

SMT384

User Manual

Certificate Number FM 55022

Revision History

Date	Comments	Engineer	Version
02/05/06	Original Version PhSR		1.0
15/06/06	6 Added DC-coupling input stage diagram PhSR 1		1.1
26/01/07 Connector description and location added PhSR 1		1.2	
25/05/07	O7 FPGA Registers are read-back from FPGA. PhSR		1.3
25/11/09	Clarification AC/DC version	PhSR	1.4

Table of Contents

Revision History	2
Table of Contents	3
Table of Figures	5
Physical Properties	7
Precautions	8
Introduction	9
Overview	9
Module features	9
Possible applications	10
Related Documents	10
Functional Description	11
Block Diagram	11
Module Description	11
ADC Channels	13
ADC Main Characteristics.	13
ADC Input Stage (standard SMT384).	14
Clock Structure	15
Power Supply and Reset Structure	17
Green LEDs	17
Mezzanine module Interface	17
Control Register Settings	25
Control Packet Structure	25
Reading and Writing Registers	25
Метогу Мар	
Register Descriptions	27
Reset Register – 0x0	27
Test Register – 0x1.	
ADCA Register 0 – 0x2.	
ADCA Register 1 – 0x3.	
ADCA Register 2 – 0x4.	29
ADCB Register 0 – 0x5.	29

ADCB Register 1 – 0x6.	. 30
ADCB Register 2 – 0x7.	
ADCC Register 0 – 0x8	
ADCC Register 1 – 0x9.	
ADCC Register 2 – 0xA	. 31
ADCD Register 0 – 0xB	. 32
ADCD Register 1 – 0xC.	. 32
ADCD Register 2 – 0xD.	. 32
Main Module Temperature – 0x18	. 33
Main Module FPGA Temperature – 0x19	. 33
Mezzanine Module Temperature – 0x1A	. 33
Mezzanine Module Converters Temperature – 0x1B	. 33
Miscellaneous Register – 0x1C	. 33
Updates, Read-back and Firmware Version Registers – 0x1D	. 35
Decimator Register – 0x1E.	. 35
AD9510 Register 0 – 0x30.	. 36
AD9510 Register 1 – 0x31	. 36
AD9510 Register 2 – 0x32	. 36
AD9510 Register 3 – 0x33	. 36
AD9510 Register 4 – 0x34	. 37
AD9510 Register 5 – 0x35	. 37
AD9510 Register 6 – 0x36	. 37
AD9510 Register 7 – 0x37	. 37
AD9510 Register 8 – 0x38	. 38
AD9510 Register 9 – 0x39	. 38
AD9510 Register A – 0x3A.	. 38
AD9510 Register 0 – 0x3B	. 38
AD9510 Register 0 – 0x3C.	. 39
AD9510 Register D – 0x3D	. 39
AD9510 Register E – 0x3E.	. 39
AD9510 Register F – 0x3F	. 39
AD9510 Register 10 – 0x40.	. 40
AD9510 Register 11 – 0x41.	. 40

AD9510 Register 12 – 0x42	40
AD9510 Register 13 – 0x43	40
AD9510 Register 14 – 0x44	41
AD9510 Register 15 – 0x45	41
AD9510 Register 16 – 0x46	41
AD9510 Register 17 – 0x47	41
AD9510 Register 18 – 0x48	
AD9510 Register 19 – 0x49	42
PCB and Firmware Version Registers	42
FPGA Design	43
Serial Interfaces	43
Block of registers	44
Space available in FPGA	
PCB Layout	
Connectors	
Description	
Location on the board	47

Table of Figures

Figure 1 – Fan across PCI	8
Figure 2 - Block Diagram	11
Figure 3 - Main features.	14
Figure 4 - ADC Input Stage (AC coupling).	14
Figure 5 - ADC Input Stage (DC Coupling)	15
Figure 6 - Clock Structure	15
Figure 7 - External Clock	16
Figure 8 - Clock Architecture Main Characteristics	17
Figure 9 – Mezzanine module Connector Interface (SLB data and power of	,
Figure 10 – Mezzanine Module Interface Power Connector and Pinout	20
Figure 11 – Daughter Module Interface: Data Signals Connector and PA).	•

Figure 12 – Daughter Module Interface: Data Signals Connector and F B).	•
Figure 13 – Daughter Module Interface: Data Signals Connector and FC).	•
Figure 14 – Setup Packet Structure.	25
Figure 15 – Control Register Read Sequence.	25
Figure 16 – Register Memory Map	27
Figure 17 - Firmware Block Diagram	43
Figure 18 – Main Module Component Side	44
Figure 19 - Main Module (SMT368) Solder Side	45
Figure 20 - Daughter Module Component Side	45
Figure 21 - Daughter Module Solder Side	46
Figure 22 - Connectors Location.	47

Physical Properties

Dimensions	63.5mm x 106.7mm x 18mm	
Weight	35 grams	
Supply Voltages		
Supply Current	+12V	
	+5V	
	+3.3V	
	-5V	
	-12V	
MTBF		

Precautions

In order to guarantee that Sundance's boards function correctly and to protect the module from damage, the following precautions should be taken:

- They are static sensitive products and should be handled accordingly. Always place the modules in a static protective bag during storage and transition.

- When operated in a closed environment make sure that the heat generated by the system is extracted e.g. a fan extracting heat or blowing cool air. Sundance recommends and uses PAPST 12-Volt fans (Series 8300) producing an air flow of 54 cubic meters per hour (equivalent to 31.8 CFM). Fans are placed so they blow across the PCI bus as show on the following picture:

Figure 1 – Fan across PCI.

Introduction

Overview

The *SMT384* is a single width expansion TIM that plugs onto an <u>SLB</u> base module (for instance <u>SMT368</u>, <u>SMT338-VP</u> or <u>SMT398-VP</u>) and incorporates 4 <u>Texas</u> <u>Instrument</u> Analog-to-Digital Converters (<u>ADS5500</u>). The *SMT384* implements a comprehensive clock circuitry based on a <u>AD9510</u> chip that allows synchronisation among the converters and cascading modules for multiple receiver systems as well as the use of an external reference clock. It provides a complete conversion solution and stands as a platform that can be part of a receive base station.

ADCs are 14-bit and can sample at up to 125 MHz. All converters are 3.3-Volt. As a standard, the ADCs are all AC-coupled (RF Transformers), but can also be optionally DC-coupled (TI opamp <u>THS4509</u>).

The <u>Xilinx FPGA</u> on the base module is responsible for handling data or control commands coming from the TI converters, **C**omports (<u>TIM-40 standard</u>), **S**undance **H**igh-speed **B**us (<u>SHB</u>). These interfaces are compatible with a wide range of Sundance's modules.

Converter configuration, sampling and transferring modes are set via internal control registers stored inside the FPGA and accessible via Comport.

Module features

The main features of the *SMT384* are listed below:

- Quad 14-bit 125MSPS ADC (ADS5500),
- On-board low-jitter clock generation (AD9510),

• One external clocks, two external triggers and one reference clock via <u>MMCX</u> connector,

- One <u>SLB</u> connector to link *SMT384* and the base SLB module,
- Synchronisation signals,
- All Analogue inputs to be connected to 50-Ohm sources/loads.
- Temperature sensors.

Possible applications

The *SMT384* can be used for the following application (this non-exhaustive list should be taken as an example):

- High Intermediate-Frequency (IF) sampling architecture,
- Cellular base station such as CDMA and TDMA,
- Baseband I&Q systems,
- Wireless communication systems,
- Communication instrumentation,
- ...

Related Documents

ADS5500 Datasheet - Texas Instrument:

http://focus.ti.com/docs/prod/folders/print/ads5500.html

AD9510 Datasheet – Analog Devices:

http://www.analog.com/en/prod/0,2877,AD9510,00.html

Sundance High-speed Bus (SHB) specifications – Sundance.

<u>ftp://ftp2.sundance.com/Pub/documentation/pdf-</u> files/SHB Technical Specification.pdf

Sundance LVDS Bus (SLB) specifications – Sundance.

http://www.sundance.com/docs/SLB%20-%20Technical%20Specifications.pdf

TIM specifications.

ftp://ftp2.sundance.com/Pub/documentation/pdf-files/tim spec v1.01.pdf

MMCX Connectors – Hubert Suhner.

