2	Test points	19
7	i	Support Packages	21
	7.1	SMT368A	21
	7	7.1.1 SMT381Control task	22
	7	7.1.2 Registers_381 task	22
	7	V.1.3 Clock_dac_381v4 task	24
	7	7.1.4 Clock_dac_381v4_div4 task	25
	7	7.1.5 DAC381 task	25
	7	7.1.6 Sine task	25
	7	7.1.7 Duplicate task	25
8]	Physical Properties	26
	8.1	Mechanical Interface	26
	8.2	Electrical Interface	26
9		Safety	27
10)	EMC	28
11	L.	Appendix	28

11.1 Description of the registers	28
11.1.1 The Reset Register (Write Add 0x000)	28
11.1.2 Temperature Registers (Read Add 0x020, 0x021, 0x028, 0x029)	28
11.1.3 DAC Clock Source Registers (Write Add 0x801)	29
11.1.4 Clock Synthesizer Setup Register (Write Add 0x800)	29
11.1.5 PLL Setup Registers (Write Add 0x802 – 0x809)	30
11.1.6 Data Source Selection (Write Add 0x80E)	30
11.1.7 DAC Setup Registers (Write Add 0x900 – 0x905)	31

Table of Figures

Figure 1: block diagram of the SMT3819
Figure 2: Clock tree of the SMT38111
Figure 3. Option 1 for the SMT381 analog output stage12
Figure 4. Option 2 for the SMT381 analog output stage13
Figure 5: Combined analogue output circuit13
Figure 6: Waveform Memory - Time View Capture – 1000Msps (VCO) – 125MHz analogue output
Figure 7: Measurements of Capture – 1000Msps (VCO) – 125MHz analogue output15
Figure 8: Waveform Memory - FFT – 1000Msps (VCO) – 125MHz analogue output – Channel A15
Figure 9: Waveform Memory - FFT – 1000Msps (VCO) – 125MHz analogue output – Channel B16
Figure 10: Waveform Memory - FFT – 600Msps (VCO) – 75MHz analogue output – ChannelA
Figure 11: Waveform Memory - FFT – 600Msps (VCO) – 75MHz analogue output – ChannelB17
Figure 12: Connector Location on <i>SMT381</i> 18
Figure 13: Test point locations on the <i>SMT381</i> 20
Figure 14: example block diagram21
Figure 15 Setup Packet Structure22
Figure 16: Packet Structure – Defined Commands:22
Figure 17: Reset Register (Write Only)28
Figure 18: Temperature Registers (Read Only)29
Figure 19: Clock Source Selection Table (Write Only)29
Figure 20: PLL Setup Registers (Write Only)
Figure 21: Data Source Selection
Figure 22: DAC Setup Registers (Write Only)

1 Introduction

The *SMT381* is a single width expansion daughter module capable of converting two external digital inputs at 1Gsps with a resolution of 14 bits. A Fujitsu dual channel DAC (<u>MB86064</u>) performs the digital to analogue conversion.

The SMT381 plugs onto a base board which provides an FPGA to interface to the DAC and control the SMT381. Base board currently available with the SMT381 are

- SMT338-VP¹,
- SMT368A.

1.1 Module Features

The main features of the *SMT381* are listed underneath:

- Dual channel DAC
- 1 GSPS conversion frequency
- 14 bit data resolution
- Custom Clock and Trigger inputs via external connectors
- Internal Waveform generator
- Standard Sundance comport and SHB interfaces for easy interconnection to Sundance products via base module.

1.2 Possible applications

The SMT381 can be used for the following applications (this non-exhaustive list should be taken as an example):

- Broadband cable modem head-end systems
- 3G Radio transceivers
- High-data-rate point-to-point radios
- Medical imaging systems
- Spectrum analyzers

¹ Note that when the SMT381 is coupled with the SMT338-VP, sampling rate of 1Gsps is only achievable when using the internal memory of the DAC. Limitations in the Virtex2pro architecture limit the frequency to 840Msps with the parallel interface of the DAC.

2 Related Documents

Sundance LVDS Bus (*SLB*) specifications Fujitsu MB86064 DAC datasheet SMT368 SMT338-VP

- 2.1 Referenced Documents
- 2.2 Applicable Documents

3 Acronyms, Abbreviations and Definitions

3.1 Acronyms and Abbreviations

3.2 Definitions

4 Functional Description

4.1 Block Diagram

The following diagram represents the architecture of the SMT381 daughter module.

