Unit / Module Description:	Dual 3-GHz PXIe ADC Module
Unit / Module Number:	SMT702
Document Issue Number:	8
Issue Date:	11/12/12
Original Author:	PhSR

User Manual for SMT702

Sundance Multiprocessor Technology Ltd, Chiltern House, Waterside, Chesham, Bucks. HP5 1PS. This document is the property of Sundance and may not be copied nor communicated to a third party without prior written permission. © Sundance Multiprocessor Technology Limited 2006

Certificate Number FM 55022

Revision History

Issue	Changes Made	Date	Initials
1	Original Document released	12/09/08	PhSR
2	DMA and system monitor added	30/01/09	PhSR
3	ADCs Output characteristics updated. Ordering information updated with FX70t part.	01/12/09	PhSR
4	FPGA Design supports Xlinks.	06/05/10	PhSR
5	Added missing currents; Added weight.	22/05/10	PhSR
6	Soft Reset added in the control register.	14/07/10	PhSR
7	Comment added on board modification (ADC reset)	27/07/10	PhSR
8	Added FX100T version	11/12/12	JV

Table of Contents

1	Ŀ	ntroduct	ion	7
2	R	Related D	ocuments	
	2.1	Referer	nced Documents	
3	A	Acronym	s, Abbreviations and Definitions	
	3.1	Acrony	ms and Abbreviations	
4	F	unctiona	al Description	9
	4.1	Genera	l Block Diagram	9
	4.2	Block I	Diagram - Standard SMT702 (PXIe)	10
	4.3	Block I	Diagram – SMT702-HYBRPXI32 (option 32-bit PXI)	11
	4.1	Block I	Diagram – SMT702-CPCI32 (Option 32-bit PCI)	
	4.2	Module	e Description	13
	4.	2.1 ADC	S	13
	4.	2.2 FPGA	A	13
		4.2.2.1	General Description	13
		4.2.2.2	Resources used – XC5VLX110T.	13
		4.2.2.3	Resources used – XCV5FX70T	15
		4.2.2.4	Resources used – XCV5FX100T	16
	4.	2.3 Cont	figuration (CPLD+Flash)	
	4.	2.4 DDR	2 Memory	
	4.	2.5 Cloc	k circuitry	20
	4.	2.6 Data	(samples) path / Data capture	
	4.	2.7 PXII	Express Bus	
	4.	2.8 SHB	Connector	
	4.	2.9 Powe	er dissipation	
	4.	2.10JIA	J	
	4.	2.11PXLI	express Hybrid Connectors	
	4.3	FPGA L	Jesign	
	4.	3.1 COI	Irol Registers	
		4.3.1.1	Register Descriptions	
		4.5.1.2	Register Descriptions	
		4.3.1.4	2.1 General Control Register $-0x0$ (read-only)	
		4313	2.2 Set Control Register - 0x10 (write).	
		4312	2.5 Creat Control (Constant - 0x20 (Write)	36
		4312	2.5 Firmware Version and Revision Numbers – $0x40$ (read-	(nlv) 36
		4312	2.5 ADCA (ADC083000) Register $0x1 - Configuration$	Register -
		0x44 (write).	
		4.3.1.2	2.7 ADCA (ADC083000) Register 0x2 – Offset Adjust – 0	x48 (write
		and re	ead). 37	
		4.3.1.2	2.8 ADCA (ADC083000) Register 0x3 – Full Scale Voltage	e Adjust –
		0x4C	(write and read).	
		4.3.1.2	2.9 ADCA (ADC083000) Register 0xD – Extended Clock Ph	ase Adjust
		rme –	UX/4 (WITTE allu reau)	

4.3.1.2.10 ADCA (ADC083000) Register 0xE - Extended Clock Phase ADCA (ADC083000) Register 0xF - Test Pattern register - 0x7C 4.3.1.2.11 4.3.1.2.12 ADCB (ADC083000) Register 0x1 - Configuration Register -0x84 (write and read)......40 4.3.1.2.13 ADCB (ADC083000) Register 0x2 - Offset Adjust - 0x88 (write and read). 41 4.3.1.2.14 ADCB (ADC083000) Register 0x3 - Full Scale Voltage Adjust -0x8C (write and read)......41 4.3.1.2.15 ADCB (ADC083000) Register 0xD - Extended Clock Phase Adjust Fine 0xB4 (write and read)......42 4.3.1.2.16 ADCB (ADC083000) Register 0xE - Extended Clock Phase Adjust Coarse – 0xB8 (write and read)......42 4.3.1.2.17 ADCB (ADC083000) Register 0xF - Test Pattern register - 0xBC (write and read)......43 Frequency Synthesizer (LMX2531) Register R0 - 0xC0 (write and 4.3.1.2.18 read). 43 4.3.1.2.19 Frequency Synthesizer (LMX2531) Register R1 - 0xC4 (write and read). 44 4.3.1.2.20 Frequency Synthesizer (LMX2531) Register R2 – 0xC8 (write and read). 44 Frequency Synthesizer (LMX2531) Register R3 - 0xCC (write 4.3.1.2.21 and read). 45 Frequency Synthesizer (LMX2531) Register R4 - 0xD0 (write 4.3.1.2.22 and read). 45 4.3.1.2.23 Frequency Synthesizer (LMX2531) Register R5 - 0xD4 (write and read). 46 Frequency Synthesizer (LMX2531) Register R6 - 0xD8 (write 4.3.1.2.24 and read). 47 4.3.1.2.25 Frequency Synthesizer (LMX2531) Register R7 - 0xDC (write and read). 48 4.3.1.2.26 Frequency Synthesizer (LMX2531) Register R8 - 0xE0 (write and read). 48 4.3.1.2.27 Frequency Synthesizer (LMX2531) Register R9 - 0xE4 (write and read). 49 4.3.1.2.28 Frequency Synthesizer (LMX2531) Register R12 - 0xE8 (write and read). 49 4.3.1.2.29 4.3.1.2.30 System Monitor – FPGA Die Temperatures – 0x180 (read).......51 4.3.1.2.31 4.3.1.2.32 System Monitor - FPGA Die Temperature thresholds - 0x180 (write). 51 System Monitor – FPGA Core Voltages – 0x184 (read)......52 4.3.1.2.33 4.3.1.2.34 System Monitor - FPGA core voltage thresholds - 0x184 (write). 52 System Monitor - FPGA Aux Voltages - 0x188 (read)......53 4.3.1.2.35

			4.3.1.2.36	System Monitor – FPGA aux voltage thresholds – 0x188 (wr 53	rite).
			4.3.1.2.37	Amount of samples stored in DDR2 - Bank A - 0x18C (write).54
			4.3.1.2.38	Amount of samples stored in DDR2 – Bank B – 0x190 (write)). 54
	4	4.3	.2 System M	ſonitor	54
	4	4.3	.3 External S	Signal characteristics	55
5		Bc	oard Layout		57
	5.1		Top View		57
	5.2		Bottom View	W	58
6		Ph	10to		59
	6.1		Overview of	f the board	59
	6.2		Front panel		61
	6.3		How is it go	oing to stand on your desk?	61
7		So	ftware Pack	tages	62
8		Ph	ysical Prop	erties	64
9		Ha	ardware Moo	dification	65
10)	Sa	fety		66
1	1	EN	4C		66
12	2	O	rdering Info	rmation	66