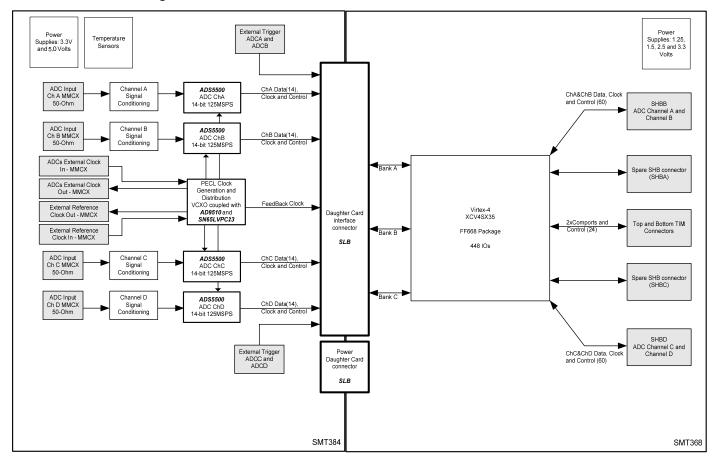
MMCX Connectors

Surface Mount MMCX connector

Sundance Multiprocessor Technology Ltd.

<u>SMT368</u>

<u>SMT338-VP</u>


<u>SMT398-VP</u>

Functional Description

In this part, we will see the general block diagram and some comments on some the *SMT384* entities.

Block Diagram

The following diagram describes the architecture of the SMT384, coupled – as an example – with an SMT368 to show how mezzanine and base modules are connected together:

Module Description

The module is built around four TI ADS5500 14-bit sampling analog-to-digital.

<u>ADCs</u>: Analog data enters the module via four MMCX connectors, one for each channel. Both signals are then conditioned (AC coupling as standard via RF transformers; DC optional via Texas Instrument amplifier THS4509) before being

digitized. ADCs get their own sampling clock, which can be either on-board generated or from an external reference or an external clock, common to all ADCs (MMCX connector). Digital samples travel to the FPGA on the base module via the inter-module connector ($\underline{SLB} - \mathbf{S}$ undance LVDS **B**us, used in this case as 'single-ended').

<u>Clock generator and distribution</u>: All samplings clocks are generated by the same chip. It allows having them all synchronized to a single reference clock. The on-board clock uses the VCXO locked on an on-board 10MHz reference. The reference also can be external, in that case the VCXO is still used. In the case of an external clock, the VCXO is no longer used as the AD9510 then acts as a clock multiplexer. In all cases, all sampling clocks are synchronized to the same clock source.

<u>Multi-module Synchronization</u>: *SMT384s* can be cascaded and still be synchronized as either the external reference or the external clock can be passed the next module in the chain. The external reference goes through a 0-delay buffer and is then output. Please note that symchronisation is in frequency and not in phase.

<u>Inter-module Connector</u>: it is made of a power (33 pins) and data connectors (120 pins). It is called **S**undance LVDS **B**us. Please refer to <u>the SLB specifications</u> for more details. In the case of the *SMT384*, the SLB is used as 'single-ended'.

A global reset signal is mapped to the FPGA from the bottom TIM connector.

<u>External Clock signals</u>, used to generate Sampling clocks. There is one external clock, common to all four ADCs. When used, the AD9510 is used as a clock multiplexer. Also available, an external reference clock that can be passed to an other *SMT384* (cascaded modules) module with '0-delay'.

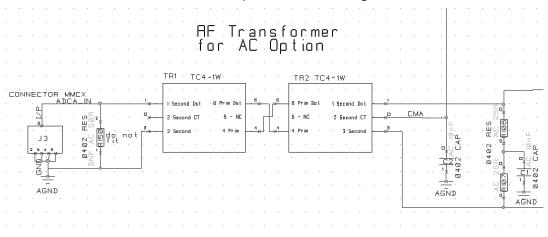
<u>External Trigger</u>: passed directly to the base module. There are two, one for each pair of ADCs (Channel A & B and Channel C & D).

Temperature Sensor: available for constant monitoring.

ADC Channels.

ADC Main Characteristics.

The main characteristics of the SMT384 ADCs are gathered into the following table.


Analogue Inputs			
	AC coupled option. 2.4 Vp-p (11.5 dbm – 50 Ohm) Full scale - AC coupled via RF transformer.		
Input voltage range	DC coupled option . 1.15 Vp-p (Gain amplifier 6dB) centered around 0. DC coupled via amplifier. Gain can be adjusted to a required input amplitude centered around 0. Minimm gain 6dBs, which should allow input swing +/-0.575V as full scale.		
Impedance	AC Coupled option. ADC single-ended inputs are to be connected to an AC $50-\Omega$ source. Source impedance matching implemented between RF transformers and ADC.		
	DC Coupled option . Impedance matching done at the connector. To be connected to a Dc $50-\Omega$ source.		
Bandwidth	ADC bandwidth: 750 MHz.		
External	Reference Input		
Input Voltage Level	0.5 - 3.3 Volts peak-to-peak (AC-coupled)		
Input Impedance	50-Ohm (Termination implemented at the connector)		
Frequency Range	0 – 100 MHz.		
External F	teference Output		
Output Voltage Level	1.6 Volts peak-to-peak (AC-coupled)		
Output Impedance	50-Ohm (Termination implemented at the connector)		
External Sar	External Sampling Clock Input		
Input Voltage Level	0.5 – 3.3 Volts peak-to-peak (AC-coupled)		
Input Format	Single-ended or differential on option (3.3V LVPECL).		
Frequency range	10-125 MHz		
External	Trigger Inputs		
Input Voltage Level	1.5-3.3 Volts peak-to-peak.		
Format	DC-coupled and Single-ended (Termination implemented at the connector). Differential		

	on option (3.3 V PECL).	
Impedance	50-Ohm.	
Frequency range	62.5 MHz maximum	
ADCs Output		
Output Data Width	14-Bits	
	2's Complement or offset binary	
Data Format	(Changeable via control register)	
SFDR	82dBs maximum (manufacturer)	
SNR	70dBs maximum (manufacturer)	
Minimum Sampling Clock	10 MHz (ADC DLL off)	
Maximum Sampling Frequency	125 MHz (ADC DLL on)	

Figure 3 - Main features.

ADC Input Stage (standard SMT384).

Each ADC Analogue input is AC-coupled via and RF transformer. Both sides of the transformers are balanced so the input is 50-Ohm single-ended.

Figure 4 - ADC Input Stage (AC coupling).

The SMT384 can also receive an DC-coupling input stage on request as shown below :

It is based around a Texas Instrument amplifier (<u>THS4509</u>), which gain is set to 6 dBs and is to match a 50-Ohm signal source.

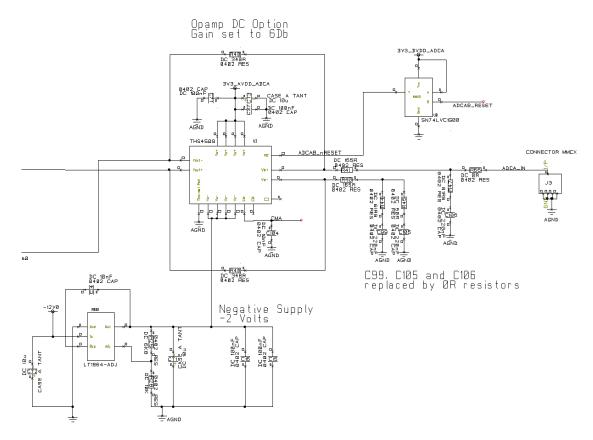


Figure 5 - ADC Input Stage (DC Coupling)

Clock Structure

There is one integrated clock generator on the module (AD9510 – Analog Devices). The user can either use this clock (on-board) or provide the module with an external clock (input via MMCX connector).

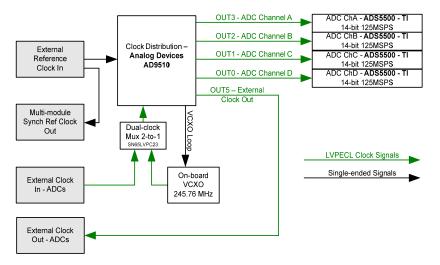


Figure 6 - Clock Structure.

ADCs can all receive the same clock or the integer multiple of it (x2, x3, \dots x32), the maximum being 125MHz for each ADC. This clock can be coming from the on-board VCXO or from an external source.

An extra connector outputs the reference clock for multiple-module systems.

Below is shown how the external clock is fed to the system. By default it is singleended and AC-coupled before being converted into LVPECL format. The option of having a differential external clock is still possible on the hardware by the way of fitting or not some of the components.