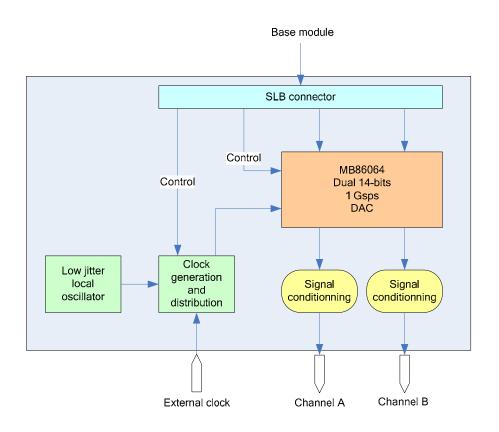


Figure 1: block diagram of the SMT381

The SMT381 is a daughter board that plugs onto a base board.

The base board sends the digital samples for the DAC and control data for the on-board clocks and the DAC via the SLB connector.

There are two DAC cores present in the MB86064. Thus two channels are available for outputs. The outputs of the DAC are differential currents, which are converted to a voltage by the analogue output stage (RF Transformer).

There are three sources for the sampling clock of the DAC

- the on-board VCO,
- the on-board Clock synthesizer,
- the external clock can be provided as an LVPECL clock or as an RF clock (two separate inputs).

The sampled data can either be supplied to the DAC cores externally via its LVDS data bus or internally from the Waveform Memory Module. The data may be routed to the DAC cores through a number of paths. The most direct path routes data straight from the LVDS input buffers to the DAC core input latches. All digital functions on the module are controlled by the FPGA of the base board.

4.2 Main analogue features

The main analogue characteristics of the *SMT381* are listed in the following table:

Analogue outputs			
Output current range	20mA		
Data Format	Analogue current		
External sampling clock inputs (The clock frequency is divided by 2 on the SMT381 for a DDR clock f the DAC)			
LVPECL Clock			
Signal format	LVPECL		
Frequency range	25MHz to 1000 MHz		
RF Clock			
Signal format	Sinus wave		
Frequency range	25MHz to 1000 MHz		
Amplitude	0dBm Typ		
External trigger inputs			
Signal format	LVPECL		
Frequency range	DC to 100 MHz		
DAC performance @ Single tone at -1dBFS, 800MSa/s,	DC to 400MHz (From DAC datasheet)		
Spurious Free Dynamic Range (SFDR) @ 20MHz	75dBc		
Spurious Free Dynamic Range (SFDR) @ 300MHz	58dBc		
Cross-talk 4 tone test, each tone at -15dBFS, centred at 276MHz	67dBc		

Table 1: main analogue features

4.3 Clock structure

There are two integrated clock generators on the module. The user can either use these clocks or provide the module with an external clock (input via MMBX connectors). The following figure shows the *SMT381* clock tree.

Figure 2: Clock tree of the SMT381

The main clock tree of the SMT381 consists of two clock sources to achieve the DAC's full range of input frequencies (DC – 500MHz). The first clock source is a MICREL clock synthesizer which has a range from 50MHz to 950MHz. This source's disadvantage however is that it has a jittery output and thus the clock is not that stable. Its advantage however is that it can attain a wide range of frequencies, especially the lower frequencies. The output clock is LVPECL.

The second clock source is a Voltage Controlled Oscillator (VCO) with a phase lock loop. This combination has a very stable output. However a limited frequency range can be attained by this combination (300MHz - 600MHz). This is achieved by taking a 600MHz -1200MHz VCO and dividing the output by 2. The output clock must also be scaled to LVPECL.

Alternatively the user can provide the module with an external LVPECL clock or an external RF clock. The user can select between any of these input clocks.

The selected clock then drives the DAC and is also distributed to the base board for data synchronization purposes. On the FPGA of the *base board* a PLL synchronizes the clock with the data being sent by using the supplied clock and looping that same clock to the DAC and back. This technique synchronizes the clock to the data is being sent out on (*base board* side) even further with the clock used in the DAC. Synchronization issues become a bigger factor as the clock frequencies get bigger.

All the clock control is done on the *base board* in firmware on the FPGA.

4.4 Analogue output

Two options are hardwired into the design. The options are shown below with a figure of each.

Option 1

+ TP101 • Output Connector

Single ended AC coupled output with Macom TP-101 transformer.

R1

Figure 3. Option 1 for the SMT381 analog output stage.

Option 2

Differential DC coupled output with + and – channels going to separate connectors

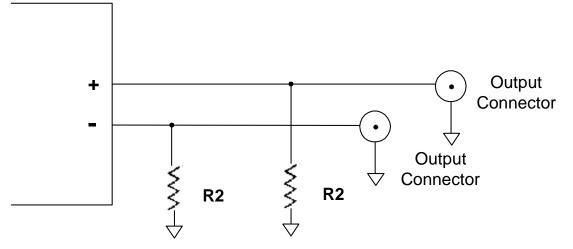


Figure 4. Option 2 for the SMT381 analog output stage.