Table of Figures

Figure 1 - SMT702 General Block Diagram	9
Figure 2 - SMT702 Block Diagram (Standard SMT702 - PXI Express)	10
Figure 3 - SMT702 Block Diagram (32-bit PXI Option)	11
Figure 4 - SMT702-CPCI32 Block Diagram (32-bit CPCI Option)	12
Figure 5 - Configuration (Flash).	18
Figure 6 - Clock circuitry Block Diagram	21
Figure 7 - Data (samples) path	22
Figure 8 - Standard SMT702 - PXI Express Peripheral Module	23
Figure 9 - SMT702-HYBRPXI32 (opt.) - Hybrid Peripheral Slot Compatible Module	PXI-1
Figure 10 - Forced airflow for a 3U module	24
Figure 11 - JTAG Connector	25
Figure 12 - Photo of a Xilinx Parallel IV cable and its ribbon cable for connection	JTAG 26
Figure 13 - Block Diagram - FPGA Design (standard Firmware)	28
Figure 14 – Register Memory Map	30
Figure 15 – Main Characteristics	56
Figure 16 - Board Layout (Top View)	57
Figure 17 - Board Layout (Bottom View)	58
Figure 18 - Overview of the board	60
Figure 19 - SMT702 Front Panel	61
Figure 20 - SMT702 - PXI Express Chassis	61
Figure 21 - SMT702 Demo application.	63
Figure 22 - ADC Reset structure modification.	65

1 Introduction

The SMT702 is a PXI Express (opt. Hybrid) Peripheral Module (3U), which integrates two fast 8-bit ADCs, a clock circuitry, 2 banks of DDR2 Memory (1GByte each), IO connectors (2 SHBs, SATA and RSL) and a Virtex5 Xilinx FPGA, under the 3U format.

The PXIe specification integrates PCI Express signalling into the PXI standard for more backplane bandwidth. It also enhances PXI timing and synchronisation features by incorporating a 100MHz differential reference clock and triggers. The SMT702 can also integrate the standard 32-bit PXI signalling as an option.

Both ADC chips are identical and can produce 3 Giga-samples per second each, with an 8-bit resolution. The manufacturer is National Semiconductor and the part number is ADC083000. Analog-to-Digital converters are clocked by circuitry based on a PLL coupled with a VCO in order to generate a low-jitter signal. Each ADC integrates settings such as offset and scale factor, which makes the pair of ADC suitable to be combined together in order to make a 6GSPS single Analog to Digital converter. This will be subject to a specific FPGA design.

An on-board PLL+VCO chip ensures a stable fixed sampling frequency (maximum rate), in order for the board to be used as a digitiser without the need of external clock signal. The PLL will be able to lock its internal VCO either on the 100MHz PXI express reference, on the 10MHz PXI reference or on an external reference signal. The sampling clock for the converters can be either coming from the PLL+VCO chip (fixed frequency of 1.5ghz) or from an external source. The chip used is a National Semiconductor part: LMX2531LQ1500. The reference clock selected is also output on a connector in order to pass it to an other module.

The Virtex5 FPGA is responsible for controlling all interfaces, including PXI (32-bit) and PXIe (up to 8 lanes – not all PXI Express controller support 8 lane), as well as routing samples. The FPGA fitted on the SMT702 is part of the Virtex-5 familly from Xilinx, XC5VLX110T-3 (fastest speed grade available).

Two DDR2 memory banks are accessible by the FPGA in order to store data on the fly. Each bank can store up to 1GByte.

An SHB connector is available in order to transfer data/samples to an other Sundance module (SMT712 for instance)

All analog connectors on the front panel are SMA.

2 Related Documents

2.1 Referenced Documents

1 - National Semiconductor ADC083000:

http://www.national.com/pf/DC/ADC083000.html

2 - National Semiconductor LMX2531LQ1500:

http://www.national.com/pf/LM/LMX2531LQ1500E.html

3 - Virtex5 FPGA:

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/index.htm

- 4 PXIe specifications: <u>http://www.pxisa.org/Spec/PXIEXPRESS_HW_SPEC_R1.PDF</u>
- 5 Micron 2Gigabit DDR2 chip MT47H128M16:

http://download.micron.com/pdf/datasheets/dram/ddr2/2gbddr2.pdf

6 – Sundance xlink presentation:

ftp://ftp2.sundance.com/Pub/documentation/pdf-files/X-Link.pdf

7 – Sundance xlink specifications:

ftp://ftp2.sundance.com/Pub/documentation/pdf-files/D000051S-spec.pdf

3 Acronyms, Abbreviations and Definitions

3.1 Acronyms and Abbreviations

PXIe : PXI Express.

SNR: Signal-to-Noise Ratio. It is expressed in dBs. It is defined as the ratio of a signal power to the noise power corrupting the signal.

SINAD: Signal-to-Noise Ratio plus Distorsion. Same as SNR but includes harmonics too (no DC component).

ENOB: Effective Number Of Bits. This is an alternative way of defining the Signal-to-Noise Ratio and Distorsion Ratio (or SINAD). This means that the ADC is equivalent to a perfect ADC of ENOB number of bits.

SFDR: Spurious-Free Dynamic Range. It indicates in dB the ratio between the powers of the converted main signal and the greatest undesired spur.

4 Functional Description

4.1 General Block Diagram

Below is the general block diagram showing all resources available on the board. Note that not all option are implement in the standard firmware.

Figure 1 – SMT702 General Block Diagram.

The following block diagram shows all three options. The first option (PXIe) can be plugged into any PXI Express slot, the second (32-bit PXI) into any Hybrid PXI Express slot and the third can go in any CPCI system.

4.2 Block Diagram – Standard SMT702 (PXIe)

Figure 2 - SMT702 Block Diagram (Standard SMT702 - PXI Express)

This option implements a PCI Express Endpoint core (Xilinx) based on 4 lanes. It can support up to 8 lanes or only one. The FPGA also has accesses to all PXI triggers and synchronisation signals.

In case the user has in mind to recompile/change the firmware, the PCI Express Core is free and provided by Xilinx. A free license locked on a PC MAC key has to be requested.

The SMT702 (PXIe version) can only be plugged into a PXI Express or CompactPCI Express Rack.

Note that not all resources are implemented in the standard FPGA firmware.

4.3 Block Diagram - SMT702-HYBRPXI32 (option 32-bit PXI)

Figure 3 - SMT702 Block Diagram (32-bit PXI Option)

This option implements a 32-bit PCI core (33 Mhz). The FPGA also has accesses to all PXI triggers and synchronisation signals.

The PCI core source core cannot be supplied by Sundance as the license held does not cover such use for it. In case the user intends to recompile the source code or design his own firmware, he would have to purchase a license for the core.

The SMT702-HYBRPXI32 can only be plugged into a PXI Express or CompactPCI Express rack.

Note that not all ressoures shown on the above diagram are implemented in the standard firmware.

4.1 Block Diagram – SMT702–CPCI32 (Option 32–bit PCI)

Figure 4 - SMT702-CPCI32 Block Diagram (32-bit CPCI Option)

This option implements a 32-bit PCI core (33 Mhz). Note that PXI trigger signals and reference clock (10Mhz) are not accessible by the PFGA (not available on a standard CPCI rack). An external reference clock would have to be used or an external clock to feed the converter with.

The PCI core source core cannot be supplied by Sundance as the license held does not cover such use for it.

The SMT702-CPCI32 can be plugged in either a PXI (CompactPCI) or PXI Express rack.

Note that not all resources shown on the above diagram are implemented in the standard firmware.

4.2 Module Description

4.2.1 ADCs

The ADCs are 8-bit parts from National Semiconductor (ADC083000). On the SMT702, each ADC can achieve up to 3 GSPS, in DDR mode.

Both ADCs are used in the extended mode. For more information, please refer to the ADC083000 datasheet (National Semiconductor). This implies that they are configured using a Serial Interface implemented in the FPGA.

The typical Bit Error Rate (BER) of the ADC083000 is 10⁻¹⁸.