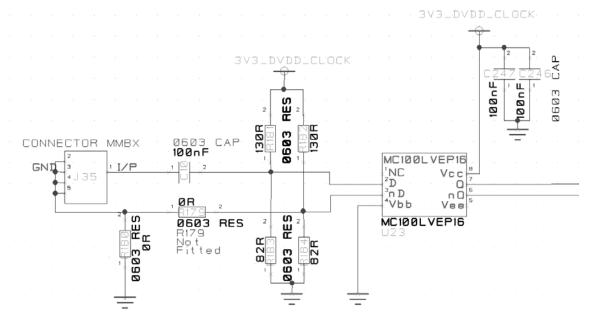


Figure 7 - External Clock.

The main characteristics of the SMT384 Clocks are gathered into the following table.

External	External Reference Input		
Input Voltage Level	0.5 – 3.3 Volts peak-to-peak (AC-coupled)		
Input Impedance	50-Ohm (Termination implemented at the connector)		
Frequency Range	0 – 100 MHz.		
External Reference Output			
Output Voltage Level	1.6 Volts peak-to-peak (AC-coupled)		
Output Impedance	50-Ohm (Termination implemented at the connector)		
External Sa	External Sampling Clock Input		
Input Voltage Level	0.5 – 3.3 Volts peak-to-peak (AC-coupled)		
Format	Single-ended or differential on option (3.3V LVPECL).		

Frequency range	10-125 MHz	
External Sampling Clock Output		
Output Voltage Level0-2.4 Volts fixed amplitude.		
Output Format	LVTTL	
External Trigger Inputs		
Input Voltage Level	1.5-3.3 Volts peak-to-peak.	
	DC-coupled and Single-ended (Termination	
Format	implemented at the connector). Differential on option (3.3 V PECL).	
Impedance	50-Ohm.	
Frequency range	62.5 MHz maximum	
Delay		
External Ref. Input to Ext Ref. Out		
External Clk Input to Ext Clk Out	11ns between J29 and J4	

Figure 8 - Clock Architecture Main Characteristics.

Power Supply and Reset Structure

The *SMT384* gets two power sources from the base module: 3.3 and 5 Volts. Linear regulators are used to provide a clean and stable voltage supply to the analog converters. The DC-coupling option uses also -12 Volts.

Green LEDs.

There are some LEDs on the Daughter Module. Three are dedicated for the power supplies (3.3-Volt Channel A, B, C and D, as well as clock circuitry). Green LEDs being ON meaning that the supply is under power.

Mezzanine module Interface

The daughter module interface is made up of two connectors (data and power). The first one is a 0.5mm-pitch differential Samtec connector. This connector is for transferring data such as ADC samples to the FPGA on the main module. The second one is a 1mm-pitch Samtec header type connector. This connector is for providing power to the daughter-card.

Sundance defines these two connectors as the **S**undance **L**VDS **B**us (*SLB*). It has originally been made for data transfers using LVDS format but can also be used with single-ended lines, which is the case for the *SMT384*. To know more about the SLB, please refer to the <u>SLB specifications</u>.

The figure underneath illustrates this configuration. The bottom view of the daughter card is shown on the right. This view must the mirrored to understand how it connects to the main module.

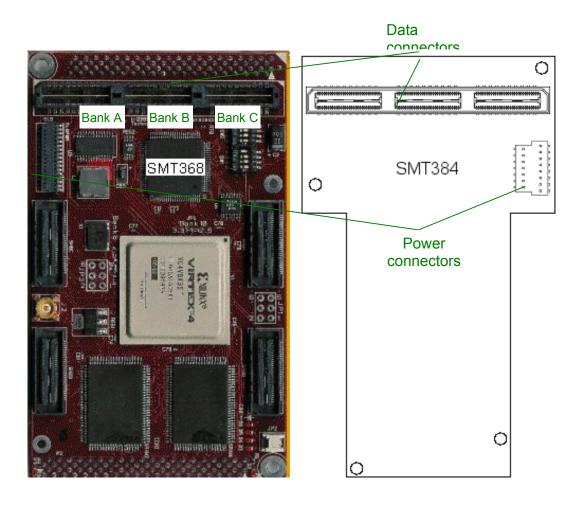
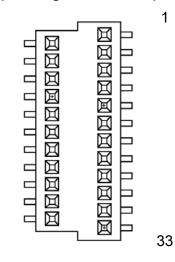


Figure 9 – Mezzanine module Connector Interface (SLB data and power connectors).

The female differential connector is located on the base module. The Samtec Part Number for this connector is QTH-060-01-F-D-DP-A.

The female power connector is located on the base module. The Samtec Part Number for this connector is BKS-133-03-F-V-A

The male differential connector is located on the mezzanine card. The Samtec Part Number for this connector is QSH-060-01-F-D-DP-A

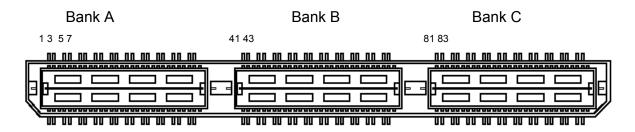

The male power connector is located on the mezzanine card. The Samtec Part Number for this connector is BKT-133-03-F-V-A

The mated height between the main module and the daughter card is 5 mm.

Some JTAG Lines are also mapped onto this connector to be used in case the Daughter module would have a TI Processor. They would allow debugging and programming via JTAG.

The following table shows the pin assignment on the power connector:

2

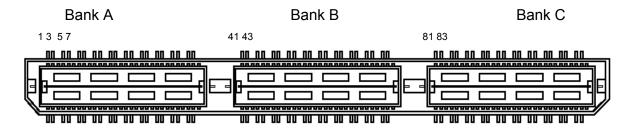


Pin Number	Pin Name	Description of Signal
1	D+3V3	Digital 3.3 Volts
2	DGND	Digital Ground
3	D+3V3	Digital 3.3 Volts
4	DGND	Digital Ground
5	D+3V3	Digital 3.3 Volts
6	DGND	Digital Ground
7	D+3V3	Digital 3.3 Volts
8	DGND	Digital Ground
9	D+5V0	Digital 5.0 Volts
10	DGND	Digital Ground
11	D+5V0	Digital 5.0 Volts
12	DGND	Digital Ground
13	D+5V0	Digital 5.0 Volts
14	DGND	Digital Ground
15	D+5V0	Digital 5.0 Volts
16	DGND	Digital Ground
17	D+12V0	Digital +12.0 Volts – not used on the SMT384
18	DGND	Digital Ground
19	D+12V0	Digital +12.0 Volts – not used on the SMT384
20	DGND	Digital Ground
21	D-12V0	Digital –12.0 Volts – used on the SMT384 only for DC option.

22	DGND	Digital Ground
23	D-12V0	Digital –12.0 Volts –used on the SM384 only for DC option.
24	DGND	Digital Ground
25	DGND	Digital Ground
26	EMU0	Emulation Control 0 – not used on SMT384
27	EMU1	Emulation Control 1 – not used on SMT384
28	TMS	JTAG Mode Control – not used on SMT384
29	nTRST	JTAG Reset – not used on SMT384
30	тск	JTAG Test Clock – not used on SMT384
31	TDI	JTAG Test Input – not used on SMT384
32	TDO	JTAG Test Output – not used on SMT384
33	DGND	Digital Ground

Figure 10 – Mezzanine Module Interface Power Connector and Pinout.

The following few pages describes the signals on the data connector between the main module and the daughter card. Bank A on the connector is used for the ADC Channels A and B. Bank C is used for the ADC channels C and D. Bank B is used for system clock and trigger signals, ADCs/Clock control signal.