Combined circuit

The two combined:

Figure 5: Combined analogue output circuit

Depending on whether an AC or DC coupled version is ordered the board will be assembled accordingly to either give the AC or DC coupled circuit shown above.

For more information consult the Fujitsu (MB86064) DAC datasheet.

4.5 SLB

The SMT381 connects to a base module (SMT338-VP, SMT398-VP, SMT368) via the SLB connector. Refer to the SLB specification document for more information.

5 Performance

5.1 Waveform Memory

In the following captures the waveform memory is set up for a cyclic run of 8 samples per channel and a sinus wave programmed into the memory. One complete cycle of the wave is loaded into the memory, resulting in a waveform being generated at $1/8^{\text{th}}$ of the sample frequency. The DAC sample frequency is double that of the clock supplied to the DAC. So for eg if a 500MHz clock is given to the DAC with the waveform memory initialized as described above the DAC sample frequency will be 1000MHz and the generated wave will be 125MHz (1000MHz divided by 8).

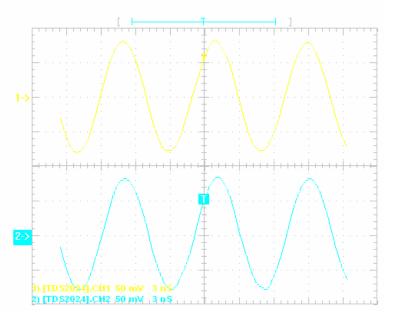


Figure 6: Waveform Memory - Time View Capture - 1000Msps (VCO) - 125MHz analogue output

	V [TDS202	4].Data.Waveforms.CH 1	V [TDS202	24].Data.Waveforms.CH 2
Measurement Method	Automatic		A	utomatic
Measurement	Value Units		Value	Units
Frequency	125.31M	Hz	124.07M	Hz
Pos. Pulse Width	4.0100n	S	4.0700n	S
Neg. Pulse Width	3.9700n	S	3.9900n	S
Rise Time	2.3460n	S	2.2220n	S
Fall Time	2.3260n	S	2.4920n	S
Pos. Duty Cycle	502.51m	%	504.96m	%
Neg. Duty Cycle	497.49m	%	495.04m	%
Pos. Overshoot	25.974m	%	25.316m	%
Neg. Overshoot	12.987m	%	0.0000	%
Peak to Peak	160.00m	V	162.00m	V
Amplitude	154.00m	V	158.00m	V
High	78.000m	V	80.000m	V
Low	-76.000m	V	-78.000m	V
Maximum	82.000m	V	84.000m	V
Minimum	-78.000m	V	-78.000m	V
Mean	-1.4406m	V	124.05u	V
Cycle Mean	508.77u	V	2.6650m	V
RMS	55.086m	V	56.349m	V
BurstWidth	19.990n	S	20.070n	S
Period	7.9800n	S	8.0600n	S
Energy	75.831p		79.348p	
CEnergy	24.371p		25.811p	
ACRMS	55.067m	V	56.349m	V
CRMS	55.264m	V	56.589m	V

Figure 7: Measurements of Capture - 1000Msps (VCO) - 125MHz analogue output

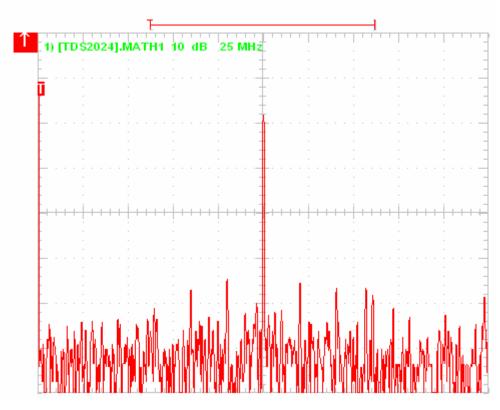


Figure 8: Waveform Memory - FFT – 1000Msps (VCO) – 125MHz analogue output – Channel A

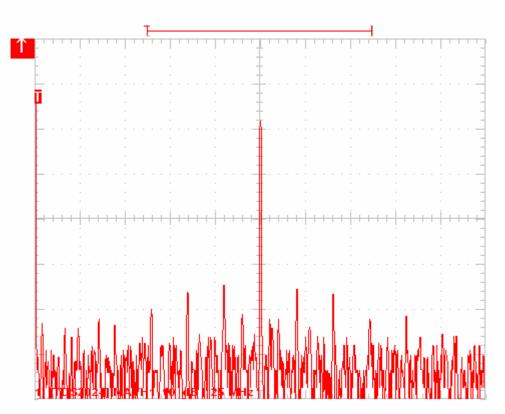


Figure 9: Waveform Memory - FFT – 1000Msps (VCO) – 125MHz analogue output – Channel B



