Sundance Multiprocessor Technology Limited User Manual

Unit / Module Description:	Multi-output DDS based SLB Mezzanine
Unit / Module Number:	SMT399-160
Document Issue Number:	3
Issue Date:	24/05/2007
Original Author:	PSR

User Manual for SMT399-160

Sundance Multiprocessor Technology Ltd, Chiltern House, Waterside, Chesham, Bucks. HP5 1PS.

This document is the property of Sundance and may not be copied nor communicated to a third party without prior written permission. © Sundance Multiprocessor Technology Limited 2006

Certificate Number FM 55022

Revision History

Issue	Changes Made	Date	Initial s
1	Original Document	08/01/2007	PSR
2	Power consumption added	12/01/2007	PSR
3	Modification: MMBX connectors fitted	24/05/2007	SM

Table of Contents

1	In	troduction	;
2	R	elated Documents	7
3	E	xamples of application٤	3
4	Fu	unctional Description)
	4.1	Block Diagram	9
	4.2	Module Description	9
	4.3	SMT399-160 characteristics)
	4.4	Power Supply structure)
	4.5	On-board crystal1	1
	4.6	Output Variable Gain Amplifier1	1
	4.7	Daughter sub-module interface1	1
	4.8	Cascading modules1	1
	4.9	Dual-tone Mode1	2
	4.10	External Trigger	2
	4.11	LEDs1	3
5	C	ontrol Register Settings13	\$
	5.1	Control Packet Structure 1	3
	5.2	Reading and Writing Registers	4
	5.3	Memory Map14	4
	5.4	Register Descriptions	6
	5.4	.1 Reset and Update Register – 0x010	3
	5.4	.2 Profile Register – 0x1	3
	5.4	.3 VGA0 Register – 0x218	3
	5.4	.4 VGA1 Register – 0x319	9
	5.4	.5 VGA2 Register – 0x4	9
	5.4	.6 VGA3 Register – 0x5	9
	5.4	.7 DDS0 Register – 0x6 – Control Function Register)
	5.4	.8 DDS0 Register – 0x7 – Control Function Register	2
	5.4	.9 DDS0 Register – 0x8 – Control Function Register23	3
	5.4	.10 DDS0 Register – 0x9 – Amplitude Scale Factor	5
	5.4	.11 DDS0 Register – 0xA – Amplitude Ramp Rate	5
	5.4	.12 DDS0 Register – 0xB – Frequency Tuning Word 0	5
	5.4	.13 DDS0 Register – 0xC – Frequency Tuning Word 0	3
	5.4	.14 DDS0 Register – 0xD – Phase Offset Word	3
	5.4	.15 DDS0 Register – 0xE – Frequency Tuning Word 1	3
	5.4	.16 DDS0 Register – 0xF – Frequency Tuning Word 12	7

	5.4.17 DDS0 Register – 0x10 – RAM Segment Control Word 0	27
	5.4.18 DDS0 Register – 0x11 – RAM Segment Control Word 0	27
	5.4.19 DDS0 Register – 0x12 – RAM Segment Control Word 0	28
	5.4.20 DDS0 Register – 0x13 – RAM Segment Control Word 1	28
	5.4.21 DDS0 Register – 0x14 – RAM Segment Control Word 1	28
	5.4.22 DDS0 Register – 0x15 – RAM Segment Control Word 1	28
	5.4.23 DDS0 Register – 0x16 – RAM Segment Control Word 2	29
	5.4.24 DDS0 Register – 0x17 – RAM Segment Control Word 2	29
	5.4.25 DDS0 Register – 0x18 – RAM Segment Control Word 2	29
	5.4.26 DDS0 Register – 0x19 – RAM Segment Control Word 3	29
	5.4.27 DDS0 Register – 0x1A – RAM Segment Control Word 3	30
	5.4.28 DDS0 Register – 0x1B – RAM Segment Control Word 3	30
	5.4.29 DDS0 Register – 0x1C – Falling Delta Frequency Tuning	30
	5.4.30 DDS0 Register – 0x1D – Falling Delta Frequency Word	31
	5.4.31 DDS0 Register – 0x1E – Falling Sweep Ramp Rate Word	31
	5.4.32 DDS0 Register – 0x1F – Rising Delta Frequency Tuning	31
	5.4.33 DDS0 Register – 0x20 – Rising Delta Frequency Word	32
	5.4.34 DDS0 Register – 0x21 – Rising Sweep Ramp Rate Word	32
6	PCB Layout	33
6	.1 Top View	33
6	.2 Bottom View	34
7	Connector Location	35
8	Support Packages	36
9	Physical Properties	37
10	Safety	38
11	ЕМС	39

Table of Figures

8
9
10
11
12
12
13
14
16
33
34
35

1 Introduction

The *SMT399-160* is a multi-output mezzanine single width module, which is able to generate sine waves at up to 160MHz. This mezzanine board is to be fitted on one of Sundance SLB (Sundance LVDS Bus) base modules, such as <u>SMT338-VP</u> or <u>SMT398-VP</u> or <u>SMT368</u> and cannot be used on its own. It is built around two <u>AD9954</u>s, Direct Digital Synthesizer (DDS – Analog Devices) featuring <u>14-bit DAC</u> operating/sampling at up to 400 MHz. Both devices are separately programmable, can contain up to 4 profiles and have the possibility of being synchronised. The architecture allows generating single-tone or dual-tone signals. DDS outputs are split into two legs, each of them featuring a programmable amplifier (VGA). The SMT399-160 has got in total two pairs of outputs.

A Xilinx FPGA Virtex-II Pro (or Virtex4) from the base module, is used to control DDSs and Variable Gain Amplifiers (VGAs) of the *SMT399-160*, after receiving command words via a Comport.

SMT399-160 modules can be cascaded and work into the AD9954 Master/Slave mode.

PCB connectors are <u>MMBXs</u> from <u>Hubert Suhner</u>.

It can be used in the following application:

- Radio systems, as a clock generator (fine tuning),
- Test systems (dual tone and fast hopping),
- Programmable system (software programmable),
- Etc...