Each ADC takes a DDR clock, i.e. to achieve 3GSPS, a clock of 1.5Ghz is required. The ADCs can only work with a DDR clock within the range 500-1500MHz, which means they can sample at a rate between 1 and 3 GSPS.

Both ADCs are AC-coupled using an RF Transformer.

They have functionalities such as offset and scale adjustments, as well as test pattern mode. There is also calibration cycle that can be run once the system is in temperature.

The FPGA is able to synchronise the ADCs so they samples in phase. The FPGA is able to return the phase shift between ADCA and ADCB to the host application by sampling their clock with its local clock and phase shifting it with a DCM.

4.2.2 FPGA

4.2.2.1 General Description

The FPGA fitted as standard on the SMT702 is part of the Virtex5 LXT family: XC5VLX110T. The package used if FFG1136 and the speed grade is -3 (fastest part). The SMT702 can also receive an FPGA from the Virtex5 FXT family (XC5VFX70T and XC5VFX100T in the same package).

The FPGA is fitted with a heatsink coupled with a fan to keep it within an appropriate range of temperature when using the default firmware provided. Nevertheless the board requires some forced cooling. It is recommended to use a PXI-1062Q chassis or equivalent from National instrument as it already integrates a built-in cooling system. Using slot blockers from National Instrument would improve even more the cooling capacity of the system.

In order to improve the heat dissipation is a system, some slot blockers can be used (from National Instrument), which redirect the air flow of non-used slots to where it is needed.

4.2.2.2 Resources used – XC5VLX110T.

Below is a summary (ISE11.4) of the resources used in the FPGA by the default firmware (Standard SMT702 – XCV5VLX110T FPGA – PXIe option):

Slice Logic Utilization:

Number of Slice Registers:	15,254 out of	69,120 228	5
Number used as Flip Flops:	15,244		
Number used as Latches:	4		
Number used as Latch-thrus:	6		
Number of Slice LUTs:	11,699 out of	69,120 168	20
Number used as logic:	11,230 out of	69,120 168	20
Number using O6 output only:	9,310		
Number using O5 output only:	295		

Number using O5 and O6:	1,625		
Number used as Memory:	439 out o:	E 17,920	2%
Number used as Dual Port RAM:	308		
Number using O6 output only:	204		
Number using O5 output only:	20		
Number using O5 and O6:	84		
Number used as Shift Register:	131		
Number using O6 output only:	131		
Number used as exclusive route-thru:	30		
Number of route-thrus:	357		
Number using O6 output only:	325		
Number using 05 output only:	32		
Slice Logic Distribution:			
Number of occupied Slices:	6,129 out o:	E 17,280	35%
Number of LUT Flip Flop pairs used:	18,945		
Number with an unused Flip Flop:	3,691 out o:	18,945	19%
Number with an unused LUT:	7,246 out o:	18,945	38%
Number of fully used LUT-FF pairs:	8,008 out o:	18,945	42%
Number of unique control sets:	812		
Number of slice register sites lost			
to control set restrictions:	1,801 out o:	69,120	2%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element. The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails. OVERMAPPING of BRAM resources should be ignored if the design is over-mapped for a non-BRAM resource or if placement fails.

Ι	O Utilization:				
Number of bonded IOBs:	463	out	of	640	72%
Number of LOCed IOBs:	461	out	of	463	99%
IOB Flip Flops:	693				
IOB Master Pads:	1				
IOB Slave Pads:	1				
Number of bonded IPADs:	10	out	of	50	20%
Number of bonded OPADs:	8	out	of	32	25%
Specific Feature Utilization:					
Number of BlockRAM/FIFO:	38	out	of	148	25%
Number using BlockRAM only:	22				
Number using FIFO only:	16				
Total primitives used:					
Number of 36k BlockRAM used	d: 21				
Number of 18k BlockRAM used	l: 1				
Number of 36k FIFO used:	14				
Number of 18k FIFO used:	2				
Total Memory used (KB):	1,314	out	of	5,328	24%
Number of BUFG/BUFGCTRLs:	23	out	of	32	71%
Number used as BUFGs:	23				
Number of IDELAYCTRLs:	6	out	of	22	27%
Number of BUFDSs:	1	out	of	8	12%
Number of BUFIOs:	16	out	of	80	20%
Number of DCM_ADVs:	8	out	of	12	66%
Number of LOCed DCM_ADVs:	8	out	of	8	100%
Number of GTP_DUALs:	2	out	of	8	25%
Number of LOCed GTP_DUALs:	2	out	of	2	100%
Number of PCIEs:	1	out	of	1	100%
Number of PLL_ADVs:	1	out	of	6	16%
Number of SYSMONs:	1	out	of	1	100%
Number of RPM macros:	128				

4.2.2.3 Resources used – XCV5FX70T.

Below is a summary (ISE11.4) of the resources used in the FPGA by the default firmware (Standard SMT702 – XCV5VFX70T FPGA – PXIe option):

Slice Logic Utilization:

Number of Slice Registers: 15,344	out of	44,800	34%	
Number used as Flip Flops:	15,337			
Number used as Latches:	1			
Number used as Latch-thrus:	б			
Number of Slice LUTs:	11,832	out of	44,800	26%
Number used as logic:	11,372	out of	44,800	25%
Number using O6 output only:	9,458			
Number using O5 output only:	289			
Number using O5 and O6:	1,625			
Number used as Memory:	429	out of	13,120	3%
Number used as Dual Port RAM:	308			
Number using O6 output only:	204			
Number using O5 output only:	20			
Number using O5 and O6:	84			
Number used as Shift Register:	121			
Number using O6 output only:	121			
Number used as exclusive route-thru:	31			
Number of route-thrus:	393			
Number using O6 output only:	318			
Number using 05 output only:	75			
Slice Logic Distribution:				
Number of occupied Slices:	6,261	out of	11,200	55%
Number of LUT Flip Flop pairs used:	19,052			
Number with an unused Flip Flop:	3,708	out of	19,052	19%
Number with an unused LUT:	7,220	out of	19,052	37%
Number of fully used LUT-FF pairs:	8,124	out of	19,052	42%
Number of unique control sets:	821			
Number of slice register sites lost				
to control set restrictions:	1,821	out of	44,800	4%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element. The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails. OVERMAPPING of BRAM resources should be ignored if the design is over-mapped for a non-BRAM resource or if placement fails.

IO Utilization:

Number of bonded IOBs:	463	out	of	640	72%
Number of LOCed IOBs:	463	out	of	463	100%
IOB Flip Flops:	693				
IOB Master Pads:	1				
IOB Slave Pads:	1				
Number of bonded IPADs:	10	out	of	50	20%
Number of bonded OPADs:	8	out	of	32	25%
Specific Feature Utilization:					
Number of BlockRAM/FIFO:	38	out	of	148	25%
Number using BlockRAM only:	22				
Number using FIFO only:	16				
Total primitives used:					
Number of 36k BlockRAM used:	21				

Number of 18k BlockRAM used:	1				
Number of 36k FIFO used:	14				
Number of 18k FIFO used:	2				
Total Memory used (KB):	1,314	out	of	5,328	24%
Number of BUFG/BUFGCTRLs:	25	out	of	32	78%
Number used as BUFGs:	25				
Number of IDELAYCTRLs:	б	out	of	22	27%
Number of BUFDSs:	1	out	of	8	12%
Number of BUFIOs:	16	out	of	80	20%
Number of DCM_ADVs:	8	out	of	12	66%
Number of LOCed DCM_ADVs:	8	out	of	8	100%
Number of GTX_DUALs:	2	out	of	8	25%
Number of LOCed GTX_DUALs:	2	out	of	2	100%
Number of PCIEs:	1	out	of	3	33%
Number of LOCed PCIEs:	1	out	of	1	100%
Number of PLL_ADVs:	1	out	of	6	16%
Number of SYSMONs:	1	out	of	1	100%
Number of RPM macros: 1	28				
Average Fanout of Non-Clock Nets:	3.	00			