Figure 10: Waveform Memory - FFT – 600Msps (VCO) – 75MHz analogue output – ChannelA

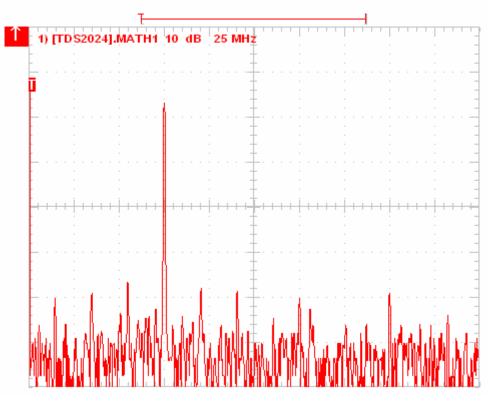


Figure 11: Waveform Memory - FFT – 600Msps (VCO) – 75MHz analogue output – ChannelB

6 Footprint

6.1 Components location

The following diagram indicates the location of all the important connectors and components on the SMT381 (Rev 1) PCB.

Figure 12: Connector Location on SMT381

Diagram Ref	Pcb RefDes	Description	Notes
А	J11	External Trigger B Channel	LVPECL Signal. Positive on inside of connector. Negative on outside of connector.
В	J10	External Trigger A Channel	LVPECL Signal. Positive on inside of connector. Negative on outside of connector.
С	J13	DAC Output B Channel (neg)	Analog Signal. Signal on inside of connector. GND on outside of connector. For DC Coupling only (differential signal, split over both connectors).
D	J3	DAC Output B Channel (pos)	Analog Signal. Signal on inside of connector. GND on outside of connector. For AC Coupling (single ended), and pos side of DC coupling (differential)
Е	J12	DAC Output A Channel (neg)	Analog Signal. Signal on inside of connector. GND on outside of connector. For DC Coupling only (differential signal, split over both connectors).
F	J2	DAC Output A Channel (pos)	Analog Signal. Signal on inside of connector. GND on outside of connector. For AC Coupling (single ended), and pos side of DC coupling (differential).
G	J1	DAC Test Clock Output	LVPECL output test clock. Copy of clock going to DAC. Postive on inside of connector, negative on outside of

			connector. Used for verification of the clock going to the DAC.
Н	J5 External RF clock input		External Analog input Clock to DAC. Clock on inside of connector, DGND on the outside of connector.
Ι	J4	External ECL clock input	External ECL input Clock to DAC. Positive on inside of connector, negative on the outside of connector.

Table 2: Table of Connector Locations on SMT381

Diagram Ref	Pcb RefDes	Description	Notes
J	J8	FPGA / MSP JTAG Connector	FPGA / MSP430 on SMT338-VP JTAG Chain. Only routed down to SMT338-VP. Use for easy access without having to remove the SMT381.
К	U9	Fujitsu DAC	DAC Requires heat-sink with air-flow cooling in a system setup.
L	TRANS2	M/A Com TP101 Transformer	By default the SMT381 analog input is AC coupled through a twisted pair balum transformer (differential to single ended). It is possible to change this configuration to DC coupled by taking out the transformer and inserting some resistors on the board.
М	TRANS1	M/A Com TP101 Transformer	By default the SMT381 analog input is AC coupled through a twisted pair balum transformer (differential to single ended). It is possible to change this configuration to DC coupled by taking out the transformer and inserting some resistors on the board.
Ν	VCO1	UMC 600 – 1200MHz VCO	System Clock for the DAC. VCO Requires heat-sink with air-flow cooling in a system setup.
0	U31	Clock Synthesizer 50 – 950MHz	Test Clock for DAC. The range of this clock is wider than the operating range of the DAC.

 Table 3: Table of Component Locations on SMT381

6.2 Test points

The following diagram shows all the Test points present on the board.