2 Related Documents

AD9954 Datasheet - Analog Devices: http://www.analog.com/Analog_Root/productPage/productHome/0,2121,AD9954,00.html
Sundance High-speed Bus (*SHB*) specifications – Sundance. ftp://ftp2.sundance.com/Pub/documentation/pdf-files/SHB_Technical_Specification.pdf
Sundance LVDS Bus (*SLB*) – Sundance. http://www.sundance.com/docs/SLB%20-%20Technical%20Specifications.pdf
TIM specifications - TI. ftp://ftp2.sundance.com/Pub/documentation/pdf-files/tim_spec_v1.01.pdf
Xilinx Virtex-II PRO FPGA - Xilinx. http://direct.xilinx.com/bvdocs/publications/ds083.pdf
MMBX Connectors – Hubert Suhner. MMBX Connectors

3 Examples of application.

The *SMT399-160* module can be used in the following application:

- <u>Radio systems</u>. Compatible with Sundance's TIM Modules, it can be combined with DAQ modules such as ADCs and DACs, as a clock generator. The *SMT399-160* fine-tuning makes it even more suitable for such platform to generate up-to-four synchronised and/or quadrature signals.
- <u>Test systems</u>. It is sometimes very helpful to have a signal generator capable of generators various frequencies to evaluate some radio system. Fast hopping is the key word here. Dual tone signals are useful to characterise a receiver system to evaluate its capabilities of receiving signals close to each other in frequency. DDSs also to generate a ramp, a pattern or a frequency sweep.
- <u>Programmable system</u>. As most of system, it a very important top control every part of a system. The *SMT399-160* is fully controllable via software.
- Etc...

As both pairs of DDSs are synchronised and coupled master/slave, the module can generate 90-degree phase shift signals and be part of a quadrature modulator system.

4 Functional Description

In this part, we will see the general block diagram and some comments on the main entities.

4.1 Block Diagram

The following diagram shows the block diagram of the SMT399-160.

4.2 Module Description

The module is built around two Direct Digital Synthesizers (DDS): two AD9954.

The AD9954 is a DDS featuring 14-bit DAC operating at up to 400MSPS. It forms a digitally programmable high frequency synthesizer capable of generating an analog output sinusoidal waveform at up to 160MHz. The AD9954 provides fast frequency hopping and fine-tuning resolution (32-bit frequency tuning word). The AD9954 includes an integrated 1024x32 static RAM to support flexible frequency sweep capability in several modes. It also supports a user defined linear sweep mode of operation. The frequency resolution of the AD9954 is 0.0931 Hz when clocked at 400MHz. Both analog outputs can be linked together via jumpers in order to generate a dual tone signal.

DDS outputs are doubled and combined with Variable Gain Amplifiers (VGA).

Analog signals are all single-ended and output on MMBX connectors (J13, J14, J15 and J20) for connection to a 50-Ohm load.

Output Sine waves can be turned into 'sharp' square signals using the AD9954 built-in comparator. Square signals (one per DDS) are also available on MMBX connectors (J24 and J25) on LVTTL format.

All DDS settings travel via the FPGA present on SLB base module. Information comes from a Comport and the FPGA stores it first into internal registers and interfaces it to the DDS chips via the SLB connector. Comports follow the Texas Instrument C4x standard.

4 green LEDs are also available and driven by the FPGA to report working or failing conditions to the user. Other green LEDs show that all power supplies are ON and working.

Two external triggers (J11 and J23) are also available.

Analog Outputs (J13, J14, J15 and J20).				
	0 to 2.12 Volts without saturation (sine wave)			
Analog Output Voltage Range	0 to 3.0 Volts with saturation			
	(Output level set via Control Register - VGA)			
Output Impedance	Terminated to be connected to a 50-Ohm load.			
Frequency range	Up to 160 MHz			
Frequency resolution0.0931 Hz				
Square Outputs (J24 and J25).				
Output Format LVTTL				
Frequency range	Up to 160 MHz			
Frequency Resolution	0.0931 Hz			
External Tr	iggers (J11 and J23).			
Input Range	LVTTL (default FPGA PAD setting)			
Frequency Range	Up to 160 MHz			
Input Reference (Option – J21)				
Frequency range0 to 400 MHz.				

4.3 SMT399-160 characteristics.

Figure 3 - Output main characteristics.

4.4 Power Supply structure.

The *SMT399-160* conforms to the TIM standard for single width modules. The TIM connectors supply 5 Volts to the base module, which also requires an additional 3.3-Volt power supply, which must be provided by the two diagonally opposite mounting holes. This 3.3-volt is present on all Sundance TIM carrier boards. From these two power rails, are generated a filtered 3.3-volt as well as a 1.8-volt source for both <u>AD9954</u>s.

Greens LEDs placed on the board report the state of the power supplies.

The SMT399-160 requires 2 power rails from the SLB power connector: +3.3 and +5 Volts.

4.5 On-board crystal.

The AD9954 are clocked from a crystal (20MHz). The master DDS then passes the sampling clock to the slave DDS to ensure synchronisation. Synchronisation can also be achieved when cascading several *SMT399-160* daughter modules. There is an automatic synchronisation available from the DDS registers.

4.6 Output Variable Gain Amplifier.

Each output is driven by a Variable Gain Amplifier (VGA – <u>AD8370</u>), digitally controlled that uses 8 bits to code the gain and provides a power-down mode. Two ranges of gains are available: from -11 to +17dBs or from +6 to +34dBs.

4.7 Daughter sub-module interface.

The link between the main and the daughter sub-module is made via two Samtec connectors. There is no fast signal travelling between both cards. The first connector passes control signals and the second one passes a 3.3-volt and 5-volt supplies and a ground between sub-modules.

The female differential connector is located on the main module. The Samtec Part Number for this connector is QTH-060-01-F-D-DP-A.

The female power connector is located on the main module. The Samtec Part Number for this connector is BKS-133-03-F-V-A

The male differential connector is located on the daughter card. The Samtec Part Number for this connector is QSH-060-01-F-D-DP-A

The male power connector is located on the daughter card. The Samtec Part Number for this connector is BKT-133-03-F-V-A

The mated height between the main module and the daughter card is 5 mm.

4.8 Cascading modules

Several SMT399-160s can be cascaded. All DDSs can be synchronised by linking the modules via connectors J1 and J3, both are 2-mm 3-pin headers. J1 of the master module should be connected to J3 of the slave module as follows:

SMT399-160 Master (J1)	SMT399-160 Slave (J3)		
Crystal Out	Crystal In		
(J1 – pin 1)	(J3 – pin 3)		
Gnd	Gnd		
(J1 – pin 2)	(J3 – pin 2)		
Synch In	Synch Out		
(J1 – pin 3)	(J3 – pin 1)		

Figure 4 - Connections for cascading modules.

Figure 5 - Multi module synchronisation connectors.

4.9 Dual-tone Mode.

The SMT399-160 can used as a dual-tone generator. Both DDS outputs can be mixed together. In this case, all four analog outputs (J13, J14, J15 and J20) would show the same signal, at relevant amplitudes.

To configure the SMT399-160 into the dual-tone mode, simply fit J16, J17, J18 and J19 in place.

The normal mode of operation is obtained by leaving J16, J17, J18 and J19 open.

Figure 6 - Dual-Tone Mode.

4.10 External Trigger.

Two external triggers are available on J23 and J11. Both are straight through, i.e. the connector is directly connected to the FPGA. There is no protection so it is to the user to make sure levels present on the connector are compatible with the pad implemented in the FPGA. In the default firmware provided, J23 is connected to LED1 and J11 to LED3 (see silkscreen for LED locations).