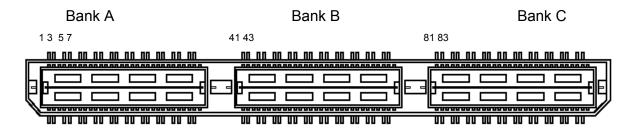


2468

Bank A (ADC A and B)

Pin No	Pin Name	Signal Description	Pin No	Pin Name	Signal Description	
Dir	Daughter Car	d to Main Module	Dir	Daughter Ca	ard to Main Module	
1	DOAI0p	Data Out 0, Channel A.	2	DOBI0p	Data Out 1, Channel A.	
3	DOAI0n	Data Out 2, Channel A.	4	DOBI0n	Data Out 3, Channel A.	
Dir	Daughter Car	d to Main Module	Dir	Daughter Ca	ard to Main Module	
5	DOAI1p	Data Out 4, Channel A.	6	DOBI1p	Data Out 5, Channel A.	
7	DOAI1n	Data Out 6, Channel A.	8	DOBI1n	Data Out 7, Channel A.	
Dir	Daughter Car	d to Main Module	Dir	Daughter Ca	ard to Main Module	
9	DOAI2p	Data Out 8, Channel A.	10	DOBI2p	Data Out 9, Channel A.	
11	DOAI2n	Data Out 10, Channel A.	12	DOBI2n	Data Out 11, Channel A.	
Dir	Daughter Car	d to Main Module	Dir	Daughter Ca	ard to Main Module	
13	DOAI3p	Data Out 12, Channel A.	14	DOBI3p	Data Out 13, Channel A.	
15	DOAI3n	Over Range, Channel A.	16	DOBI3n	Data Out 0, Channel B.	
Dir	Daughter Car	d to Main Module	Dir	Daughter Ca	ard to Main Module	
17	DOAI4p	Data Out 1, Channel B.	18	DOBI4p	Data Out 2, Channel B.	
19	DOAl4n	Data Out 3, Channel B.	20	DOBl4n	Data Out 4, Channel B.	
Dir	Daughter Car	d to Main Module	Dir	Daughter Ca	ard to Main Module	
21	DOAI5p	Data Out 5, Channel B.	22	DOBI5p	Data Out 6, Channel B.	
23	DOAI5n	Data Out 7, Channel B.	24	DOBI5n	Data Out 8, Channel B.	
Dir	Daughter Car	d to Main Module	Dir	Daughter Card to Main Module		
25	DOAI6p	Data Out 9, Channel B.	26	DOBI6p	Data Out 10, Channel B.	
27	DOAI6n	Data Out 11, Channel B.	28	DOBI6n	Data Out 12, Channel B.	
Dir	Daughter Car	d to Main Module	Dir	Daughter Ca	ard to Main Module	
29	DOAI7p	Data Out 13, Channel B.	30	DOBI7p	Over Range, Channel B.	
31	DOAI7n	Led ADC A and B.	32	DOBI7n	Status Lock AD9510	
Dir	Daughter Car	d to Main Module	Dir	Daughter Ca	ard to Main Module	
33	ClkOlp	Data Clock Out, Channel A.	34	DOIRIp	Status Ref AD9510	
35	ClkOln	Data Clock Out, Channel B.	36	DOIRIn	Status VCXO AD9510	
Dir	Reserved.		Dir	Reserved.		
37	Reserved.	Reserved.	38	Reserved	ADC A and B External Trigger, P.	
39	Reserved.	Reserved.	40	Reserved	ADC A and B External Trigger, N.	

Figure 11 – Daughter Module Interface: Data Signals Connector and Pinout (Bank A).


2468

Bank B

Pin No	Pin Name	Signal Description	Pin No	Pin Name	Signal Description	
Туре	Clock and Trigger System Signals			Clock and Trigger System Signals		
Dir	Daughter Card to Main Module			Daughter Card to	o Main Module	
41	SMBClk	Temperature Sensor Clock.	42	SMBData	Temperature Sensor Data.	
43	SMBnAlert	Temperature Sensor Alert.	44	SerialNo	Reserved	
Dir	Daughter Card to Ma	in Module	Dir	Reserved		
45	AdcVDacl	Reserved	46	AdcVDacQ	Reserved	
47	AdcVRes	Reserved	48	AdcReset	AD9510 Function	
Dir	Main Module to Daug	ghter Card	Dir	Main Module to	Daughter Card	
49	D3v3Enable	Reserved	50	D2v5Enable	Reserved	
51	AdcMode	ADCA Serial Clock.	52	AdcClock	ADCA Serial Data.	
Туре	ADC Specific Signa	ls	Туре	ADC Specific S	ignals	
Dir	Main Module to Daug	ghter Card	Dir	Reserved		
53	AdcLoad	ADCA Serial Enable.	54	AdcData	ADCB Serial Clock.	
55	AdcCal	ADCB Serial Data.	56	AdjClkCntr0	ADCB Serial Enable.	
Dir	Main Module to Daug	ghter Card	Dir	Main Module to Daughter Card		
57	AdjClkCntr1	ADC A and B Format (binary, 2's).	58	AdjClkCntr2	ADC A and B Reset.	
59	AdjClkCntr3	ADC A and B Output Enable.	60	PIICntr0	AD9510 serial Enable.	
Dir	Daughter Card to Ma	in Module	Dir	Daughter Card to Main Module		
61	PIICntr1	AD9510 serial Clock.	62	PIICntr2	AD9510 serial Data.	
63	PIICntr3	AD9510 Clock Selection.	64	AdcAClkSel	ADCC Serial Clock.	
Туре	Module Control Sig	nals	Туре	Module Control	Signals	
Dir	Main Module to Daug	ghter Card	Dir	Main Module to	Daughter Card	
65	AdcBClkSel	ADCC Serial Data.	66	IntClkDivEn	ADCC Serial Enable.	
67	IntClkDivnReset	ADCD Serial Clock.	68	IntExtClkDivEn	ADCD Serial Data.	
Dir	Main Module to Daug	ghter Card	Dir	Main Module to	Daughter Card	
69	IntExtClkDivnReset	ADCD Serial Enable.	70	FpgaVRef	Reserved	
71	FpgaTck	Reserved	72	FpgaTms	Reserved	
Dir	Daughter Card to Main Module		Dir	Reserved		
73	FpgaTdi	Reserved	74	FpgaTdo	Reserved	
75	MspVRef	Reserved	76	MspTck	Reserved	
Dir	Daughter Card to Ma	in Module	Dir	Reserved		

77	MspTms	Reserved	78	MspTdi	Reserved.
79	Msptdo	Reserved	80	MspnTrst	Reserved

Figure 12 – Daughter Module Interface: Data Signals Connector and Pinout (Bank B).

2468

Bank C (ADC C and D)

Pin No	Pin Name	Signal Description	Pin No	Pin Name	Signal Description		
Dir	Daughter Card	Daughter Card to Main Module Dir			ard to Main Module		
81	DOAQ0p	Data Out 0, Channel C.	82	DOBQ0p	Data Out 1, Channel C.		
83	DOAQ0n	Data Out 2, Channel C.	84	DOBQ0n	Data Out 3, Channel C.		
Dir	Daughter Card	d to Main Module	Dir	Daughter Ca	ard to Main Module		
85	DOAQ1p	Data Out 4, Channel C.	86	DOBQ1p	Data Out 5, Channel C.		
87	DOAQ1n	Data Out 6, Channel C.	88	DOBQ1n	Data Out 7, Channel C.		
Dir	Daughter Card	d to Main Module	Dir	Daughter Ca	ard to Main Module		
89	DOAQ2p	Data Out 8, Channel C.	90	DOBQ2p	Data Out 9, Channel C.		
91	DOAQ2n	Data Out 10, Channel C.	92	DOBQ2n	Data Out 11, Channel C.		
Dir	Daughter Card	d to Main Module	Dir	Daughter Ca	ard to Main Module		
93	DOAQ3p	Data Out 12, Channel C.	94	DOBQ3p	Data Out 13, Channel C.		
95	DOAQ3n	Over Range, Channel C.	96	DOBQ3n	Data Out 0, Channel D.		
Dir	Daughter Card	d to Main Module	Dir	Daughter Ca	ard to Main Module		
97	DOAQ4p	Data Out 1, Channel D.	98	DOBQ4p	Data Out 2, Channel D.		
99	DOAQ4n	Data Out 3, Channel D.	100	DOBQ4n	Data Out 4, Channel D.		
Dir	Daughter Card	d to Main Module	Dir	Daughter Ca	Daughter Card to Main Module		
101	DOAQ5p	Data Out 5, Channel D.	102	DOBQ5p	Data Out 6, Channel D.		
103	DOAQ5n	Data Out 7, Channel D.	104	DOBQ5n	Data Out 8, Channel D.		
Dir	Daughter Card	d to Main Module	Dir	Daughter Card to Main Module			
105	DOAQ6p	Data Out 9, Channel D.	106	DOBQ6p	Data Out 10, Channel D.		
107	DOAQ6n	Data Out 11, Channel D.	108	DOBQ6n	Data Out 12, Channel D.		
Dir	Daughter Card	d to Main Module	Dir	Daughter Ca	ard to Main Module		
109	DOAQ7p	Data Out 13, Channel D.	110	DOBQ7p	Over Range, Channel D.		
111	DOAQ7n	Led ADC C and D.	112	DOBQ7n	ADC C and D Format (binary, 2's).		
Dir	Daughter Card to Main Module		Dir	Daughter Card to Main Module			
113	ClkOlp	Data Clock Out, Channel C.	114	DOIRIp	ADC C and D Reset.		
115	ClkOln	Data Clock Out, Channel D.	116	DOIRIn	ADC A and B Output Enable.		
Dir	Reserved.		Dir	Reserved.			
117	Reserved.	Reserved.	118	Reserved	ADC C and D External Trigger, P.		
119	Reserved.	Reserved.	120	Reserved	ADC C and D External Trigger, N.		