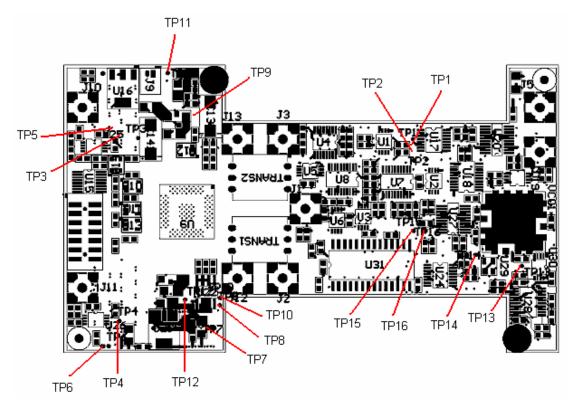


Figure 13: Test point locations on the SMT381

- TP1 External Clock positive
- TP2 External Clock negative
- TP3 Daughter Card Connector test point
- TP4 Daughter Card Connector test point
- TP5 Daughter Card Connector test point
- TP6 Daughter Card Connector test point
- TP7 1V8 test point
- TP8 3V3_IN test point
- TP9 ECL 5V test point
- TP10 3V3 test point
- TP11 ECL -5V2 test point
- TP12 Analog 3V3
- TP13 VCO 12V
- TP14 VCO 5V
- TP15 VCO Clock positive
- TP16 VCO Clock negative

7 Support Packages

The SMT381 can be coupled with several base modules. Example applications are provided for each base module.

The examples are developed with 3L Diamond DSP and FPGA design tool.

Source code for the software and firmware tasks is provided. The tasks can be re-used by users to implement their own applications.

The following sections describe the examples provided for each one of the base boards available with the SMT381.

7.1 SMT368A

The FPGA uses a Look-Up-Table to generate a sine-wave that is then played out by the DAC. The sampling frequency and other parameters of the SMT381 are controlled via software.

The example uses a DSP module to run the software tasks. The base module is a SMT368A.

In the example, the FPGA sends the samples for a sine-wave to the DAC. The DSP is used to configure and control the SMT381 and its base module.

The diagram shows the tasks used in the example and their interconnection.

The task in yellow runs on the DSP of the SMT395; the tasks in blue run on the FPGA of the base module.

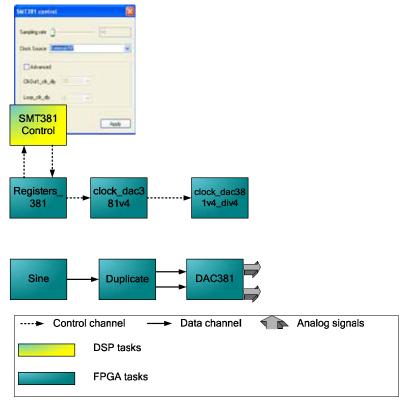


Figure 14: example block diagram

The samples generated by task **sine** are duplicated by task **duplicate**. Each channel is sent to task **DAC381** which sends the samples to the DAC.

Task **registers_381** implements the registers used to control the firmware and the SMT381 daughter board. Task **SMT381Control** is a software task which configures the registers to control the SMT381 and the application. Task **clock_dac_381v4** manages the clocks used to generate the samples in the FPGA and to send them to the DAC.

More details about each task are provided in the following section.

7.1.1 SMT381Control task

This software task allows controlling the SMT381 daughter module.

The task uses a GUI running on the host to select the sampling frequency of the DAC, the source of the clock and other advanced parameters.

7.1.2 Registers_381 task

This task implements the registers used to control the SMT381 daughter board and the firmware.

The task has 1 input channel and 2 output channels.

Input 0	0 Used to read or write the registers.	
Output 0 Carries the content of the register that is been read.		
Output 1 Carries information used to control the firmware.		

7.1.2.1 Protocol

The registers are accessed by writing to input channel 0. The data written to input channel 0 follow the following protocol to read and write the registers.

31 28	2724	23 20	1916	15 12	11 8	74	30
Command		Address			Dat	а	

Figure 15 Setup Packet Structure

The commands are the following:

Command Value	Command Description
0x0	Reserved
0x1	Write the data in the register selected by the address
0x2	Read the data stored in the register selected by the address. The data is sent on the output channel 0.
Others	Reserved

Figure 16: Packet Structure - Defined Commands:

Example 1:

Sending 0x1001FFFF to the task will Write, to Address 0x001, Data FFFF

Example 2:

Sending 0x2801xxxx to the task will request a **Read**, from Address 0x801. The data will be written to the output channel 0.

7.1.2.2 Registers addresses

The following figure shows the memory map for registers. Detailed description of the registers is provided in appendix.