4.11 LEDs.

There are 8 LEDs on the board. Only 4 are user defined, i.e. accessible from the FPGA on the SLB base module. These 4 leds are labelled on silkscreen LED1, LED2, LED3 and LED4. In the standard firmware provided with the board, LED0 and LED2 are flashing in opposite phase as soon as the FPGA is configured and the on-board crystal of the SLB based module is working. LED1 is connected directly to the trigger signal coming from J11. LED3 is connected directly to the trigger signal coming from J23. External triggers have no more action than driving LED1 and LED3.

The other 4 LEDs are connected on power rails and should be ON at all time. If not it is strongly recommended to put the module off power and to contact Sundance.

5 Control Register Settings

The Control Registers control the complete functionality of the *SMT399-160*. They are setup via the Comport3 in the standard FPGA firmware provided.

5.1 Control Packet Structure

The data passed on to the *SMT399-160* over the Comports must conform to a certain packet structure. Only valid packets will be accepted and only after acceptance of a packet will the appropriate settings be implemented. Each packet will start with a certain sequence indicating the start of the packet (OxFF). The address to write the data payload into will follow next. After the address the data will follow. This structure is illustrated in the following figure:

	Byte Content							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	'1'	'1'	'1'	'1'	'1'	'1'	'1'	'1'
1	Address 7	Address 6	Address 5	Address 4	Address 3	Address 2	Address 1	Address 0
3	Data 15	Data 14	Data 13	Data 12	Data 11	Data 10	Data 9	Data 8
4	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0

Figure 7 – Setup Packet Structure.

5.2 Reading and Writing Registers

Control packets are sent to the *SMT399-160* over Comport3 only in the standard firmware. This is a bi-directional interface. The format of a 'Read Packet' is the same as that of a write packet.

Figure 8 – Control Register Read Sequence.

5.3 Memory Map

The write packets must contain the address where the data must be written to and the read packets must contain the address where the required data must be read. The following figure shows the memory map for the writable and readable Control Registers on the *SMT399-160:*

Address	Writable Registers	Readable Registers
0x00	Reset and Update Register.	Reserved.
0x01	DDS0 and 1 Profile Register.	DDS0 and DDS1 Profile Register.
0x02	VGA0.	Read-back (FPGA Register) VGA0.
0x03	VGA1.	Read-back (FPGA Register) VGA1.
0x04	VGA2.	Read-back (FPGA Register) VGA2.
0x05	VGA3.	Read-back (FPGA Register) VGA3.
0x06	DDS0 – Register 0 (0x0) – Control Function Register.	Read-back (FPGA Register) DDS0 – Register 0 (0x0).
0x07	DDS0 – Register 1 (0x1) – Control Function Register.	Read-back (FPGA Register) DDS0 – Register 1 (0x1).
0x08	DDS0 – Register 2 (0x2) – Control Function Register.	Read-back (FPGA Register) DDS0 – Register 2 (0x2).
0x09	DDS0 – Register 3 (0x3) – Amplitude Scale Factor Register.	Read-back (FPGA Register) DDS0 – Register 3 (0x3).
0x0A	DDS0 – Register 4 (0x4) – Amplitude Ramp Rate Register.	Read-back (FPGA Register) DDS0 – Register 4 (0x4).
0x0B	DDS0 – Register 5 (0x5) – Frequency Tuning Word 0.	Read-back (FPGA Register) DDS0 – Register 5 (0x5).
0x0C	DDS0 – Register 6 (0x6) – Frequency Tuning Word 0.	Read-back (FPGA Register) DDS0 – Register 6 (0x6).
0x0D	DDS0 – Register 7 (0x7) – Phase Offset Word.	Read-back (FPGA Register) DDS0 – Register 7 (0x7).
0x0E	DDS0 – Register 8 (0x8) – Frequency Tuning Word 1.	Read-back (FPGA Register) DDS0 – Register 8 (0x8).
0x0F	DDS0 – Register 9 (0x9) – Frequency Tuning Word 1.	Read-back (FPGA Register) DDS0 - Register 9 (0x9).
0x10	DDS0 – Register A (0xA) – RAM Segment Control Word 0.	Read-back (FPGA Register) DDS0 – Register A (0xA).

0x11	DDS0 – Register B (0xB) – RAM Segment Control Word 0.	Read-back (FPGA Register) DDS0 – Register B (0xB).
0x12	DDS0 – Register C (0xC) – RAM Segment Control Word 0.	Read-back (FPGA Register) DDS0 – Register C (0xC).
0x13	DDS0 – Register D (0xD) – RAM Segment Control Word 1.	Read-back (FPGA Register) DDS0 – Register D (0xD).
0x14	DDS0 – Register E (0xE) – RAM Segment Control Word 1.	Read-back (FPGA Register) DDS0 – Register E (0xE).
0x15	DDS0 – Register F (0xF) – RAM Segment Control Word 1.	Read-back (FPGA Register) DDS0 – Register F (0xF).
0x16	DDS0 – Register 10 (0x10) – RAM Segment Control Word 2.	Read-back (FPGA Register) DDS0 – Register 10 (0x10).
0x17	DDS0 – Register 11 (0x11) – RAM Segment Control Word 2.	Read-back (FPGA Register) DDS0 – Register 11 (0x11).
0x18	DDS0 – Register 12 (0x12) – RAM Segment Control Word 2.	Read-back (FPGA Register) DDS0 – Register 12 (0x12).
0x19	DDS0 – Register 13 (0x13) – RAM Segment Control Word 3.	Read-back (FPGA Register) DDS0 – Register 13 (0x13).
0x1A	DDS0 – Register 14 (0x1A) – RAM Segment Control Word 3.	Read-back (FPGA Register) DDS0 – Register 14 (0x14).
Ox1B	DDS0 – Register 15 (0x1B) – RAM Segment Control Word 3.	Read-back (FPGA Register) DDS0 – Register 15 (0x15).
0x1C	DDS0 – Register 16 (0x1C) – Falling Delta Frequency Tuning Word.	Read-back (FPGA Register) DDS0 - Falling Delta Frequency Tuning Word.
0x1D	DDS0 – Register 17 (0x1D) – Falling Delta Frequency Tuning Word.	Read-back (FPGA Register) DDS0 - Falling Delta Frequency Tuning Word.
0x1E	DDS0 – Register 18 (0x1E) – Falling Sweep Ramp rate Word.	Read-back (FPGA Register) DDSO - Falling Sweep Ramp rate Word.
Ox1F	DDS0 – Register 19 (0x1F) – Rising Delta Frequency Tuning Word.	Read-back (FPGA Register) DDS0 - Rising Delta Frequency Tuning Word.
0x20	DDS0 – Register 20 (0x20) – Rising Delta Frequency Tuning Word.	Read-back (FPGA Register) DDS0 - Rising Delta Frequency Tuning Word.
0x21	DDS0 – Register 21 (0x21) – Rising Sweep Ramp rate Word.	Read-back (FPGA Register) DDS0 - Rising Sweep Ramp rate Word.
0x26	DDS1 – Register 0 (0x0) – Control Function Register.	Read-back (FPGA Register) DDS1 – Register 0 (0x0).
0x27	DDS1 – Register 1 (0x1) – Control Function Register.	Read-back (FPGA Register) DDS1 – Register 1 (0x1).
0x28	DDS1 – Register 2 (0x2) – Control Function Register.	Read-back (FPGA Register) DDS1 – Register 2 (0x2).
0x29	DDS1 – Register 3 (0x3) – Amplitude Scale Factor Register.	Read-back (FPGA Register) DDS1 – Register 3 (0x3).
0x2A	DDS1 – Register 4 (0x4) – Amplitude Ramp Rate Register.	Read-back (FPGA Register) DDS1 – Register 4 (0x4).
Ox2B	DDS1 – Register 5 (0x5) – Frequency Tuning Word 0.	Read-back (FPGA Register) DDS1 – Register 5 (0x5).
0x2C	DDS1 – Register 6 (0x6) – Frequency Tuning Word 0.	Read-back (FPGA Register) DDS1 – Register 6 (0x6).
0x2D	DDS1 – Register 7 (0x7) – Phase Offset Word.	Read-back (FPGA Register) DDS1 – Register 7 (0x7).
0x2E	DDS1 – Register 8 (0x8) – Frequency Tuning Word 1.	Read-back (FPGA Register) DDS1 – Register 8 (0x8).
0x2F	DDS1 – Register 9 (0x9) – Frequency Tuning Word 1.	Read-back (FPGA Register) DDS1 – Register 9 (0x9).
0x30	DDS1 – Register A (0xA) – RAM Segment Control Word 0.	Read-back (FPGA Register) DDS1 – Register A (0xA).
0x31	DDS1 – Register B (0xB) – RAM Segment Control Word 0.	Read-back (FPGA Register) DDS1 – Register B (0xB).
0x32	DDS1 – Register C (0xC) – RAM Segment Control Word 0.	Read-back (FPGA Register) DDS1 – Register C (0xC).
0x33	DDS1 – Register D (0xD) – RAM Segment Control	Read-back (FPGA Register) DDS1 – Register D (0xD).