Figure 13 – Daughter Module Interface: Data Signals Connector and Pinout (Bank C).

Control Register Settings

The Control Registers control the complete functionality of the *SMT384*. They are setup via the Comport0 or 3 (the default firmware implements Comport3 only). The settings of the ADCs, triggers, clocks and the configuration of the SHB interfaces and the internal FPGA data path settings can be configured via the Control Registers.

Control Packet Structure

The data passed on to the *SMT384* over the Comports must conform to a certain packet structure. Only valid packets will be accepted and only after acceptance of a packet will the appropriate settings be implemented. Each packet will start with a certain sequence indicating the start of the packet (0xFF). The address to write the data payload into will follow next. After the address the data will follow. This structure is illustrated in the following figure:

	Byte Content								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	'1'	'1'	'1'	'1'	'1'	'1'	'1'	'1'	
1	Address 7	Address 6	Address 5	Address 4	Address 3	Address 2	Address 1	Address 0	
3	Data 15	Data 14	Data 13	Data 12	Data 11	Data 10	Data 9	Data 8	
4	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0	

Figure 14 – Setup Packet Structure.

Reading and Writing Registers

Control packets are sent to the *SMT384* over Comport 0 or 3. This is a bi-directional interface. The format of a 'Read Packet' is the same as that of a write packet.

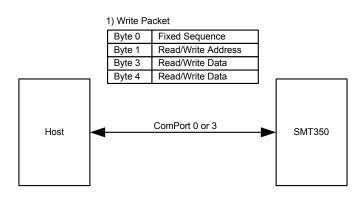


Figure 15 – Control Register Read Sequence.

Memory Map

The write packets must contain the address where the data must be written to and the read packets must contain the address where the required data must be read. The following figure shows the memory map for the writable and readable Control Registers on the *SMT384*:

Address	Writable Registers	Readable Registers			
0x00	Reset Register.	Reserved.			
0x01	Test Register.	Reserved.			
0x02	ADCA Register 0.	Read-back (FPGA Register) ADCA Register 0.			
0x03	ADCA Register 1.	Read-back (FPGA Register) ADCA Register 1.			
0x04	ADCA Register 2.	Read-back (FPGA Register) ADCA Register 2.			
0x05	ADCB Register 0.	Read-back (FPGA Register) ADCB Register 0.			
0x06	ADCB Register 1.	Read-back (FPGA Register) ADCB Register 1.			
0x07	ADCB Register 2.	Read-back (FPGA Register) ADCB Register 2.			
0x08	ADCC Register 0.	Read-back (FPGA Register) ADCC Register 0.			
0x09	ADCC Register 1.	Read-back (FPGA Register) ADCC Register 1.			
0x0A	ADCC Register 2.	Read-back (FPGA Register) ADCC Register 2.			
0x0B	ADCD Register 0.	Read-back (FPGA Register) ADCD Register 3.			
0x0C	ADCD Register 1.	Read-back (FPGA Register) ADCD Register 4.			
0x0D	ADCD Register 2.	Read-back (FPGA Register) ADCD Register 5.			
0x0E					
0x0F					
0x18	Reserved	Main Module Temperature			
0x19	Reserved	Main Module FPGA Temperature			
0x1A	Reserved	Mezzanine Module Temperature			
0x1B	Reserved	Mezzanine Module Converter Temperature			
0x1C	Misc Register (Trigger, Clock Selection, etc).	Read- Misc Register.			
0x1D	Update and Read-back command Register	Firmware Version and Status bits.			
0x1E	Decimator Register	Decimator Register			
0x30	AD9510 Register 0x0.	Read-back (FPGA Register) AD9510 Register 0.			
0x31	AD9510 Register 0x1.	Read-back (FPGA Register) AD9510 Register 1.			
0x32	AD9510 Register 0x2.	Read-back (FPGA Register) AD9510 Register 2.			
0x33	AD9510 Register 0x3.	Read-back (FPGA Register) AD9510 Register 3.			
0x34	AD9510 Register 0x4.	Read-back (FPGA Register) AD9510 Register 4.			
0x35	AD9510 Register 0x5.	Read-back (FPGA Register) AD9510 Register 5.			
0x36	AD9510 Register 0x6.	Read-back (FPGA Register) AD9510 Register 6.			
0x37	AD9510 Register 0x7.	Read-back (FPGA Register) AD9510 Register 7.			
0x38	AD9510 Register 0x8.	Read-back (FPGA Register) AD9510 Register 8.			
0x39	AD9510 Register 0x9.	Read-back (FPGA Register) AD9510 Register 9.			
0x3A	AD9510 Register 0xA.	Read-back (FPGA Register) AD9510 Register A.			

0x3B	AD9510 Register 0xB.	Read-back (FPGA Register) AD9510 Register B.
0x3C	AD9510 Register 0xC.	Read-back (FPGA Register) AD9510 Register C.
0x3D	AD9510 Register 0xD.	Read-back (FPGA Register) AD9510 Register D.
0x3E	AD9510 Register 0xE.	Read-back (FPGA Register) AD9510 Register E.
0x3F	AD9510 Register 0xF.	Read-back (FPGA Register) AD9510 Register F.
0x40	AD9510 Register 0x10.	Read-back (FPGA Register) AD9510 Register 10.
0x41	AD9510 Register 0x11.	Read-back (FPGA Register) AD9510 Register 11.
0x42	AD9510 Register 0x12.	Read-back (FPGA Register) AD9510 Register 12.
0x43	AD9510 Register 0x13.	Read-back (FPGA Register) AD9510 Register 13.
0x44	AD9510 Register 0x14.	Read-back (FPGA Register) AD9510 Register 14.
0x45	AD9510 Register 0x15.	Read-back (FPGA Register) AD9510 Register 15.
0x46	AD9510 Register 0x16.	Read-back (FPGA Register) AD9510 Register 16.
0x47	AD9510 Register 0x17.	Read-back (FPGA Register) AD9510 Register 17.
0x48	AD9510 Register 0x18.	Read-back (FPGA Register) AD9510 Register 18.
0x49	AD9510 Register 0x19.	Read-back (FPGA Register) AD9510 Register 19.

Figure 16 – Register Memory Map.

Register Descriptions

Reset Register - 0x0.

	Reset Register – 0x0							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	SHB ChC and D Reset	SHB ChA and B Reset	Reserved	Reserved	Reserved	AD9510 Reset	ADC C&D Reset	ADC A&B Reset
Default	'1'	'1'	ʻ0'	'0'	'0'	'1'	'1'	'1'

		Reset Register – 0x0				
Setting	Bit 0	Description – ADC A&B Reset				
0	0	Normal Operation.				
1	1	Resets both ADC devices as well as their corresponding Serial Interfaces.				
Setting	Bit 1	Description – ADC C&D Reset				
0	0	Normal Operation.				
1	1	Resets both ADC devices as well as their corresponding Serial Interfaces.				
Setting	Bit 2	Description – AD9510 Reset				
0	0	Normal Operation.				
1	1	Resets Clock device as well as its Serial Interfaces.				
Setting	Bit 6	Description – SHB ADC A&B Reset				
0	0	Normal Operation.				

1	1	Resets SHB (ADC ChA&B) interfaces.		
Setting	Bit 7	scription - SHB ADC C&D Reset		
0	0	Normal Operation.		
1	1	Resets SHB (ADC ChC&D) interfaces.		

<u>Note</u>: The Reset bits don't get cleared automatically, so a device can remain reset while not used to reduce the global power consumption.

Test Register - 0x1.

Any 16-bit value written in this register can be read-back to check that the Comport used works properly.

	Test Register – 0x1							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0								
1								

ADCA Register 0 – 0x2.

For more details, refer to ADS5500 datasheet.

	ADCA Register 0 – 0x2									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
1	Reserved									
Default	·000000)									
0		Reserved						Reserved		
Default			ʻ000	000'			'0'	ʻ0'		

		ADCA Register 0 – 0x2						
Setting	Bit 1	Description						
0	0	PLL ON – for sampling frequencies between 60 and 125 MHz						
1	1	PLL OFF – for sampling frequencies between 10 and 80 MHz						

ADCA Register 1 – 0x3.

				ADCA Regi	ster 1 – 0x3				
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
1	Reserved					TP1	TP0	Reserved	
Default	ʻ000000'					ʻ0'	ʻ0'	ʻ0'	
0	Reserved								
Default				ʻ0000	0000'				

ADCA Register 1 – 0x3

Setting	TP1	TP0	Description
0	0	0	Normal Mode of Operation
1	0	1	All outputs are zeroes
2	1	0	All outputs are ones
3	1	1	Continuous stream of '10'

ADCA Register 2 – 0x4.