Write Side			Read Side			
Address	Register		Address	Register		
0x000	Reset Register		0x000	Reserved		
0x001	Reserved		0x001	Reserved		
0x002	Reserved		0x002	Reserved		
0x003	Reserved		0x003	Reserved		
0x004	Reserved		0x004	Reserved		
0x005	Smt381DacData(LSB)		0x005	Reserved		
0x006	Smt381DacData		0x006	Reserved		
0x007	Smt381DacData		0x007	Reserved		
0x008	Smt381DacData(MSB)		0x008	Reserved		
0x009	Smt381DacSetup		0x009	Reserved		
0x00A	Smt381DacAddress		0x00A	Reserved		
0x00B	Smt381Pll_IfR_Reg1		0x00B	Reserved		
0x00C	Smt381Pll_IfR_Reg2		0x00C	Reserved		
0x00D	Smt381Pll_IfN_Reg1		0x00D	Reserved		
0x00E	Smt381Pll_IfN_Reg2		0x00E	Reserved		
0x00F	Smt381Pll_RfR_Reg1		0x00F	Reserved		
0x010	Smt381Pll_RfR_Reg2		0x010	Reserved		
0x011	Smt381Pll_RfN_Reg1		0x011	Reserved		
0x012	Smt381Pll_RfN_Reg2 *		0x012	Reserved		
0x013	Smt381AdjClkCntrlReg *		0x013	Reserved		
0x014	Smt381ClockSourceSelect		0x014	Reserved		
0x015	Reserved		0x015	Reserved		
0x016	Reserved		0x016	Reserved		
0x017	Reserved		0x017	Reserved		
0x018	Reserved		0x018	Reserved		
0x019	Reserved		0x019	Reserved		
0x01A	Reserved		0x01A	Reserved		
0x01B	Reserved		0x01B	Reserved		
0x01C	Reserved		0x01C	Reserved		

0x01D	Reserved	0x01D	Reserved
0x01E	Reserved	0x01E	Reserved
0x01F	Reserved	0x01F	Reserved
0x020	Reserved	0x020	Smt338AirTempReg
0x021	Reserved	0x021	Smt338DiodeTempReg
0x022	Reserved	0x022	Reserved
0x023	Reserved	0x023	Reserved
0x024	Reserved	0x024	Reserved
0x025	Reserved	0x025	Reserved
0x026	Reserved	0x026	Reserved
0x027	Reserved	0x027	Reserved
0x028	Reserved	0x028	DaughterCardAirTempReg
0x029	Reserved	0x029	DaughterCardDiodeTempReg
	DAC Module Specific		DAC Module Specific
0x800	Smt381AdjClkCntrlReg *	0x800	Reserved
0x801	Smt381ClockSourceSelect	0x801	Reserved
0x802	Smt381Pll_IfR_Reg1	0x802	Reserved
0x803	Smt381Pll_IfR_Reg2	0x803	Reserved
0x804	Smt381Pll_IfN_Reg1	0x804	Reserved
0x805	Smt381Pll_IfN_Reg2	0x805	Reserved
0x806	Smt381Pll_RfR_Reg1	0x806	Reserved
0x807	Smt381Pll_RfR_Reg2	0x807	Reserved
0x808	Smt381Pll_RfN_Reg1	0x808	Reserved
0x809	Smt381Pll_RfN_Reg2 *	0x809	Reserved
0x80A	Reserved	0x80A	Reserved
0x80B	Reserved	0x80B	Reserved
0x80C	Reserved	0x80C	Reserved
0x80D	Reserved	0x80D	Reserved
0x80E	Data Source Selection	0x80E	Reserved
0x80F	Reserved	0x80F	Reserved
0x900	Smt381SetupData	0x900	Reserved
0x901	Smt381DacAddress	0x901	Reserved

 Table 4: registers memory map

7.1.3 Clock_dac_381v4 task

This task generates the clock that is used to send the samples to the DAC. It implements a Delay Locked Loop.

The task has 1 input channel and 1 output channel.

Input 0	Used to reset the task.			
Output 0	Bit 0: the clock used to send data to the DAC.			
	Bit 1: the clock used to send data to the DAC divided by two.			
	Bit 2: the clock used to send data to the DAC divided by four.			
	Bit 3: the clock used to send data to the DAC divided by eight.			
	Bit 4: the "locked" signal of the DCM used in this task.			

The Diamond clock domain generated by this task should be used to clock task "DAC381".

7.1.4 Clock_dac_381v4_div4 task

This task generates a Diamond clock domain running at one eighth the sampling frequency of the DAC. It receives the clock from its input channel which should be connected to task "clock_dac_381v4".

7.1.5 DAC381 task

This task interfaces to the DAC. It receives the samples for the DAC on its input channels and sends them to the LVDS interface of the DAC.

This task interfaces to the two DDR 14-bits LVDS ports of the DAC.

It runs at half the sampling frequency of the DAC.

Input 0	Samples for channel A.	
Input 1	Samples for channel B.	
Input 2	Bit 0: reset the task when '1'.	

Input channels 0 and 1 carry two samples at a time on the 32 lower bits of their data bus.