	Word 1.	
0x34	DDS1 – Register E (0xE) – RAM Segment Control Word 1.	Read-back (FPGA Register) DDS1 – Register E (0xE).
0x35	DDS1 – Register F (0xF) – RAM Segment Control Word 1.	Read-back (FPGA Register) DDS1 – Register F (0xF).
0x36	DDS1 – Register 10 (0x10) – RAM Segment Control Word 2.	Read-back (FPGA Register) DDS1 – Register 10 (0x10).
0x37	DDS1 – Register 11 (0x11) – RAM Segment Control Word 2.	Read-back (FPGA Register) DDS1 – Register 11 (0x11).
0x38	DDS1 – Register 12 (0x12) – RAM Segment Control Word 2.	Read-back (FPGA Register) DDS1 – Register 12 (0x12).
0x39	DDS1 – Register 13 (0x13) – RAM Segment Control Word 3.	Read-back (FPGA Register) DDS1 – Register 13 (0x13).
0x3A	DDS1 – Register 14 (0x14) – RAM Segment Control Word 3.	Read-back (FPGA Register) DDS1 – Register 14 (0x14).
Ox3B	DDS1 – Register 15 (0x15) – RAM Segment Control Word 3.	Read-back (FPGA Register) DDS1 – Register 15 (0x15).
0x3C	DDS1 – Register 16 (0x1C) – Falling Delta Frequency Tuning Word.	Read-back (FPGA Register) DDS1 - Falling Delta Frequency Tuning Word.
0x3D	DDS1 – Register 17 (0x1D) – Falling Delta Frequency Tuning Word.	Read-back (FPGA Register) DDS1 - Falling Delta Frequency Tuning Word.
0x3E	DDS1 – Register 18 (0x1E) – Falling Sweep Ramp rate Word.	Read-back (FPGA Register) DDS1 - Falling Sweep Ramp rate Word.
0x3F	DDS1 – Register 19 (0x1F) – Rising Delta Frequency Tuning Word.	Read-back (FPGA Register) DDS1 - Rising Delta Frequency Tuning Word.
0x40	DDS1 – Register 20 (0x20) – Rising Delta Frequency Tuning Word.	Read-back (FPGA Register) DDS1 - Rising Delta Frequency Tuning Word.
0x41	DDS1 – Register 21 (0x21) – Rising Sweep Ramp rate Word.	Read-back (FPGA Register) DDS1 - Rising Sweep Ramp rate Word.

Figure 9 – Register Memory Map.

Analog Devices provides an Interactive Web Tool to calculate Tuning words. It can be found at the following URL:

http://designtools.analog.com/dtDDSWeb/dtDDSMain.aspx?part=AD9954

5.4 **Register Descriptions**

5.4.1 Reset and Update Register – 0x0.

	Reset Register – 0x0							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	DDS1 IO_Update	DDS0 IO_Update	DDS1 Update	DDS0 Update	VGA3 Update	VGA2 Update	VGA1 Update	VGA0 Update
Default	' 0'	' 0'	' 0'	' 0'	' 0'	' 0'	' 0'	' 0'
0	Reserved	Reserved	DDS1 Reset	DDS0 Reset	VGA3 Reset	VGA2 Reset	VGA1 Reset	VGA0 Reset
Default	' 0'	' 0'	'1'	'1'	'1'	'1'	'1'	'1'

	Reset Register – 0x0					
Setting	Bit 0	Description				
0	0	Normal Operation.				
1	1	Keep VGA0 in Power Down mode (Gain settings preserved).				
Setting	Bit 1	Description				
0	0	Normal Operation.				
1	1	Keep VGA1 in Power Down mode (Gain settings preserved).				
Setting	Bit 2	Description				
0	0	Normal Operation.				
1	1	Keep VGA2 in Power Down mode (Gain settings preserved).				
Setting	Bit 3	Description				
0	0	Normal Operation.				
1	1	Keep VGA3 in Power Down mode (Gain settings preserved).				
Setting	Bit 4	Description				
0	0	Normal Operation.				
1	1	Keep DDS0 in Power Down mode.				
Setting	Bit 5	Description				
0	0	Normal Operation.				
1	1	Keep DDS1 in Power Down mode.				
Setting	Bit 8	Description				
0	0	Normal Operation.				
1	1	VGA0 gets updated with current register settings.				
Setting	Bit 9	Description				
0	0	Normal Operation.				
1	1	VGA1 gets updated with current register settings.				
Setting	Bit 10	Description				
0	0	Normal Operation.				
1	1	VGA2 gets updated with current register settings.				
Setting	Bit 11	Description				
0	0	Normal Operation.				
1	1	VGA3 gets updated with current register settings.				
Setting	Bit 12	Description				
0	0	Normal Operation.				
1	1	DDS0 gets updated with current register settings.				
Setting	Bit 13	Description				
0	0	Normal Operation.				
1	1	DDS1 gets updated with current register settings.				
Setting	Bit 14	Description				
0	0	Normal Operation.				
1	1	Forces DDS0 to reload its registers. Self-clear. To be used in conjunction of bit 15 to synchronise both DDS chips.				
Setting	Bit 15	Description				
0	0	Normal Operation.				
1	1	Forces DDS0 to reload its registers. Self-clear. To be used in conjunction of bit 14 to synchronise both DDS chips				

<u>Note 0</u>: Reset bits don't get cleared automatically, so a device can remain reset while not used to reduce the global power consumption.