4.2.2.4 Resources used – XCV5FX100T.

Below is a summary (ISE14.3) of the resources used in the FPGA by the default firmware (Standard SMT702 – XCV5VFX100T FPGA – PXIe option):

Slice Logic Utilization:

Number of Slice Registers:	16,720	out	of	64,000	26%
Number used as Flip Flops:	16,712				
Number used as Latches:	2				
Number used as Latch-thrus:	б				
Number of Slice LUTs:	12,911	out	of	64,000	20%
Number used as logic:	12,053	out	of	64,000	18%
Number using O6 output only:	10,065				
Number using O5 output only:	348				
Number using O5 and O6:	1,640				
Number used as Memory:	816	out	of	19,840	4%
Number used as Dual Port RAM:	308				
Number using O6 output only:	204				
Number using O5 output only:	20				
Number using O5 and O6:	84				
Number used as Shift Register:	508				
Number using O6 output only:	507				
Number using O5 and O6:	1				
Number used as exclusive route-thru:	42				
Number of route-thrus:	441				
Number using O6 output only:	389				
Number using O5 output only:	51				
Number using O5 and O6:	1				
Slice Logic Distribution:					
Number of occupied Slices:	7,335	out	of	16,000	45%
Number of LUT Flip Flop pairs used:	21,153				
Number with an unused Flip Flop:	4 433	out	of	21,153	20%
	т,тээ				
Number with an unused LUT:	8,242	out	of	21,153	38%
Number with an unused LUT: Number of fully used LUT-FF pairs:	8,242 8,478	out out	of of	21,153 21,153	38% 40%
Number with an unused LUT: Number of fully used LUT-FF pairs: Number of unique control sets:	8,242 8,478 987	out out	of of	21,153 21,153	38% 40%
Number with an unused LUT: Number of fully used LUT-FF pairs: Number of unique control sets: Number of slice register sites lost	8,242 8,478 987	out out	of of	21,153 21,153	38% 40%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element. The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails. OVERMAPPING of BRAM resources should be ignored if the design is over-mapped for a non-BRAM resource or if placement fails.

ΙΟ	Utilization:
----	--------------

Number of bonded IOBs:	465	out	of	640	72%
Number of LOCed IOBs:	465	out	of	465	100%
IOB Flip Flops:	694				
IOB Master Pads:	1				
IOB Slave Pads:	1				
Number of bonded IPADs:	10				
Number of LOCed IPADs:	2	out	of	10	20%
Number of bonded OPADs:	8				
Specific Feature Utilization:					
Number of BlockRAM/FIFO:	42	out	of	228	18%
Number using BlockRAM only:	26				
Number using FIFO only:	16				
Total primitives used:					
Number of 36k BlockRAM used:	22				
Number of 18k BlockRAM used:	4				
Number of 36k FIFO used:	14				
Number of 18k FIFO used:	2				
Total Memory used (KB):	1,404	out	of	8,208	17%
Number of BUFG/BUFGCTRLs:	26	out	of	32	81%
Number used as BUFGs:	26				
Number of IDELAYCTRLs:	б	out	of	22	27%
Number of BSCANs:	1	out	of	4	25%
Number of BUFDSs:	1	out	of	8	12%
Number of BUFIOs:	16	out	of	80	20%
Number of DCM_ADVs:	8	out	of	12	66%
	0	ouc			
Number of LOCed DCM_ADVs:	8	out	of	8	100%
Number of LOCed DCM_ADVs: Number of GTX_DUALs:	8	out out	of of	8 8	100% 25%
Number of LOCed DCM_ADVs: Number of GTX_DUALs: Number of LOCed GTX_DUALs:	8 2 2	out out out	of of of	8 8 2	100% 25% 100%
Number of LOCed DCM_ADVs: Number of GTX_DUALs: Number of LOCed GTX_DUALs: Number of PCIEs:	8 2 2 1	out out out out	of of of of	8 8 2 3	100% 25% 100% 33%
Number of LOCed DCM_ADVs: Number of GTX_DUALs: Number of LOCed GTX_DUALs: Number of PCIEs: Number of LOCed PCIEs:	8 2 2 1 1	out out out out out	of of of of of	8 8 2 3 1	100% 25% 100% 33% 100%
Number of LOCed DCM_ADVs: Number of GTX_DUALs: Number of LOCed GTX_DUALs: Number of PCIEs: Number of LOCed PCIEs: Number of PLL_ADVs:	8 2 1 1 1	out out out out out out	of of of of of	8 8 2 3 1 6	100% 25% 100% 33% 100% 16%
Number of LOCed DCM_ADVs: Number of GTX_DUALs: Number of LOCed GTX_DUALs: Number of PCIEs: Number of LOCed PCIEs: Number of PLL_ADVs: Number of SYSMONs:	8 2 1 1 1 1	out out out out out out out	of of of of of of	8 2 3 1 6 1	100% 25% 100% 33% 100% 16% 100%
Number of LOCed DCM_ADVs: Number of GTX_DUALs: Number of LOCed GTX_DUALs: Number of PCIEs: Number of LOCed PCIEs: Number of PLL_ADVs: Number of SYSMONs: Number of RPM macros: 137	8 2 1 1 1 1	out out out out out out	of of of of of of	8 2 3 1 6 1	100% 25% 100% 33% 100% 16% 100%

The parts mentioned above (XC5VLX110T, XC5FX70T, XC5FX100T) are also footprint compatible with the SXT series: XC5VSX50T and XC5VSX95T. The SXT series implements a DSP48E core, which if used on the SMT702 may result an increase of the power consumption. Please contact Sundance if you require details about the SXT series.

4.2.3 Configuration (CPLD+Flash)

On the SMT702, the FPGA is connected to a CPLD via a serial link. The CPLD is responsible for controlling read and write operations to and from the Flash memory and to route data to the FPGA configuration port.

The following diagram show how connections are made on the board between the CPLD, the Flash memory and the FPGA:

Figure 5 – Configuration (Flash).

A reset coming from the bus (PXI or PXI Express) triggers a configuration cycle and the FPGA is configured with the default firmware (stored in factory at location 0).

The on-board Flash memory (256-Mbit part) is big enough to store several versions of firmware. A switch (SW1) at the back of the board allows the selection among 4 locations (Switches select the bitstream to be booted at power up). Each can contain up to 8Mbytes of data, which is big enough to store an XC5LX110T bitstream (about 3.8 Mbytes) and some text (comments or description of the firmware version).

The user can store a 'user' bitstream at location 1 (see table below) for instance using the SMT6002 piece of software, also called Flash Utility. The SMT6002 also allows to add comments (text) above the bitstream in flash memory.

Note that switches don't have any influence when programming the flash.

This architecture allows the SMT702 to be used as a development platform for signal processing and algorithms implementation. The function Reboot can be used from the SMT6002 GUI to boot from any flash location within seconds.

Both FPGA and CPLD can be reprogrammed/reconfigured at anytime via JTAG (J8 connector – Using a Xilinx parallel/USB programming cable) but it can cause problems as it will break the access to the board from the host.

At power up or under a reset on the PXI or PXI Express bus, it takes 140ms for the FPGA (XC5VLX110T-3) to be fully configured and ready to answer the requests from the host.

The following table shows the settings that can be used and the start addresses of the bitstream in the Flash memory.