Bits 15 to 0: first sample

Bits 31 to 16: second sample

7.1.6 Sine task

This task generates the samples of a sine-wave.

7.1.7 Duplicate task

This task duplicates on two output channels the data coming on its input channel.

8 Physical Properties

8.1 Mechanical Interface

The depth of the SMT381 combined with a base board is about 21 mm. If the SMT381 is mated with a PCI carrier two PCI slots will be required for the Module + Carrier combination. If the SMT381 is mated with a cPCI carrier the Module + Carrier will require two cPCI slots.

The following table lists the dimensions for the *SMT381* and the *SMT381* coupled with a *SMT338-VP* (*SMT381-VP*).

Description	Value		
	Width: 63.5 mm		
Module Dimensions (Only <i>SMT381</i>)	Length: 106.68 mm		
51411001)	Height: 21mm (Maximum)		
	Width: 63.5 mm		
Module Dimensions (SMT381-VP)	Length: 106.68 mm		
	Height: 21mm (Maximum)		
	<i>SMT381</i> : 36.71grams		
Weight	<i>SMT381-VP</i> : 94.30 grams		
	<i>SMT381-VP</i> (including fittings) : 97.40 grams		

Table 5: SMT381-VP Dimensions

8.2 Electrical Interface

The following voltages are required by the *SMT381* and must be supplied over the daughter card power connector.

Voltage	Current Required
D+3V3_IN	2.0 A
D+5V0_IN	500 mA
D+12V0_IN	250 mA
D-12V0_IN	250 mA
DGND	

Table 6: SMT381 Power Supply Voltages

The following table lists the internal *SMT381* voltages that are derived from the voltages that are provided over the daughter card power connector.

Voltage	Description
D+3V3	Derived from D+3V3_IN
D+1V8	Derived from D+3V3 on SMT381
A+3V3	Derived from D+3V3_IN
VCO+5V0	Derived from D+5V0_IN
VCO+12V0	Derived from D+12V0_IN
ECL-5V2	Derived from D-12V0_IN
AGND	Derived from DGND

 Table 7: Internal Power Supply Voltages

9 Safety

This module presents no hazard to the user when in normal use.

10 EMC

This module is designed to operate from within an enclosed host system, which is build to provide EMC shielding. Operation within the EU EMC guidelines is not guaranteed unless it is installed within an adequate host system.

This module is protected from damage by fast voltage transients originating from outside the host system which may be introduced through the output cables.

Short circuiting any output to ground does not cause the host PC system to lock up or reboot.

11 Appendix

11.1 Description of the registers

11.1.1 The Reset Register (Write Add 0x000)

The reset register is used to reset the firmware and some of the components of the SMT381.

Writing a '1' will put the selected block in the reset state. Writing a '0' will release the reset.

31 28	27 24	23 20	1916	15 9	80
Command	Address		Data MSB	Data LSB	
1	0x000		Reserved	Reset command	

Figure 17: Reset Register (Write Only)

Reset command:

Bit 0: firmware reset.

Bit 1: DAC Reset.

11.1.2 Temperature Registers (Read Add 0x020, 0x021, 0x028, 0x029)

There are four temperature registers. Each register is 16 bits long. When the bit value of the register is converted to a decimal number, that number is the temperature in degrees Celsius.

Read Request Format:

31 28	2724	2320	1916	15 12	11 8	74	30
Command	Address			Data MSB		Data LSB	
0x2	0x020 (Smt338AirTempReg) (1)		XX		х	х	

0x2	0x021 (Smt338DiodeTempReg) (2)	XX	XX
0x2	0x028 (DaughterCardAirTempReg) (3)	xx	xx
0x2	0x029 (DaughterCardDiodeTempReg) (4)	xx	XX

(1) - SMT338-VP Air Temperature on Top of PCB

(2) - SMT338-VP FPGA temperature on Bottom of PCB

(3) - SMT381 Air Temperature on Bottom of PCB

(4) – SMT381 ADC temperature on Top of PCB

Read Response Format:

31 28	27 24	2320	1916	15 12	11 8	74	30
Command	Address			Data MSB Data LSB		LSB	
0x2	0x020			SMT338-VP Air Temperature			perature
0x2		0x021		SMT338-VP Diode Temperature			nperature
0x2		0x028		SMT381 Air Temperature		perature	
0x2		0x029		SMT381 Diode Temperature			nperature

Figure 18: Temperature Registers (Read Only)

11.1.3 DAC Clock Source Registers (Write Add 0x801)

The A and B channels of the DAC can receive a clock from the on-board VCO, the onboard clock synthesizer, or from an external clock (RF or ECL). The following table shows the different combinations for setting up the *SMT381* clock tree.