<u>Note 1</u>: Update and IO_Update bits get cleared automatically.

5.4.2 Profile Register – 0x1.

Any 16-bit value written in this register can be read-back to check that the Comport used works properly.

		Profile Register – 0x1						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0		Not	Used		Profile Sele	ction DDS1	Profile Sele	ction DDS0
Default		'00 '	00'		ʻ00'		ʻ00'	

	Reset Register – 0x0						
Setting	Bit 1&0	Description					
0	'00'	Profile 0 Selected – DDS0.					
1	'01'	Profile 1 Selected – DDS0.					
2	ʻ10'	Profile 2 Selected – DDS0.					
3	'11'	Profile 3 Selected – DDS0.					
Setting	Bit 3&2	Description					
0	'00'	Profile 0 Selected – DDS1.					
1	'01'	Profile 1 Selected – DDS1.					
2	ʻ10'	Profile 2 Selected – DDS1.					
3	'11'	Profile 3 Selected – DDS1.					

5.4.3 VGA0 Register – 0x2.

	VGA0 Register – 0x2								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
1		Reserved							
Default		·0000000'							
0	Gain Mode		Gain						
Default	' 0'				ʻ0000000'				

	VGA0 Register – 0x2						
Setting	Gain Mode (Bit 7)	in de t 7) Description					
0	0	LG Mode: Low Gain. The Gain can be from -11 to +17dBs.					
1	1	HG Mode: Low Gain. The Gain can be from +6 to +34dBs.					
		VGA0 Register – 0x2					
Setting	Bits 6-0	Description					
0		Gain value (Binary). The scale is from -11 to +17dBs (LG Mode) or from +6 to +34dBs (HG Mode).					

5.4.4 VGA1 Register - 0x3.

For more details, refer to AD8370 datasheet.

		VGA1 Register – 0x3									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O			
1		Reserved									
Default		ʻ0000000'									
0	Gain Mode	n Mode Gain									
Default	' 0'				, '0000000'						

	VGA1 Register – 0x3						
Setting	Gain Mode (Bit 7)	Description					
0	0	LG Mode: Low Gain. The Gain can be from -11 to +17dBs.					
1	1	HG Mode: Low Gain. The Gain can be from +6 to +34dBs.					
		VGA1 Register – 0x3					
Setting	Bits 6-0	Description					
0		Gain value (Binary). The scale is from -11 to +17dBs (LG Mode) or from +6 to +34dBs (HG Mode).					

5.4.5 VGA2 Register - 0x4

For more details, refer to AD8370 datasheet.

		VGA2 Register – 0x4							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
1		Reserved							
Default		·0000000'							
0	Gain Mode	ain Mode Gain							
Default	' 0'				,0000000,				

	VGA2 Register – 0x4						
Setting	Gain Mode (Bit 7)	Description					
0	0	LG Mode: Low Gain. The Gain can be from -11 to +17dBs.					
1	1	HG Mode: Low Gain. The Gain can be from +6 to +34dBs.					
		VGA2 Register – 0x4					
Setting	Bits 6-0	Description					
0		Gain value (Binary). The scale is from -11 to +17dBs (LG Mode) or from +6 to +34dBs (HG Mode).					

5.4.6 VGA3 Register - 0x5.

		VGA3 Register – 0x5						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
1		Reserved						
Default		,0000000,						

0	Gain Mode	Gain
Default	' 0'	ʻ0000000'

	VGA3 Register – 0x5						
Setting	Gain Mode (Bit 7)	n e Description 7)					
0	0	LG Mode: Low Gain. The Gain can be from -11 to +17dBs.					
1	1	HG Mode: Low Gain. The Gain can be from +6 to +34dBs.					
	VGA3 Register – 0x5						
Setting	Bits 6-0	Description					
0		Gain value (Binary). The scale is from -11 to +17dBs (LG Mode) or from +6 to +34dBs (HG Mode).					

5.4.7 DDSO Register – 0x6 – Control Function Register.

	DDSO Register – 0x6 – Control Function Register							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Digital Power Down	Comp Power Down	DAC Power- Down	Clock Input Power- down	External Power- down Mode	Linear Sweep No Dwell	SYNC_CLk Out Disable	Not Used
Default	' 0'	' 0'	' 0'	' 0'	' 0'	' 0'	' 0'	' 0'
1	Load SRR @ IO UD	AutoClear Freq Accum	AutoClear Phase Accum	Enable Sine Output	Clear Freq Accum	Clear Phase Accum	SDIO Input Only	LSB First
Default	' 0'	' 0'	' 0'	' 0'	' 0'	' 0'	' 0'	' 0'

		DDS0 Register – 0x6 – Control Function Register		
Setting	Load SRR @IO UD (Bit 15)	Description		
0	0	The Linear Sweep Ramp Rate timer is loaded only upon timeout and is not loaded due to an Io Update input signal.		
1	1	The Linear Sweep Ramp Rate timer is loaded only upon timeout and is loaded due to an Io Update input signal.		
		DDS0 Register – 0x6 – Control Function Register		
Setting	Auto Clear Freq Accum (Bit 14)	Description		
0	0	The state of the frequency accumulator remains unchanged.		
1	1	Clears the frequency accumulator for one cycle on an IO Update signal.		
		DDS0 Register – 0x6 – Control Function Register		
Setting	Auto Clear Phase Accum (Bit 13)	Description		
0	0	The state of the phase accumulator remains unchanged.		
1	1	Clears the phase accumulator for one cycle on an IO Update signal.		
		DDS0 Register – 0x6 – Control Function Register		
Setting	Enable	Description		