For more details, refer to ADS5500 datasheet.

				ADCA Regi	ster 2 – 0x4						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1 Bit 0					
1	Reserved				PDN		Reserved				
Default	·0000'				ʻ0'		'000'				
0		Reserved									
Default				·0000	0000'						

		ADCA Register 2 – 0x4						
Setting	PDN	Description						
0	0	Normal Mode of Operation						
1	1	Device in Power Down Mode						

ADCB Register 0 – 0x5.

	ADCB Register 0 – 0x5								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
1	Reserved							Reserved	
Default	,000000,						Default	'0000000'	
0		Reserved						Reserved	
Default			'000	000'			ʻ0'	ʻ0'	

		ADCB Register 0 – 0x5						
Setting	Bit 1	Description						
0	0	PLL OFF – for sampling frequencies between 10 and 80 MHz						
1	1	PLL ON – for sampling frequencies between 60 and 125 MHz						

ADCB Register 1 – 0x6.

For more details, refer to ADS5500 datasheet.

				ADCB Regi	ster 1 – 0x6					
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
1	Reserved					TP1	TP0	Reserved		
Default	,000000,					'0'	'0'	'0'		
0		Reserved								
Default				ʻ0000	0000'					

		ADCB Register 1 – 0x6					
Setting	TP1	TP0	Description				
0	0	0	Normal Mode of Operation				
1	0	1	All outputs are zeroes				
2	1	0	All outputs are ones				
3	1	1	Continuous stream of '10'				

ADCB Register 2 – 0x7.

For more details, refer to ADS5500 datasheet.

				ADCB Regi	ster 2 – 0x7					
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
1		Rese	erved		PDN	Reserved				
Default	,0000,				ʻ0'		'000'			
0		Reserved								
Default				·0000	0000'					

		ADCB Register 2 – 0x7							
Setting	PDN	PDN Description							
0	0	Normal Mode of Operation							
1	1	Device in Power Down Mode							

ADCC Register 0 – 0x8.

	ADCB Register 0 – 0x8										
Byte	Bit 7	Bit 1	Bit 0								
1			1	Reserved							
Default			·000	0000'			Default	'0000000'			
0			PLL	Reserved							
Default				ʻ0'	ʻ0'						

	ADCC Register 0 – 0x8							
Setting	Bit 1	bit 1 Description						
0	0	0 PLL OFF – for sampling frequencies between 10 and 80 MHz						
1	1	PLL ON – for sampling frequencies between 60 and 125 MHz						

ADCC Register 1 – 0x9.

For more details, refer to ADS5500 datasheet.

	ADCB Register 1 – 0x9										
Byte	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1										
1			Reserved			TP1	TP0	Reserved			
Default			'000000'			ʻ0'	' 0'	ʻ0'			
0	Reserved										
Default				6000	0000'						

		ADCC Register 1 – 0x9							
Setting	TP1	TP1 TP0 Description							
0	0	0	Normal Mode of Operation						
1	0	1	All outputs are zeroes						
2	1	0	All outputs are ones						
3	1	1	Continuous stream of '10'						

ADCC Register 2 – 0xA.

	ADCC Register 2 – 0xA										
Byte	Bit 7	Bit 6	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit								
1		Rese	erved		PDN	Reserved					
Default		ʻ00	000'		' 0'		'000'				
0	Reserved										
Default				ʻ0000	0000'						

		ADCC Register 2 – 0xA						
Setting	PDN	PDN Description						
0	0	Normal Mode of Operation						
1	1	Device in Power Down Mode						

ADCD Register 0 – 0xB.

For more details, refer to ADS5500 datasheet.

	ADCD Register 0 – 0xB										
Byte	Bit 7	Bit 1	Bit 0								
1		1	Reserved								
Default			'000ú	0000'			Default	ʻ0000000'			
0			PLL	Reserved							
Default			ʻ000	000'			ʻ0'	ʻ0'			

		ADCD Register 0 – 0xB						
Setting	Bit 1	Bit 1 Description						
0	0	PLL OFF – for sampling frequencies between 10 and 80 MHz						
1	1	PLL ON – for sampling frequencies between 60 and 125 MHz						

ADCD Register 1 – 0xC.

For more details, refer to ADS5500 datasheet.

	ADCD Register 1 – 0xC										
Byte	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit										
1			Reserved			TP1	TP0	Reserved			
Default			'000000'			ʻ0'	ʻ0'	ʻ0'			
0	Reserved										
Default				ʻ0000	0000'						

		ADCD Register 1 – 0xC						
Setting	TP1	TP1 TP0 Description						
0	0	0	Normal Mode of Operation					
1	0	1	All outputs are zeroes					
2	1	0	All outputs are ones					
3	1	1	Continuous stream of '10'					

ADCD Register 2 – 0xD.

	ADCD Register 2 – 0xD											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	3 Bit 2 Bit 1 Bit 0						
1		Rese	erved		PDN	Reserved						
Default		·00	00'		ʻ0'		'000'					
0	Reserved											
Default				ʻ0000	0000'							

		ADCD Register 2 – 0xD								
Setting	PDN	DN Description								
0	0	Normal Mode of Operation								
1	1	Device in Power Down Mode								

Main Module Temperature – 0x18

	Main Module Temperature – 0X18										
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
0		Temperature in Degrees Celsius									
Default		·0000000'									

Main Module FPGA Temperature – 0x19

	Main Module FPGA Temperature – 0X19										
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
0		Temperature in Degrees Celsius									
Default		·0000000'									

Mezzanine Module Temperature – 0x1A

	Mezzanine Module Temperature – 0X1A											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0		Temperature in Degrees Celsius										
Default		,0000000,										

Mezzanine Module Converters Temperature – 0x1B

	Mezzanine Module Converters Temperature – 0X1B										
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
0		Temperature in Degrees Celsius									
Default				·0000000)'						

Miscellaneous Register - 0x1C.

	Miscellaneous Register – 0X1C									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	A.F.	Reserved		ADC A and B Trigger			Clock Selection	Reference Selection		
	AL	DC C and D Trig	ger							
Default	,000,			ʻ000'			' 0'	ʻ0'		
1	Res	served	ADC C and D Data Format	ADC A and SHB Selection ChC&D B Data Format			SHB Selection ChA&B			
Default		00'	'0'	ʻ0'	ʻ00)'	,00,			

		Miscellaneous Register – 0x1C
Setting	Bit 0	Description – Reference Clock Selection
0	0	On-Board 10-MHz Reference Clock selected.
1	1	External Reference Selected.
		Miscellaneous Register – 0x1C
Setting	Bit 1	Description – Clock Source Selection
0	0	VCXO selection.
1	1	External Source Selected.
		Miscellaneous Register – 0x1C
Setting	Bit 2	Description – Software Trigger ChA&B (Internal Trigger)
0	0	Not Active.
1	1	Active.
		Miscellaneous Register – 0x1C
Setting	Bit 3	Description – Trigger ChA&B Polarity
0	0	Non Inverting.
1	1	Inverting.
		Miscellaneous Register – 0x1C
Setting	Bit 4	Description – Trigger ChA&B Selection
0	0	Internal Trigger Selected.
1	1	External Trigger Selected
		Miscellaneous Register – 0x1C
Setting	Bit 5	Description – Software Trigger ChC&D (Internal Trigger)
0	0	Not Active.
1	1	Active.
		Miscellaneous Register – 0x1C
Setting	Bit 6	Description – Trigger ChC&D Polarity
0	0	Non Inverting.
1	1	Inverting.
		Miscellaneous Register – 0x1C
Setting	Bit 7	Description – Trigger ChC&D Selection
0	0	Internal Trigger Selected.
1	1	External Trigger Selected
		Miscellaneous Register – 0x1C
Setting	Bit 9/8	Description – SHB Selection ADC Channels A and B
0	00	ADC Channel A and B ; 1 sample of each ADC channel packed onto one 32-bit word. [ChB ChA]
1	01	ADC Channel A only ; 2 samples packed onto one 32-bit word [word(t+1) word(t)]
2	10	ADC Channel B only ; 2 samples packed onto one 32-bit word [word(t+1) word(t)]
3	11	ADC Channel A and B ; 1 sample of each ADC channel packed onto one 32-bit word. [ChB ChA]
		Miscellaneous Register – 0x1C
Setting	Bit 11/10	Description – SHB Selection ADC Channels C and D
0	00	ADC Channel C and D ; 1 sample of each ADC channel packed onto one 32-bit word. [ChD ChC]

1	01	ADC Channel C only ; 2 samples packed onto one 32-bit word [word(t+1) word(t)]							
2	10	ADC Channel D only ; 2 samples packed onto one 32-bit word [word(t+1) word(t)]							
3	11	Channel C and D ; 1 sample of each ADC channel packed onto one 32-bit word. [ChD ChC]							
Miscellaneous Register – 0x1C									
Setting	Bit 12	Description – ADC A and B Data Format							
0	0	ADC A and B output binary samples							
1	1	ADC A and B output 2's complement samples							
		Miscellaneous Register – 0x1C							
Setting	Bit 13	Description – ADC C and D Data Format							
0	0	ADC C and D output binary samples							
1	1	ADC C and D output 2's complement samples							

Updates, Read-back and Firmware Version Registers - 0x1D

The Update bit activates the corresponding Serial Interface to pass registers previously written in the FPGA, into the corresponding device (ADCA, ADCB, ADCC, ADCD or CLK devices).