Position Switch 2	Position Switch 1	Bitstream start address in flash	Description	
ON	ON	0x1800000 (Location 3)	User Bitstream 2	
ON	OFF	0x1000000 (Location 2)	User Bitstream 1	
OFF	ON	0x0800000 (Location 1)	User bitstream 0	Default selection
OFF	OFF	0x0000000 (Location 0)	Default bitstream	

Note that the CPLD routes the contents of the flash starting from the location selected (SW1) until the FPGA indicates that it is configured. Addresses are incremented by a counter that rolls over to 0 when the maximum address is reached. For instance, in the case where Location 1 is selected and a corrupted bitstream is loaded at that location (or if there is no bitstream at that location), the default bitstream will end up being loaded.

The default bitstream returns 'DEF' as firmware version (see register 'Firmware Version and Revision numbers).

It is recommended to keep the Switch SW1 so the User bitstream 0 is selected and store a custom/user bitstream at Location 1 is needed. The card would then boot from this location. Otherwise the card would boot automatically from the default firmware (Location 0)

Storing a new bitstream using the SMT6002 first involves erasing the appropriate sectors before programming them with the bitstream. This is automatically handled by the SMT6002. Storing a new bitstream at location 1 (User Bitstream 0) will only require from the user to select the file (.bit for instance) and press the 'Comit' button. The advanced tab offers more options such as a full erase or a partial erase of the flash memory. None of them should be required in normal mode of operation. Note that a full erase will erase the entire contents of the flash including the default firmware and that it can take up to 3-4 minutes. The partial erase will erase the User bitstreams only.

4.2.4 DDR2 Memory

Two banks of DDR2 memory are available on the SMT702, directly connected to the FPGA. Interfaces are part of the default FPGA design. Each bank is 64-bit wide and 128-Meg deep, so each bank can store up to 1 Giga bytes (or 8-bit ADC samples). Each memory bank is dedicated to one ADC. Both DDR2 interfaces are independent. The type of memory fitted on the board can be clocked at a maximum or 333MHz.

In order to achieve storage real-time of the ADC samples, the DDR2 interface is clocked at 250MHz (Default bitstream).

4.2.5 Clock circuitry

An on-board PLL+VCO chip ensures a stable fixed sampling frequency (maximum rate, i.e. 1500MHz), in order for the board to be used as a digitiser without the need of external clock signal. The PLL will be able to lock its internal VCO either on the 10MHz PXI reference or the 100MHz PXI express reference or on an external reference signal. The sampling clock for the converters can be either coming from the PLL+VCO chip or from an external source. The chip used is a National Semiconductor part: LMX2531LQ1500.

The selection Internal/External clock is made via a bit in the control register. The same applies to the selection of the reference clock.

Note that the PLL+VCO chip also has the possibility to output half of the fixed VCO frequency, i.e. 1500/2=750MHz.

Below is a block diagram of the clock circuitry.

4.2.6 Data (samples) path / Data capture

This section details how samples from the ADCs are being captured and stored. By default and after a power-up or reset operation, all interfaces are in reset state. The only exception is the PXI/Express Interface. Relevant interface should first be taken out of the initial reset state.

The next step is to program both ADCs and the clock generator and make sure it locked to a reference signal. This is not needed in case of using an external sampling clock. An ADC calibration cycle can be run. ADCs are then ready to output samples and a clock to the FPGA.

Here are the details of the following step. One Xilinx DCM per ADC clock is used inside the FPGA to ensure a good capture of data. The status of these DCMs should be checked to make sure they are 'locked'. They are available in the Global Control Register. After being latched, samples go through a multiplexer to be pipelined and then stored into the DDR2 memory available on the board. The DDR2 interface uses some Xilinx specific blocks, such as idelays, DCMs and Phy, which have to be 'locked' and 'ready' as well. These have to be checked the same way, using the bits available from the Global Control Register.

Each ADC is being dedicated a DDR2 Memory bank, which can be seen as a Fifo. Both Fifos have status bits to check whether they are empty or full (bit available from Global Control Register). Each Fifo is connected to a DMA channel. DMA channel are implemented as Xlinks. Samples coming from the ADCs are also routed straight on the SHB connector (DDR 32-bit bus).

The following diagram shows the data path implemented in order to capture samples from the ADCs:

Figure 7 – Data (samples) path.

The SMT702 comes with a piece of software, the SMT7002. It is a demo application that shows how to set up the module and allows capturing samples into text files. Source code of the SMT7002 is available to purchase under the product name SMT7026.

4.2.7 PXI Express Bus

As standard, the SMT702 is a 3U PXI Express peripheral module, which means it comes with two PXI Express connectors: XP4 (PXI timing and synchronisation signals) and XP3 (x8 PCI Express and additional synchronisation signals). The SMT702 dedicates 8 lanes to the PXI Express bus, which gives an effective bandwidth per direction of 16Gb/s. It also implies core and user clocks to be 250 MHz. Note that not all PXIe Express chassis and controller can handle 8 lanes on peripheral modules. Currently only 1 and 4 lanes are supported. The Express core developed by Sundance and based on Xlinks is able to achieve over 700Mbytes per second for a 4-lane core clocked at 250MHz and half of it when clocked at 125MHz.

The standard SMT702 can plug in any PXI Express Peripheral Slot or any PXI Express Hybrid Slot (PXI Express chassis, such as the NI-1062Q from National Instrument or equivalent).

Reference clock selection is made on the board via a jumper (J11). Position 1-2 selects the PXI reference clock (100Mhz provided by the PXI Express chassis – Factory setting). Position 2-3 selects the on-board 250Mhz crystal.

Figure 8 - Standard SMT702 - PXI Express Peripheral Module

Optionally, the module can be a 3U Hybrid Peripheral Slot Compatible PXI-1 Module, which means it comes with two connectors: XP4 (PXI timing and synchronisation signals) and P1 (32-bit, 33MHz PCI Signals). This version of the SMT702 can only plug in a PXI Express Hybrid Slot (PXI Express chassis, such as the NI-1062Q from National Instrument or equivalent).

Figure 9 - SMT702-HYBRPXI32 (opt.) - Hybrid Peripheral Slot Compatible PXI-1 Module

4.2.8 SHB Connector

An SHB Connector is available from the FPGA. It maps 32 single-ended data lines and a set of control signals including a clock.

It can be used to transfer samples to an other Sundance module, for instance the SMT712.

A second SHB connector is available on the standard version of the SMT702 (not available on the option -HYBRPXI32 and -CPCI32).

Note that in order to achieve transfers to an SMT712 board, the standard SHB interface can't be used but requires its DDR version (implement into default firmware).

The SHB transfers have been tested at 375MHz, DDR mode, 32-bit words, giving a continuous transfer speed of 3GBytes per second.

4.2.9 Power dissipation

The SMT702 has been designed to work in a PXI Express chassis, which has built-in cooling facilities. It provides enough airflow and has a fan regulation.

PXI Express chassis are specified so they can dissipate 30 Watts of heat.

The following picture shows the direction of the forced air flow across a 3U PXI Express module:

Figure 10 - Forced airflow for a 3U module.

A PXI Express rack has a capacity of dissipating 30 watts of heat per slot using forced air-cooling system via typically two 110-cfm fans with filter.

In case the SMT702 is used in an other type of chassis, some similar airflow must be implemented as the board requires it.

The SMT702 has been developed using the following PXI Express rack from Nation Instrument: PXIe-1062Q.

4.2.10 JTAG

A connector (J8) is specifically dedicated for FPGA and CPLD detection and programming. Both the CPLD and the FPGA are part of the JTAG chain. A 14-position (2x7) connector (2mm) is available and shows TDI, TDO, TCK and TMS lines, as well as a Ground and a reference voltage, as shown below:

Figure 11 – JTAG Connector.

It can connect directly to a Xilinx Parallel IV cable using the ribbon cable provided by Xilinx. The connector is a Molex part: Molex 87831-1428.