	Sine output (Bit 12)					
0	0	Cosine Function.				
1	1	Sine Function.				
	DDS0 Register – 0x6 – Control Function Register					
Setting	Clear Freq Accum (Bit 11)	Description				
0	0	The frequency accumulator functions as normal.				
1	1	The frequency accumulator is cleared until this bit is cleared.				
		DDS0 Register – 0x6 – Control Function Register				
Setting	Clear Phase Accum (Bit 10)	Description				
0	0	The phase accumulator functions as normal.				
1	1	The phase accumulator is cleared until this bit is cleared.				
		DDS0 Register – 0x6 – Control Function Register				
Setting	SDIO Input only (Bit 9)	Description				
0	0	SDIO is bidirectional.				
1	1	SDIO is unidirectional.				
	DDS0 Register – 0x6 – Control Function Register					
Setting	LSB first (Bit 8)	Description				
0	0	MSB first format is active.				
1	1	LSB first format is active				
		DDS0 Register – 0x6 – Control Function Register				
Setting	Digital Power Down (Bit 7)	Description				
0	0	All Digital functions and clocks are active.				
1	1	All non-IO digital functions is suspended.				
		DDS0 Register – 0x6 – Control Function Register				
Setting	Comp Power Down (Bit 6)	Description				
0	0	The comparator is enabled for operation.				
1	1	The comparator is disabled.				
		DDS0 Register – 0x6 – Control Function Register				
Setting	DAC Power Down (Bit 5)	Description				
0	0	The DAC is enabled for operation				
1	1	The DAC is disabled.				
		DDS0 Register – 0x6 – Control Function Register				
Setting	Clk Input Power Down (Bit	Description				

	4)	
0	0	The clock input circuitry is enabled.
1	1	The Clock input circuitry is disabled.
		DDS0 Register – 0x6 – Control Function Register
Setting	External Power Down (Bit 3)	Description
0	0	Only digital logic and DAC are powered down when PWRDWNCTL pin is high.
1	1	All functions are powered down when PWRDWNCTL pin is high.
		DDS0 Register – 0x6 – Control Function Register
Setting	Linear Sweep (Bit 2)	Description
0	0	The linear sweep no dwell function is inactive.
1	1	The linear sweep no dwell function is active.
		DDS0 Register – 0x6 – Control Function Register
Setting	SYNC_CLK out disable (Bit 1)	Description
0	0	The SYNC_CLK pin is active.
	_	

5.4.8 DDSO Register – 0x7 – Control Function Register.

			DDS0 Regis	egister – 0x7 – Control Function Register				
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	Autoatic Sync Enable	Software Manual Sync	Linear Sweep Enable			Not Used		
Default	' 0'	' 0'	' 0'	,00000,				
1	RAM Enable	RAM Dest is Phase Word	Internal Profile Control		Load ARR	OSK Enable	Auto OSK Keying	
Default	' 0'	' 0'		'000'		' 0'	' 0'	' 0'

		DDS0 Register – 0x7 – Control Function Register				
Setting	RAM Enable (Bit 15)	Description				
0	0	The RAM disabled.				
1	1	The RAM is active for operation.				
	DDS0 Register – 0x7 – Control Function Register					
Setting	RAM Destination (Bit 14)	Description				
0	0	The RAM drives the phase accumulator.				
1	1	The RAM drives the phase-offset adder.				
		DDS0 Register – 0x7 – Control Function Register				

Setting	Internal Profile Control (Bit 13-11)	Description			
		Internal Profile control.			
		DDS0 Register – 0x7 – Control Function Register			
Setting	Load ARR @IO UD (Bit 10)	Description			
0	0	The Amplitude Ramp Rate timer is loaded only upon timeout and is not loaded due to an Io Update input signal.			
1	1	The Amplitude Ramp Rate timer is loaded only upon timeout and is loaded due to an Io Update input signal.			
		DDS0 Register – 0x7 – Control Function Register			
Setting	OSK Enable (Bit 9)	Description			
0	0	Shaped on-off keying is bypassed.			
1	1	Shaped on-off keying is enabled.			
	DDS0 Register – 0x7 – Control Function Register				
Setting	Auto OSK Keying (Bit 8)	Description			
0	0	Manual on-off keying operation selected.			
1	1	Automatic on-off keying operation selected.			
		DDS0 Register – 0x7 – Control Function Register			
Setting	Auto Synch Enable (Bit 7)	Description			
0	0	The auto synchronisation of multiple AD9954 is inactive.			
1	1	The auto synchronisation of multiple AD9954 is active.			
		DDS0 Register – 0x7 – Control Function Register			
Setting	Soft Manual Synch (Bit 6)	Description			
0	0	The manual synchronisation of multiple AD9954 is inactive.			
1	1	The manual synchronisation of multiple AD9954 is active.			
		DDSO Register – 0x7– Control Function Register			
Setting	Linear Sweep Enable (Bit 5)	Description			
0	0	The linear frequency sweep capabilities are inactive.			
1	1	The linear frequency sweep capabilities are active.			

5.4.9 DDS0 Register – 0x8 – Control Function Register.

		DDS0 Register – 0x8 – Control Function Register						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	RefClk Multiplier					VCO Range	Charge Pu	mp Current
Default	ʻ00000'					' 0'	' 0	0'

1	Not Used	High speed synch enable	Hardware Manual Sync enable	Crystal Output Pin active	Not Used
Default	' 0'	' 0'	' 0'	' 0'	' 0'

		DDS0 Register – 0x8 – Control Function Register					
Setting	High Speed Sync (Bit 11)	Description					
0	0	The high-speed enhancement is off.					
1	1	The high-speed enhancement is on.					
		DDS0 Register – 0x8 – Control Function Register					
Setting	Hardware Manual Synch (Bit 10)	Description					
0	0	The hardware synch function is off.					
1	1	The hardware synch function is on.					
		DDS0 Register – 0x8 – Control Function Register					
Setting	Crystal out pin active (Bit 9)	Description					
0	0	CRYSTAL OUT pin is inactive.					
1	1	CRYSTAL OUT pin is active.					
		DDS0 Register – 0x8 – Control Function Register					
Setting	Ref Clock Multiplier (Bit 7-3)	Description					
		Valid values are decimal 4-20 (0x4 to 0x14).					
		DDS0 Register – 0x8 – Control Function Register					
Setting	VCO Range (Bit 2)	Description					
0	0	The VCO operates in a range of 100MHz to 250MHz.					
1	1	The VCO operates in a range of 250MHz to 400MHz.					
		DDS0 Register – 0x8 – Control Function Register					
Setting	Charge Pump Current (Bit 1-0)	Description					
		0x0 (75uA), 0x1 (100uA), 0x2 (125uA) or 0x3 (150uA).					

5.4.10 DDS0 Register – 0x9 – Amplitude Scale Factor.

For more details, refer to AD9954 datasheet.

	DDS0 Register – 0x9 – Amplitude Scale Factor							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0		Amplitude Scale Factor Register[7:0]						
Default		ʻ0000000'						
1	Auto Ramp	Auto Ramp Rate Speed Amplitude Scale Factor Register[13:8]						
Default	,000, ,000000,							

		DDS0 Register – 0x9 – Amplitude Scale Factor				
Setting	Auto Ramp Rate Speed (Bit 15-14)	Description				
0	0	Tell the OSK block how many amplitude steps to each increase.				
	DDS0 Register – 0x9 – Amplitude Scale Factor					
Setting	Amplitude Scale Factor (Bit 13-0)	Description				
		Programs the maximum value achievable by the OSK.				