Register Value	A Channel Clock Source	B Channel Clock Source		
0x0000	On-board VCO	On-board VCO		
0x0001	On-board Clock Synthesizer	On-board Clock Synthesizer		
0x0002	External ECL Clock	External ECL Clock		
0x0003	External ECL Clock	External ECL Clock		
0x0004	On-board VCO	On-board VCO		
0x0005	On-board Clock Synthesizer	On-board Clock Synthesizer		
0x0006	External RF Clock	External RF Clock		
0x0007	External RF Clock	External RF Clock		

Figure 19: Clock Source Selection Table (Write Only)

11.1.4 Clock Synthesizer Setup Register (Write Add 0x800)

This register sets up the frequency of the clock synthesizer on the *SMT381*. Any write operation to this register will trigger the clock synthesizer interface control logic to initialize the clock synthesizer with its new value.

For a detailed description of the configurable bits in the Clock Synthesizer register please refer to the "Clock Synthesizer" section under "Firmware Building Blocks" at the end of this document.

11.1.5 PLL Setup Registers (Write Add 0x802 - 0x809)

These registers set up the frequency of the PLL circuit on the *SMT381*. There are two sets of registers – one set for setting up the IF side of the PLL, and the other set for setting up the RF side of the PLL. The IF side is unconnected, while the RF side is connected to a 600 - 1200 MHz VCO circuit which is divided by two before entering the DAC at a frequency of 300 - 600MHz. All registers must be initialized, and only when writing to the final register will both the IF and RF side be configured to their new values.

31 28	27 24	23 20	1916	15 12	11 8	74	30
Command	Address		Data MSB		Data LSB		
0x1	0x802		Not Used		Not Used		
0x1	0x803		Not Used		Not Used		
0x1	0x804		Not Used		Not Used		
0x1	0x805		Not Used		Not Used		
0x1	0x806		Smt381Pll_RfR_Reg1		Smt381Pll_RfR_Reg1		
0x1	0x807		Smt381Pll_RfR_Reg2		Smt381Pll_RfR_Reg2		
0x1	0x808		Smt381Pll_RfN_Reg1		Smt381Pll_RfN_Reg1		
0x1	0x809		Smt381Pll_RfN_Reg2		Smt381Pll_RfN_Reg2		

Figure 20: PLL Setup Registers (Write Only)

For a detailed description of the configurable bits in the PLL registers please refer to the "PLL Configuration" section under "Firmware Building Blocks" at the end of this document.

11.1.6 Data Source Selection (Write Add 0x80E)

0							
31 28	2724	2320	1916	15 12	11 8	74	30
Command	Address		Data MSB		Data LSB		
0x1	0x80E		Not Used		64 : Channel B selection		
						20 : Channel	A selection

This register selects between four data sources.

What follows applies for Channel A and B:

Register Value	Channel Data Source			
0x0	Look Up Table - A Fixed sine period is stored into a block of ROM as 32 samples.			
0x5	SHB to DPRAM – In this mode, 32 samples per channel are loaded via SHB to be played back continuously and sent to the DAC.			
0x6	SHB to DAC – Samples coming the SHBs are routed directly to the DAC. A 256-word (32 bits) FIFO connects the SHB interface to the DAC.			
0x7	RSL to DAC – Samples coming out of the			

RSL interface are routed to the DAC. This is the fastest way. A 64-word (64 bits each)					
FIFO converts the data into the right format.					

Figure 21: Data Source Selection

When using, the Memory available inside the DAC, any source can be selected. It will not affect the DAC. It is recommended to keep the selected source into reset.

11.1.7 DAC Setup Registers (Write Add 0x900 - 0x905)

These registers configure the internal functionality of the DAC on the *SMT381*. There are six registers – 4 data registers an address register and setup register. The address and setup registers must be set up before the data registers. Once the data registers are written to the data, address and setup information contained in all the registers will be transferred to the DAC over a serial interface.

31 28	27 24	23 20	1916	15 12	11 8	74	30	
Command	Address		Data MSB		Data LSB			
0x1	0x900		Smt381SetupData		Smt381SetupData			
0x1	0x901		Smt381DacAddress		Smt381DacAddress			
0x1	0x902		Smt381DacData(LSB)		Smt381DacData(LSB)			
0x1		0x903	0x903		Smt381DacData		Smt381DacData	
0x1		0x904		Smt381DacData Smt381		Smt381DacDa	ata	
0x1		0x905		Smt381DacDat	t381DacData(MSB) Smt381DacData(MSB)		ata(MSB)	

Figure 22: DAC Setup Registers (Write Only)