Figure 12 - Photo of a Xilinx Parallel IV cable and its ribbon cable for JTAG connection

4.2.11 PXI Express Hybrid Connectors

As being a PXI Express Hybrid Peripheral Module, the SMT702 is a 3U card with 2 PXI connectors, XP4 and XP3 or P1. The following table shows their pinouts.

PIn	Z	Α	В	С	D	E	F				
1	GND	GA4	GA3	GA2	GA1	GA0	GND				
2	GND	5Vaux	GND	SYSEN#	WAKE#	ALERT#	GND				
3	GND	12V	12V	GND	GND	GND	GND	XP4 / XJ4 Connector			
4	GND	GND	GND	3.3V	3.3V	3.3V	GND				
5	GND	PXI TRIG3	PXI TRIG4	PXI TRIG5	GND	PXI TRIG6	GND				
6	GND	PXI TRIG2	GND	ATNLED	PXI STAR	PXI CLK10	GND				
7	GND	PXI TRIG1	PXI TRIG0	ATNSW#	GND	PXI TRIG7	GND				
8	GND	RSV	GND	RSV	PXI LBL6	PXI LBR6	GND				
Pin	A	В	ab	С	D	cd	E	F	ef	×	
1	PXIe CLK100+	PXIe CLK100-	GND	PXIe SYNC100+	PXIe SYNC100-	GND	PXIe DSTARC+	PXIe DSTARC-	GND	2	
2	PRSNT#	PWREN#	GND	PXIe DSTARB+	PXIe DSTARB-	GND	PXIe DSTARA+	PXIe DSTARA-	GND	3	
3	SMBDAT	SMBCLK	GND	RSV	RSV	GND	RSV	RSV	GND	×	
4	MPWRGD	PERST#	GND	RSV	RSV	GND	1RefClk+	1RefClk-	GND	<u>د</u>	
5	1PETp0	1PETn0	GND	1PERp0	1PERn0	GND	1PETp1	1PETn1	GND	õ	
6	1PETp2	1PETn2	GND	1PERp2	1PERn2	GND	1PERp1	1PERn1	GND	8	
7	1PETp3	1PETn3	GND	1PERp3	1PERn3	GND	1PETp4	1PETn4	GND	Ē	
8	1PETp5	1PETn5	GND	1PERp5	1PERn5	GND	1PERp4	1PERn4	GND	ne	
9	1PETp6	1PETn6	GND	1PERp6	1PERn6	GND	1PETp7	1PETn7	GND	ğ	
10	RSV	RSV	GND	RSV	RSV	GND	1PERp7	1PERn7	GND	Q	
Pin	Z	A	В	С	D	E	F				
25	GND	5V	REQ64#	ENUM#	3.3V	5V	GND				
24	GND	AD[1]	5V	V(I/O)	AD[0]	ACK64#	GND				
23	GND	3.3V	AD[4]	AD[3]	5V	AD[2]	GND				
22	GND	AD[7]	GND	3.3V	AD[6]	AD[5]	GND				
21	GND	3.3∨	AD[9]	AD[8]	M66EN	C/BE[0]#	GND				
20	GND	AD[12]	GND	V(I/O)	AD[11]	AD[10]	GND				
19	GND	3.3∨	AD[15]	AD[14]	GND	AD[13]	GND				
18	GND	SERR#	GND	3.3V	PAR	C/BE[1]#	GND	1			
17	GND	3.3V	IPMB SCL	IPMB SDA	GND	PERR#	GND				
16	GND	DEVSEL#	GND	V(VO)	STOP#	LOCK#	GND				
15	GND	3.3∨	FRAME#	IRDY#	BD_SEL#	TRDY#	GND		-		
12-14				Key Area	•			P1/J10	onn	ector	
11	GND	AD[18]	AD[17]	AD[16]	GND	C/BE[2]#	GND	1			
10	GND	AD[21]	GND	3.3V	AD[20]	AD[19]	GND				
9	GND	C/BE[3]#	IDSEL	AD[23]	GND	AD[22]	GND				
8	GND	AD[26]	GND	V(VO)	AD[25]	AD[24]	GND	1			
7	GND	AD[30]	AD[29]	AD[28]	GND	AD[27]	GND				
6	GND	REQ#	GND	3.3V	CLK	AD[31]	GND	1			
5	GND	BRSVP1A5	BRSVP1B5	RST#	GND	GNT#	GND	1			
4	GND	IPMB PWR	HEALTHY#	V(VO)	INTP	INTS	GND	1			
3	GND	INTA#	INTB#	INTC#	5V	INTD#	GND				
2	GND	тск	5V	TMS	TDO	TDI	GND				
1	GND	5V	-12V	TRST#	+12V	5V	GND	1			
		1									

The SMT702 implements up to eight 2.5-Gigabit PCI Express lanes, allowing a maximum theoretical data transfer of 2 gigabytes per second. It also implements optionally a 32-bit, 33-MHz PCI interface.

4.3 FPGA Design

The following block diagram shows how the default FPGA design is organised.

4.3.1 Control Registers

The Control Registers drive the complete functionality of the SMT702. They are setup via the PXIe bus (standard firmware provided). The settings of the ADCs, triggers, clocks and the configuration of the RSL/PXI interfaces (optional SATA) and the internal FPGA data path settings can be configured.

The data passed on to the SMT702 over the PXIe bus must conform to a certain packet structure and to specific addresses and offsets. Only valid packets will be.

4.3.1.1 Memory Map

The write packets must contain the address where the data must be written to and the read packets must contain the address where the required data must be read. The following figure shows the memory map for the writable and readable registers on the SMT702:

The access to a specific register is made by reading or writing to the address:

Address from Host = Offset + Register Address

Offset	Description.
0x0000	SMT7xx Boards common registers (Reboot, global reset).
0x0400	SMT702 Registers (ADCs, Clock and control).
0x0800	ADCa data channel (Xlink)
0x0C00	ADCb data channel (Xlink)
0x1000	Table of Contents (see Xlink Specifications for more details).
0x1400	Flash memory for bitstream storage.
0x2400	Event Block

Offset 0x0000 - SMT7xx Common Registers.								
Register Address	Writable Registers	Readable Registers						
0x04	Global Reset (bit31).	Reserved.						
0x80	Reconfiguration – Bitstream number.	Reserved.						
	Offset 0x0400 – SMT702 Registers.							
Register Address	Writable Registers	Readable Registers						
0x08	Reserved.	General Control Register.						
0x010	Set Control Register.	Reserved.						
0x020	Clear Control Register.	Reserved.						
0x24	Reserved	Board Name and Version.						
0x40	Reserved.	Firmware Version and Revision Numbers.						
0x44	ADCA (ADC083000) Register 0x1.	Read-back (FPGA Register) ADCA (ADC083000) Register 0x1.						
0x48	ADCA (ADC083000) Register 0x2.	Read-back (FPGA Register) ADCA (ADC083000) Register 0x2.						
0x4C	ADCA (ADC083000) Register 0x3.	Read-back (FPGA Register) ADCA (ADC083000) Register 0x3.						
0x74	ADCA (ADC083000) Register 0xD.	Read-back (FPGA Register) ADCA (ADC083000) Register 0xD.						
0x78	ADCA (ADC083000) Register 0xE.	Read-back (FPGA Register) ADCA (ADC083000) Register 0xE.						
0x7C	ADCA (ADC083000) Register 0xF.	Read-back (FPGA Register) ADCA (ADC083000) Register 0xF.						
0x84	ADCB (ADC083000) Register 0x1.	Read-back (FPGA Register) ADCB (ADC083000) Register 0x1.						
0x88	ADCB (ADC083000) Register 0x2.	Read-back (FPGA Register) ADCB (ADC083000) Register 0x2.						
0x8C	ADCB (ADC083000) Register 0x3.	Read-back (FPGA Register) ADCB (ADC083000) Register 0x3.						
0xB4	ADCB (ADC083000) Register 0xD.	Read-back (FPGA Register) ADCB (ADC083000) Register 0xD.						
0xB8	ADCB (ADC083000) Register 0xE.	Read-back (FPGA Register) ADCB (ADC083000) Register 0xE.						
0xBC	ADCB (ADC083000) Register 0xF.	Read-back (FPGA Register) ADCB (ADC083000) Register 0xF.						
0xC0	Frequency Synthesizer (LMX2531) register R0	Read-back (FPGA register) Frequency Synthesizer (LMX2531) register R0						
0xC4	Frequency Synthesizer (LMX2531) register R1	Read-back (FPGA register) Frequency Synthesizer (LMX2531) register R1						