5.4.11 DDSO Register – 0xA – Amplitude Ramp Rate.

For more details, refer to AD9954 datasheet.

	DDS0 Register – 0xA – Amplitude Ramp Rate									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
0		Amplitude Ramp Rate								
Default				,0000	0000'					

		DDS0 Register – 0xA – Amplitude Ramp Rate
Setting	Amplitude Ramp Rate (Bit 7-0)	Description
		The 8-bit amplitude ramp rate used in the auto OSK mode.

5.4.12 DDSO Register – 0xB – Frequency Tuning Word 0.

	DDS0 Register – 0xB – Frequency Tuning Word 0											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0		Frequency Tuning Word 0[7:0]										
Default	,0000000,											
1		Frequency Tuning Word 0[15:8]										
Default				,0000	0000'							

		DDS0 Register – 0xB – Frequency Tuning Word 0								
Setting	Frequency Tuning Word O	Description								
		The frequency tuning word is a 32-bit register that controls the rate of accumulation in the phase accumulator of the DDS core.								

5.4.13 DDS0 Register – 0xC – Frequency Tuning Word 0.

For more details, refer to AD9954 datasheet.

	DDS0 Register – 0xC – Frequency Tuning Word 0											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0	Frequency Tuning Word 0[23:16]											
Default	,0000000,											
1		Frequency Tuning Word 0[31:24]										
Default				'0000 '	0000'							

		DDS0 Register – 0xC – Frequency Tuning Word 0								
Setting	Frequency Tuning Word	Description								
		The frequency tuning word is a 32-bit register that controls the rate of accumulation in the phase accumulator of the DDS core.								

5.4.14 DDS0 Register – 0xD – Phase Offset Word.

For more details, refer to AD9954 datasheet.

	DDS0 Register – 0xD –Phase Offset Word											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0		Phase Offset Word[7:0]										
Default				,0000	0000'							
1	Not Used Phase Offset Word[13:8]											
Default	' 0	0'			'000	000'						

		DDS0 Register – 0xD – Phase Offset Word								
Setting	Phase Offset Word	Description								
		The phase offset word is a 14-bit register that stores a phase offset value.								

5.4.15 DDSO Register – OxE – Frequency Tuning Word 1.

	DDSO Register – OxE – Frequency Tuning Word 1									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
0		Frequency Tuning Word 1[7:0]								
Default				'0000 '	0000'					

1	Frequency Tuning Word 1[15:8]
Default	,0000000,

		DDS0 Register – 0xE – Frequency Tuning Word 1							
Setting	Frequency Tuning Word 1	Description							
		The frequency tuning word is a 32-bit register that controls the rate of accumulation in the phase accumulator of the DDS core.							

5.4.16 DDS0 Register – 0xF – Frequency Tuning Word 1.

For more details, refer to AD9954 datasheet.

	DDSO Register – OxF – Frequency Tuning Word 1											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0	Frequency Tuning Word 1[23:16]											
Default	,0000000,											
1			Fi	requency Tunir	ng Word 1[31:2	4]						
Default				'0000 '	0000'							

		DDS0 Register – 0xF – Frequency Tuning Word 1									
Setting	Frequency Tuning Word 1	Description									
		The frequency tuning word is a 32-bit register that controls the rate of accumulation in the phase accumulator of the DDS core.									

5.4.17 DDS0 Register – 0x10 – RAM Segment Control Word 0.

For more details, refer to AD9954 datasheet.

	DDS0 Register – 0x10 – RAM Segment Control Word 0												
Byte	Bit 7	Bit 6	Bit 5	Bit 4	4 Bit 3 Bit 2 Bit 1 Bit 0								
0	RAM Se	gment 0 Mode	Control	No Dwell Active	RAM Segment 0 Beginning Address[9:6]								
Default		'000'		' 0'	·0000'								
1	RAM Segment 0 Beginning Address[5:0] RAM Segment 0 Fin Address[9:8]							ent 0 Final ss[9:8]					
Default			·000	0000'			' 0	0'					

5.4.18 DDS0 Register – 0x11 – RAM Segment Control Word 0.

	DDS0 Register – 0x11 – RAM Segment Control Word 0											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0		RAM Segment 0 Final Address[7:0]										
Default				'000 '	00000'							

1	RAM Segment 0 Address Ramp Rate[15:8]
Default	,0000000,

5.4.19 DDS0 Register – 0x12 – RAM Segment Control Word 0.

For more details, refer to AD9954 datasheet.

	DDS0 Register – 0x12 – RAM Segment Control Word 0											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0		RAM Segment 0 Address Ramp Rate[7:0]										
Default		ʻ0000000'										
1		Not Used										
Default				'0000 ')0000'							

5.4.20DDS0 Register – 0x13 – RAM Segment Control Word 1.

For more details, refer to AD9954 datasheet.

	DDS0 Register – 0x13 – RAM Segment Control Word 1											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3Bit 2Bit 1Bit 0							
0	RAM Se	egment 1 Mode	Control	No Dwell Active	RAM Segment 1 Beginning Address[9:6]							
Default		'000'		' 0'	'0000'							
1	RAM Segment 1 Beginning Address[5:0] RAM Segment Address							ent 1 Final ss[9:8]				
Default			'000 '	0000'			' 0	0'				

5.4.21 DDS0 Register – 0x14 – RAM Segment Control Word 1.

For more details, refer to AD9954 datasheet.

	DDS0 Register – 0x14 – RAM Segment Control Word 1											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0		RAM Segment 1 Final Address[7:0]										
Default		,0000000,										
1			RAM	Segment 1 Add	ress Ramp Rate	[15:8]						
Default				'0000 '	00000'							

5.4.22 DDSO Register – 0x15 – RAM Segment Control Word 1.

	DDS0 Register – 0x15 – RAM Segment Control Word 1											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O				
0		RAM Segment 1 Address Ramp Rate[7:0]										
Default		ʻ0000000'										
1		Not Used										
Default				'0000 '	00000'							

5.4.23DDS0 Register – 0x16 – RAM Segment Control Word 2.

	DDS0 Register – 0x16 – RAM Segment Control Word 2												
Byte	Bit 7	Bit 6	Bit 5	Bit 4	4 Bit 3 Bit 2 Bit 1 Bit 0								
0	RAM Se	gment 2 Mode	Control	No Dwell Active	RAM Segment 2 Beginning Address[9:6]								
Default		'000'		' 0'	'0000'								
1	RAM Segment 2 Beginning Address[5:0] RAM Segment 2 Address[9:							ent 2 Final ss[9:8]					
Default			·000	0000'			'0	0'					

For more details, refer to AD9954 datasheet.