	Update and Read-back commands – 0x1D										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Reserved	Reserved	Reserved	Reserved	CLK Update	Reserved	ADCC&D Update	ADCA&B Update			
Default	'0'	ʻ0'	'0'	'0'	'0'	' 0'	ʻ0'	' 0'			
1					Reserved	Reserved					
Default	'0'	ʻ0'	'0'	'0'	'0'	ʻ0'	ʻ0'	ʻ0'			

Reading-back this register returns the Firmware version as well as some Status signals coming from theAD9510.

	Firmware Version – 0x1D										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		Firmware Version									
Default		,0000000,									
1				AD9510 Status Lock	AD9510 Status Ref	AD9510 Status VCXO					
Default			'00000'			'0'	' 0'	'0'			

Decimator Register – 0x1E.

		Decimator Register – 0x1E										
Byte	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 3											
0	De	cimation Factor	ADC Channel	C&D	Decimation Factor ADC ChannelA&B							
Default		'00	000'		ʻ0000'							
1		Reserved										
Default				·00000	0000'							

<u>AD9510 Register 0 – 0x30.</u>

For more details, refer to AD9510 datasheet.

	AD9510 Register 0 – 0x30										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
1		Not Used									
Default				'000'	00000'						
0	SDO Inactive	LSB First	Soft Reset	Long Inst.	Not Used						
Default	'0'	ʻ0'	'0'	'1'		"(0000'				

AD9510 Register 1 - 0x31.

For more details, refer to AD9510 datasheet.

	AD9510 Register 1 – 0x31										
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
1		Not Used									
Default		,0000000,									
0				Not	Used						
Default				'000	00000'						

AD9510 Register 2 - 0x32.

For more details, refer to AD9510 datasheet.

				AD9510 Reg	jister 2 – 0x32	2		
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1		Not Used			13-1	bit B Counter	(128)	
Default		'000'				'00000'		
0	Not	Used		6-bit A Counter				
Default	٤	00'			'00	0000'		

AD9510 Register 3 - 0x33.

	AD9510 Register 3 – 0x33										
Byte	Bit 7	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1									
1	Not Used	LOR Loc	ck_Del	Not	Used	LOR Enable	Not	Used			
Default	'0'	ʻ00ʻ)'	ʻ0	0'	ʻ0'	'(00'			
0				13-bit B Co	ounter (70)						
Default				'000	00000'						

AD9510 Register 4 - 0x34.

For more details, refer to AD9510 datasheet.

	AD9510 Register 4 – 0x34								
Byte	Bit 7	Bit 6 Bit 5 Bit 4			Bit 3	Bit 2	Bit 1	Bit 0	
1	Not Used		CP Current			Reset R Counter	Reset N Counter	Reset all Counters	
Default	'0'		'000'		'0'	'0'	ʻ0'	' 0'	
0	Not Used	PFD Polarity	ty PLL Mux Select				CP Mode		
Default	'0'	ʻ0'		,0000, ,00,					

AD9510 Register 5 - 0x35.

For more details, refer to AD9510 datasheet.

	AD9510 Register 5 – 0x35									
Byte	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
1	Not	Used			14-bit R D	ivider (138)				
Default	•	00'			'00	00000'				
0	Not Used	B Bypass	Not Used		Prescaler P		Power	Down		
Default	'0'	ʻ0'	ʻ0' ʻ000' ʻ01'							

<u>AD9510 Register 6 – 0x36.</u>

For more details, refer to AD9510 datasheet.

				AD9510 Reg	jister 0 – 0x30)		
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 1	Bit 0	
1	Not Used	Digital Lock Det Enable	Digital Lock Det. Window		Not Used	Antibacklash		
Default	'0'	ʻ0'	ʻ0'		'000'	·00'		
0				14-bit R D	ivider (70)			
Default				·000	00000'			

AD9510 Register 7 - 0x37.

		AD9510 Register 7 – 0x37									
Byte	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1								
1	Not	Used	R	amp Capacito	[.] 5		Ramp Current !	5			
Default		ʻ0'		'000'			'000'				
0		Not Used									
Default		·0000000 · ·1 ·									

AD9510 Register 8 - 0x38.

For more details, refer to AD9510 datasheet.

	AD9510 Register 8 – 0x38											
Byte	Bit 7	it 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
1		Not Used										
Default				'000 [,]	00000'							
0	Not	Used		Ę	5-bit Fine Dela	iy 5		Must be '0'				
Default	:	,00, ,0, ,0,										

AD9510 Register 9 - 0x39.

For more details, refer to AD9510 datasheet.

	AD9510 Register 9 – 0x39									
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1								
1	Not	Used	R	amp Capacitor	[.] 6		Ramp Current	6		
Default		ʻ0'		'000'			'000'			
0		Not Used								
Default		·0000000 ·1 ·								

AD9510 Register A – 0x3A.

For more details, refer to AD9510 datasheet.

	AD9510 Register A – 0x3A											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
1		Not Used										
Default				'000	00000'							
0	Not	Not Used 5-bit Fine Delay 6 Must be '0'										
Default	•	,00, ,00000, ,0,										

AD9510 Register 0 - 0x3B.

	AD9510 Register B – 0x3B									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
1		Not U	lsed		Output	Level 1	Power I	Down 1		
Default		·000	00'		ʻ0	0'	ʻ0ʻ	0'		
0		Not U	lsed		Output	Level 0	Power I	Down 0		
Default		'000	00'		'0	0'	ʻ0ʻ	0'		

AD9510 Register 0 - 0x3C.

For more details, refer to AD9510 datasheet.

		AD9510 Register C – 0x3C									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
1		Not L	Jsed		Output	Level 3	Power I	Down 3			
Default		·000	00'		ʻ0	0'	ʻ0ʻ	0'			
0		Not L	Jsed		Output	Level 2	Power I	Down 2			
Default		·000	00'		ʻ0	0'	ʻ0ʻ	0'			

AD9510 Register D - 0x3D.

For more details, refer to AD9510 datasheet.

				AD9510 Reg	ister D – 0x3l	D		
Byte	Bit 7 Bit 6 Bit 5		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	Not Used			CMOS Inv 5	Logic Select 5	Outpu	t Level 5	Output Power 5
Default	,000,			ʻ0'	' 0'	اء	01'	·0'
0	Not Used			CMOS Inv 4	Logic Select 4	Output Level 4		Output Power 4
Default	,000,			ʻ0'	'0'	٤	01'	·0'

AD9510 Register E - 0x3E.

For more details, refer to AD9510 datasheet.

				AD9510 Reg	ister E – 0x3I	E		
Byte	Bit 7 Bit 6 Bit 5			Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	Not Used			CMOS Inv 7	Logic Select 7	Outpu	t Level 7	Output Power 7
Default	,000,			'0'	'0'	4	01'	ʻ0'
0	Not Used			CMOS Inv 6	Logic Select 6	Output Level 6		Output Power 6
Default	,000,		ʻ0'	'0'	4	01'	ʻ0'	

AD9510 Register F - 0x3F.

		AD9510 Register F – 0x3F									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
1	Not	Not Used		REF IN PD	Prescaler PD	CLK2 PD	CLK1 PD	Sel CLKIN			
Default	•	00'	ʻ0'	ʻ0'	ʻ0'	'0'	ʻ0'	'1'			
0		Not Used									
Default				'000 '	00000'						

AD9510 Register 10 - 0x40.

For more details, refer to AD9510 datasheet.

				AD9510 Regi	ister 10 – 0x4	0				
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0					
1	Bypass 0	No Synch 0	Force 0	Start H/L 0	Phase Offset 0					
Default	'0'	' 0'	'0'	ʻ0'		"(0000'			
0		Low Cy	cles 0			High	Cycles 0			
Default		ʻ000	0'			'(0000'			

AD9510 Register 11 - 0x41.