0xC8	Frequency Synthesizer (LMX2531) register R2	Read-back (FPGA register) Frequency Synthesizer (LMX2531) register R2
0xCC	Frequency Synthesizer (LMX2531) register R3	Read-back (FPGA register) Frequency Synthesizer (LMX2531) register R3
0xD0	Frequency Synthesizer (LMX2531) register R4	Read-back (FPGA register) Frequency Synthesizer (LMX2531) register R4
0xD4	Frequency Synthesizer (LMX2531) register R5	Read-back (FPGA register) Frequency Synthesizer (LMX2531) register R5
0xD8	Frequency Synthesizer (LMX2531) register R6	Read-back (FPGA register) Frequency Synthesizer (LMX2531) register R6
0xDC	Frequency Synthesizer (LMX2531) register R7	Read-back (FPGA register) Frequency Synthesizer (LMX2531) register R7
0xE0	Frequency Synthesizer (LMX2531) register R8	Read-back (FPGA register) Frequency Synthesizer (LMX2531) register R8
0xE4	Frequency Synthesizer (LMX2531) register R9	Read-back (FPGA register) Frequency Synthesizer (LMX2531) register R9
0xE8	Frequency Synthesizer (LMX2531) register R12	Read-back (FPGA register) Frequency Synthesizer (LMX2531) register R12
0x108	ADCA – DCM Phase Shift.	Reserved.
0x10C	ADCB – DCM Phase shift.	Reserved.
0x180	FPGA Die temperature thresholds.	System Monitor – Read-back FPGA die temperature measured
0x184	FPGA Core voltage thresholds.	System Monitor – Read-back FPGA Vccint (Core Voltage) measured
0x188	FPGA Aux voltage thresholds	System Monitor – Read-back FPGA Vccaux (Core Voltage) measured
0x18C	Reserved	Amount of samples left to be read out out of DDR2 BankA
0x190	Reserved	Amount of samples left to be read out out of DDR2 BankB

Figure 14 – Register Memory Map.

Note that ADC registers are write-only (ADC chips), which means that the contents of the ADC registers can only be read-back from the FPGA. THe same applies to the Clock chip.

4.3.1.2 Register Descriptions

4.3.1.2.1 General Control Register - 0x8 (read-only).

	Offset 0x0400 - General control Register - 0x8 (Read-only register).								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
3	ADCb synch reference state	ADCa synch reference state	System Monitor - Vccaux alarm	System Monitor - Vccint alarm	System Monitor – Die temperat ure alarm	DDR2 Fifo Almost Empty (Memory Bank B)	DDR2 Fifo Almost Empty (Memory Bank A)	DDR2 Fifo Full (Memory Bank B)	
Defaul t	ʻ0 '	ʻ0'	ʻ0'	' 0 '	' 0 '	ʻ0 '	'0'	' 0 '	
2	DDR2 Fifo Full (Memory Bank A)	DDR2 Fifo Ready (Memory Bank B)	IDelay Control Ready (Memor y Bank B)	DDR2 Fifo empty (Memory Bank B)	DDR2 lock status (Memory Bank B)	DDR2 phy init done (Memory Bank B)	Ddr2 Fifo Ready (Memory Bank A)	IDelay Control Ready (Memory Bank A)	
Defaul t	ʻ0'	ʻ0'	ʻ0'	,0,	,0,	ʻ0'	'1'	'1'	
1	DDR2 Fifo empty (Memory Bank A)	DDR2 lock status (Memory Bank A)	DDR2 phy init done (Memor y Bank A)		ADCb calibrati on complete d	ADCa calibration completed	ADCa DCM Busy	ADCb DCM Busy	
Defaul t	ʻ0 '	ʻ0 '	'0'	'0'	'0'	ʻ0 '	'1'	'1'	
0	ADCB Programme d	ADCA Programme d	ADCb DCM Lock Status	ADCa DCM Lock Status	Lock Detect (Clock Chip)	Clock Chip Programme d	ADCB Calibratio n Running	ADCA Calibratio n Running	
Defaul t	ʻ0'	ʻ0'	ʻ0'	,0,	,0,	ʻ0'	ʻ0'	·0'	

	C	Offset 0x0400 - General control Register - 0x8 (Read-only register).				
Setting	Bit O	Description - ADCA Calibration Running				
0	0	Normal Mode of Operation – ADCA not calibrating. A calibration cycle lasts 14000 sampling clock cycles.				
1	1	ADCA is busy running a Calibration cycle. A calibration cycle lasts 14000 sampling clock cycles. Nothing should be done while ADCa is in the middle of a calibration cycle.				
Setting	Bit 1	Description – ADCB Calibration Running				
0	0	Normal Mode of Operation – ADCB not calibrating. A calibration cycle lasts 14000 sampling clock cycles.				
1	1	ADCB is busy running a Calibration cycle. A calibration cycle lasts 14000 sampling clock cycles. Nothing should be done while ADCb is in the middle of a calibration cycle.				
Setting	Bit 2	Description – Clock chip programmed				
0	0	Clock chip not yet programmed.				
1	1	Clock chip has been programmed with all registers after an update request has been sent.				

Setting	Bit 3	Description – Lock Detect (Clock chip)
0	0	The Clock chip hasn't locked (reference on internal VCO).
1	1	The clock chip has lock. The on-board clock can be used to clock the ADCs.
Setting	Bit 4	Description – ADCa DCM Lock Status.
0	0	FPGA DCM not locked.
1	1	FPGA DCM Locked. Normal Mode of Operation.
Setting	Bit 5	Description – ADCb DCM Lock Status.
0	0	FPGA DCM not locked.
1	1	FPGA DCM Locked. Normal Mode of Operation.
Setting	Bit 6	Description – ADCa programmed.
0	0	ADCa not yet programmed.
1	1	ADCa has been programmed with all registers after an update request has been sent.
Setting	Bit 7	Description – ADCb programmed.
0	0	ADCb not yet programmed.
1	1	ADCb has been programmed with all registers after an update request has been sent.
Setting	Bit 8	Description – ADCa DCM Busy.
0	0	Normal Mode of Operation.
1	1	The DCM is busy, meaning either in the process of locking or updating its phase shift. Can be polled when one needs to reprogram phase shifts to make sure it is in the middle of a cycle.
Setting	Bit 9	Description – ADCb DCM Busy.
0	0	Normal Mode of Operation.
1	1	The DCM is busy, meaning either in the process of locking or updating its phase shift. Can be polled when one needs to reprogram phase shifts to make sure it is not in the middle of a cycle.
Setting	Bit 13	Description – DDR2 phy init done. Memory Bank A.
0	0	A problem occurred or Memory Bank A is kept in reset.
1	1	Normal Mode of Operation.
Setting	Bit 14	Description – DDR2 lock status. Memory Bank A.
0	0	A problem occurred or Memory Bank A is kept in reset.
1	1	Normal Mode of Operation.
Setting	Bit 15	Description – DDR2 fifo empty. Memory Bank A.
0	0	DDR2 fifo contains samples.
1	1	DDR2 fifo is empty.
Setting	Bit 16	Description – IDelay Control Ready. Memory Bank A.
0	0	A problem occurred or Memory Bank A is kept in reset.
1	1	Normal Mode of Operation.
Setting	Bit 17	Description - DDR2 Fifo Ready. Memory Bank A.
0	0	Fifo not ready. Data should not be written.
1	1	Normal Mode of Operation.
Setting	Bit 18	Description – DDR2 phy init done. Memory Bank B.
0	0	A problem occurred or Memory Bank B is kept in reset.
1	1	Normal Mode of Operation.
Setting	Bit 19	Description – DDR2 lock status. Memory Bank B.
0	0	A problem occurred or Memory Bank B is kept in reset.