5.4.24DDS0 Register – 0x17 – RAM Segment Control Word 2.

For more details, refer to AD9954 datasheet.

	DDS0 Register – 0x17 – RAM Segment Control Word 2											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0		RAM Segment 2 Final Address[7:0]										
Default		·0000000'										
1		RAM Segment 2 Address Ramp Rate[15:8]										
Default				'0000 ')0000'							

5.4.25 DDS0 Register – 0x18 – RAM Segment Control Word 2.

For more details, refer to AD9954 datasheet.

	DDS0 Register – 0x18 – RAM Segment Control Word 2											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0		RAM Segment 2 Address Ramp Rate[7:0]										
Default				'0000 '	0000'							
1				Not	Used							
Default				'0000 '	0000'							

5.4.26DDS0 Register – 0x19 – RAM Segment Control Word 3.

		DDS0 Register – 0x19 – RAM Segment Control Word 3											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0								
0	RAM Se	gment 3 Mode	Control	No Dwell Active	RAM Segment 3 Beginning Address[9:6]								
Default		'000'		' 0'	·0000'								
1	RAM Segment 3 Beginning Address[5:0]							RAM Segment 3 Final Address[9:8]					
Default			'000 '	0000'			·00'						

5.4.27 DDS0 Register – 0x1A – RAM Segment Control Word 3.

For more details, refer to AD9954 datasheet.

	DDS0 Register – 0x1A – RAM Segment Control Word 3									
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
0		RAM Segment 3 Final Address[7:0]								
Default		ʻ0000000'								
1		RAM Segment 3 Address Ramp Rate[15:8]								
Default				·0000	00000'					

5.4.28DDS0 Register – 0x1B – RAM Segment Control Word 3.

For more details, refer to AD9954 datasheet.

		DDS0 Register – 0x1B – RAM Segment Control Word 3							
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
0		RAM Segment 3 Address Ramp Rate[7:0]							
Default		,0000000,							
1		Not Used							
Default				·0000	0000'				

5.4.29DDS0 Register – 0x1C – Falling Delta Frequency Tuning.

		DDS0 Register – 0x1C – Falling Delta Frequency Word								
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
0		Falling Delta Frequency Word[7:0]								
Default		ʻ0000000)'								
1		Falling Delta Frequency Word[15:8]								
Default				'0000 '	0000'					

		DDS0 Register – 0x1C – Falling Delta Frequency Word						
Setting	Falling Delta Frequency Word	Description						
		The Falling Delta Frequency word is a 32-bit register that is used in the sweeping mode.						

5.4.30DDS0 Register – 0x1D – Falling Delta Frequency Word.

	DDS0 Register – 0x1D – Falling Delta Frequency Word									
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
0		Falling Delta Frequency Word[23:16]								
Default		·0000000'								
1		Falling Delta Frequency Word[31:24]								
Default				'0000 '	0000'					

For more details, refer to AD9954 datasheet.

		DDS0 Register – 0x1D – Falling Delta Frequency Word
Setting	Falling Delta Frequency Word	Description
		The Falling Delta Frequency word is a 32-bit register that is used in the sweeping mode.

5.4.31 DDSO Register – 0x1E – Falling Sweep Ramp Rate Word.

For more details, refer to AD9954 datasheet.

		DDS0 Register – 0x1E – Falling Sweep Ramp rate Word								
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
0		Falling Sweep Ramp Rate[7:0]								
Default		,0000000,								
1		Not Used								
Default				,0000	0000'					

		DDS0 Register – 0x1E – Falling Sweep Ramp rate Word
Setting	Falling Delta Frequency Word	Description
		The Falling Sweep Ramp Rate is a 7-bit register that is used in the sweeping mode.

5.4.32 DDSO Register – 0x1F – Rising Delta Frequency Tuning.

	DDS0 Register – 0x1F – Rising Delta Frequency Word									
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
0		Rising Delta Frequency Word[7:0]								
Default		ʻ0000000)'								
1		Rising Delta Frequency Word[15:8]								
Default				'0000 '	0000'					

		DDS0 Register – 0x1F – Rising Delta Frequency Word
Setting	Rising Delta Frequency Word	Description
		The Rising Delta Frequency word is a 32-bit register that is used in the sweeping mode.

5.4.33DDS0 Register – 0x20 – Rising Delta Frequency Word.

For more details, refer to AD9954 datasheet.

		DDS0 Register – 0x20 – Rising Delta Frequency Word								
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
0		Rising Delta Frequency Word[23:16]								
Default		ʻ0000000)'								
1		Rising Delta Frequency Word[31:24]								
Default				'0000 '	0000'					

		DDS0 Register – 0x20 – Rising Delta Frequency Word						
Setting	Rising Delta Frequency Word	Description						
		The Rising Delta Frequency word is a 32-bit register that is used in the sweeping mode.						

5.4.34DDS0 Register – 0x21 – Rising Sweep Ramp Rate Word.

	DDS0 Register – 0x21 – Rising Sweep Ramp rate Word								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
0	Rising Sweep Ramp Rate[7:0]								
Default	,0000000,								
1	Not Used								
Default	,0000000,								

	DDS0 Register – 0x21 – Rising Sweep Ramp rate Word				
Setting	Falling Delta Frequency Word	Description			
		The Rising Sweep Ramp Rate is a 7-bit register that is used in the sweeping mode.			

6 PCB Layout

6.1 Top View

Figure 10 - Layout - Top Side.

Figure 11 - Layout - Bottom Side.

7 Connector Location

The following diagram shows where connectors are located on the board:

J22 and J26 are JTAG connectors. Only used when coupled with an SMT338-VP

Figure 12 - Connector Location.

8 Support Packages

An example code is provided with the SMT399-160, often part of one of Sundance's software packages.

The example code, if not targeting exactly the hardware platform used can be used as a base for an other platform.

9 Physical Properties

Dimensions	maximum height 12.8 mm	
Weight	35 gramms	
Supply Voltages	3.3 and 5VoltsthroughSLBpower connector.	
Supply Current	+12V	N/A
	+5V	0.3A Max
		0.02A under Reset
	+3.3V	0.5A Max
		0.35A under Reset
	-5V	N/A
	-12V	N/A
MTBF		

It is strongly recommended to allow some air flow around the SMT399-160 module, especially when used in a closed PC case, in order to avoid it to reach high temperature.

10 Safety

This module presents no hazard to the user when in normal use.

11 EMC

This module is designed to operate from within an enclosed host system, which is build to provide EMC shielding. Operation within the EU EMC guidelines is not guaranteed unless it is installed within an adequate host system.

This module is protected from damage by fast voltage transients originating from outside the host system which may be introduced through the output cables.

Short circuiting any output to ground does not cause the host PC system to lock up or reboot.