For more details, refer to AD9510 datasheet.

				AD9510 Regi	ister 11 – 0x4	1				
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0					
1	Bypass 1	No Synch 1	Force 1	Start H/L 1		Phase	e Offset 1			
Default	'0'	ʻ0'	'0'	'0'		"(0000'			
0		Low Cy	cles 1			High	Cycles 1			
Default		ʻ000	0,			'(0000'			

AD9510 Register 12 - 0x42.

For more details, refer to AD9510 datasheet.

				AD9510 Regi	ister 12 – 0x4	2				
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0					
1	Bypass 2	No Synch 2	Force 2	Start H/L 2	Phase Offset 2					
Default	ʻ0'	ʻ0'	' 0'	'0'		'(0000'			
0		Low Cy	cles 0			High	Cycles 2			
Default		'000'	00'			'(0000'			

AD9510 Register 13 - 0x43.

				AD9510 Regi	ster 13 – 0x4	3			
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0				
1	Bypass 3	No Synch 3	Force 3	Start H/L 3	Phase Offset 3				
Default	'0'	ʻ0'	'0'	ʻ0'		'(0000'		
0		Low Cy	cles 3			High	Cycles 3		
Default		ʻ000	0,			'(0000'		

AD9510 Register 14 - 0x44.

For more details, refer to AD9510 datasheet.

				AD9510 Regi	ister 14 – 0x4	4				
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0					
1	Bypass 4	No Synch 4	Force 4	Start H/L 4	Phase Offset 4					
Default	'0'	' 0'	'0'	ʻ0'		"(0000'			
0		Low Cy	cles 4			High	Cycles 4			
Default		'000'	0,			"(0000'			

AD9510 Register 15 - 0x45.

For more details, refer to AD9510 datasheet.

				AD9510 Regi	ister 15 – 0x4	5			
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0				
1	Bypass 5	No Synch 5	Force 5	Start H/L 5	Phase Offset 5				
Default	'0'	ʻ0'	'0'	'0'		"(0000'		
0		Low Cy	cles 5			High	Cycles 5		
Default		ʻ000	0,			"(0000'		

AD9510 Register 16 - 0x46.

For more details, refer to AD9510 datasheet.

				AD9510 Regi	ister 16 – 0x4	6				
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0					
1	Bypass 6	No Synch 6	Force 6	Start H/L 6	Phase Offset 6					
Default	'0'	ʻ0'	ʻ0'	'0'		'(0000'			
0		Low Cy	cles 6			High	Cycles 6			
Default		'00C	00'			'(0000'			

AD9510 Register 17 - 0x47.

				AD9510 Regi	ster 17 – 0x4	7				
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0					
1	Bypass 7	No Synch 7	Force 7	Start H/L 7	Phase Offset 7					
Default	'0'	ʻ0'	ʻ0'	ʻ0'		'(0000'			
0		Low Cy	cles 7			High	Cycles 7			
Default		ʻ000	00'			"(0000'			

AD9510 Register 18 - 0x48.

For more details, refer to AD9510 datasheet.

		AD9510 Register 18 – 0x48										
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
1		Not Used										
Default		ʻ0000000'										
0	Not Used	Set Func	tion pin	PD Synch	PD all Ref	Synch Software	Synch Select	Synch Enable				
Default	'0'	ʻ00)'	ʻ0'	'0'	'0'	ʻ0'	ʻ0'				

AD9510 Register 19 - 0x49.

For more details, refer to AD9510 datasheet.

	AD9510 Register 19 – 0x49							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	Not Used						Update Registers	
Default	·0000000'						ʻ0'	
0	Not Used							
Default	ʻ0000000'							

PCB and Firmware Version Registers

The PCB and Firmware Version registers can only be read by the Host. These registers indicate the PCB and Firmware versions of the *SMT384*.

FPGA Design

The following block diagram shows how the default FPGA design is structured targeting the SMT368 SLB base Module:

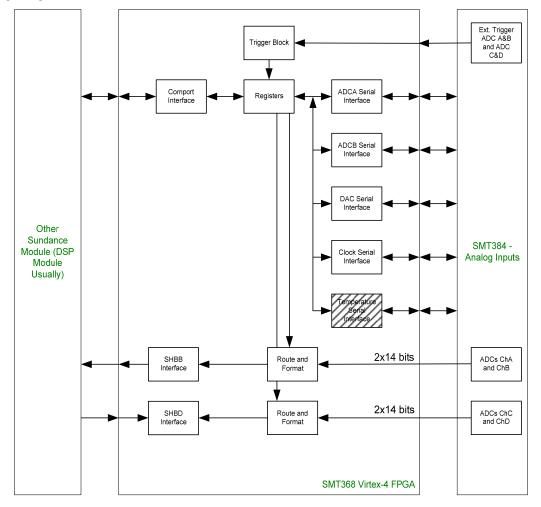


Figure 17 - Firmware Block Diagram.

Serial Interfaces

All serial interfaces have been designed in accordance with manufacturers datasheets and validated by probing and checking against timing provided.

Block of registers

This implements what has previously been described in this document.

Space available in FPGA

Here is an example of the logic resource used by the default SMT384 FPGA design targeting a XC2VP30 (SMT338-VP):

Number of RAMB16s	20 out of 136	14%
Number of SLICEs	4749 out of 13696	34%

PCB Layout

The following figures show the top and bottom view of the main module, the top view of the daughter-card and the module composition viewed from the side.

Figure 18 – Main Module Component Side.

Figure 19 - Main Module (SMT368) Solder Side.



Figure 20 - Daughter Module Component Side.

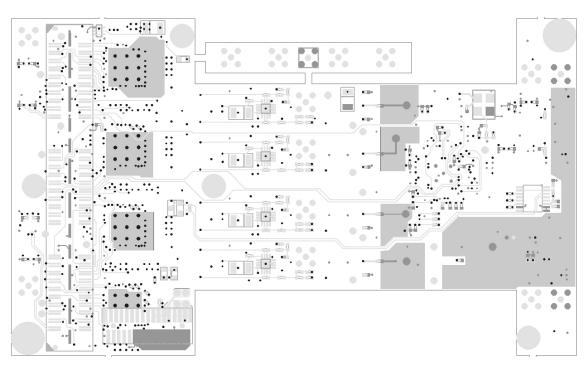


Figure 21 - Daughter Module Solder Side.

Connectors

Description

The following table gathers all connectors on the board and describes their function.

Connector name (silkscreen and schematics)	Description	Location on the board	
J3	ADCA Analog Input	Middle / Left	
J11	ADCB Analog Input	Middle / Left	
J6	ADCC Analog Input	Middle / Right	
J7	ADCD Analog Input	Middle / Right	
J30	External Reference Input	Top / Left	
J29	External Clock Input	Top / Left	
J34	External Reference Output	Top / Right	
J4	External Clock Output	Top / Right	
J24	External Trigger ADCA&B	Bottom / Left	
J25	External Trigger ADCC&D	Bottom / Left	

Location on the board

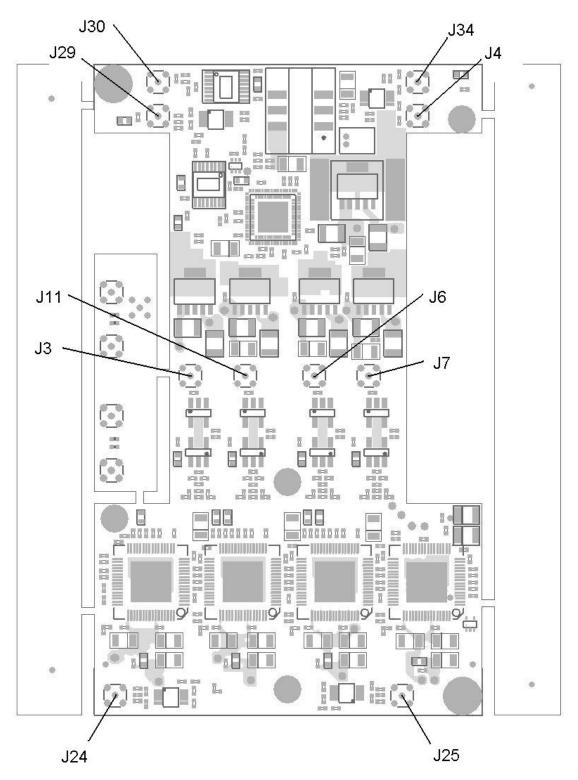


Figure 22 - Connectors Location.