1	1	Normal Mode of Operation.
Setting	Bit 20	Description - DDR2 fifo empty. Memory Bank B.
0	0	DDR2 fifo contains samples.
1	1	DDR2 fifo is empty.
Setting	Bit 21	Description – IDelay Control Ready. Memory Bank B.
0	0	A problem occurred or Memory Bank B is kept in reset.
1	1	Normal Mode of Operation.
Setting	Bit 22	Description – DDR2 Fifo Ready. Memory Bank B.
0	0	Fifo not ready. Data should not be written.
1	1	Normal Mode of Operation.
Setting	Bit 23	Description – DDR2 Fifo Full. Memory Bank A
0	0	Memory bank A not full.
1	1	Memory bank A full.
Setting	Bit 24	Description – DDR2 Fifo Full. Memory Bank B
0	0	Memory bank B not full.
1	1	Memory bank B full.
Setting	Bit 25	Description – DDR2 Fifo almost empty. Memory Bank A
0	0	Memory bank A not almost empty.
1	1	Memory bank A almost empty.
Setting	Bit 26	Description – DDR2 Fifo almost empty. Memory Bank B
Setting 0	Bit 26 0	Description - DDR2 Fifo almost empty. Memory Bank BMemory bank B not almost empty.
Setting 0 1	Bit 26 0 1	Description - DDR2 Fifo almost empty. Memory Bank B Memory bank B not almost empty. Memory bank B almost empty.
Setting 0 1 Setting	Bit 26 0 1 Bit 27	Description - DDR2 Fifo almost empty. Memory Bank B Memory bank B not almost empty. Memory bank B almost empty. Description - System Monitor - FPGA Die Temperature Alarm
Setting 0 1 Setting 0	Bit 26 0 1 Bit 27 0	Description – DDR2 Fifo almost empty. Memory Bank B Memory bank B not almost empty. Memory bank B almost empty. Description – System Monitor – FPGA Die Temperature Alarm Normal Mode of Operation.
Setting 0 1 Setting 0 1	Bit 26 0 1 Bit 27 0 1	Description - DDR2 Fifo almost empty. Memory Bank B Memory bank B not almost empty. Memory bank B almost empty. Description - System Monitor - FPGA Die Temperature Alarm Normal Mode of Operation. Upper die temperature threshold reached.
Setting 0 1 Setting 0 1 Setting	Bit 26 0 1 Bit 27 0 1 Bit 28	Description - DDR2 Fifo almost empty. Memory Bank B Memory bank B not almost empty. Memory bank B almost empty. Description - System Monitor - FPGA Die Temperature Alarm Normal Mode of Operation. Upper die temperature threshold reached. Description - System Monitor - Vccint Alarm
Setting 0 1 Setting 0 1 Setting 0	Bit 26 0 1 Bit 27 0 1 Bit 28 0	Description - DDR2 Fifo almost empty. Memory Bank B Memory bank B not almost empty. Memory bank B almost empty. Description - System Monitor - FPGA Die Temperature Alarm Normal Mode of Operation. Upper die temperature threshold reached. Description - System Monitor - Vccint Alarm Normal Mode of operation.
Setting 0 1 Setting 0 1 Setting 0 1	Bit 26 0 1 Bit 27 0 1 Bit 28 0 1	Description - DDR2 Fifo almost empty. Memory Bank BMemory bank B not almost empty.Memory bank B almost empty.Description - System Monitor - FPGA Die Temperature AlarmNormal Mode of Operation.Upper die temperature threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.
Setting 0 1 Setting 0 1 Setting 0 1 Setting	Bit 26 0 1 Bit 27 0 1 Bit 28 0 1 Bit 28 0 1 Bit 28 0 1	Description - DDR2 Fifo almost empty. Memory Bank BMemory bank B not almost empty.Memory bank B almost empty.Description - System Monitor - FPGA Die Temperature AlarmNormal Mode of Operation.Upper die temperature threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccaux Alarm
Setting 0 1 Setting 0 1 Setting 0 1 Setting 0	Bit 26 0 1 Bit 27 0 1 Bit 28 0 1 Bit 28 0 1 Bit 28 0 1 Bit 28 0 0 1 Bit 29 0	Description - DDR2 Fifo almost empty. Memory Bank BMemory bank B not almost empty.Memory bank B almost empty.Description - System Monitor - FPGA Die Temperature AlarmNormal Mode of Operation.Upper die temperature threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.Normal Mode of operation.Normal Mode of Operation.Upper Vccint threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.
Setting 0 1 Setting 0 1 Setting 0 1 Setting 0 1	Bit 26 0 1 Bit 27 0 1 Bit 28 0 1 Bit 28 0 1 Bit 28 0 1 1 Bit 28 0 1 1 1 1 1 1 1 1	Description - DDR2 Fifo almost empty. Memory Bank BMemory bank B not almost empty.Memory bank B almost empty.Description - System Monitor - FPGA Die Temperature AlarmNormal Mode of Operation.Upper die temperature threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.Upper Vccint threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.Upper Vccaux threshold reached.
Setting 0 1 Setting 0 1 Setting 0 1 Setting 0 1 Setting	Bit 26 0 1 Bit 27 0 1 Bit 28 0 1 Bit 28 0 1 Bit 28 0 1 Bit 29 0 1 Bit 30	Description - DDR2 Fifo almost empty. Memory Bank BMemory bank B not almost empty.Memory bank B almost empty.Description - System Monitor - FPGA Die Temperature AlarmNormal Mode of Operation.Upper die temperature threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.Upper Vccaux threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.Upper Vccaux threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.Upper Vccaux threshold reached.Description - ADCa synch reference state
Setting 0 1 Setting 0 1 Setting 0 1 Setting 0 1 Setting 0 1 Setting 0 1 Setting 0 1 Setting	Bit 26 0 1 Bit 27 0 1 Bit 28 0 1 Bit 28 0 1 Bit 28 0 1 Bit 29 0 1 Bit 30 0	Description - DDR2 Fifo almost empty. Memory Bank BMemory bank B not almost empty.Memory bank B almost empty.Description - System Monitor - FPGA Die Temperature AlarmNormal Mode of Operation.Upper die temperature threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.Upper Vccint threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.Upper Vccaux threshold reached.Description - ADCa synch reference stateThe clock coming out of ADCa is at a low logic level at the time it's been scanned.
Setting 0 1 Setting 0 1 Setting 0 1 Setting 0 1 Setting 0 1 Setting 0 1 Setting 1 1 1 1 1 1 1 1 1 1 1 1 1	Bit 26 0 1 Bit 27 0 1 Bit 28 0 1 Bit 28 0 1 Bit 29 0 1 Bit 30 0 1	Description - DDR2 Fifo almost empty. Memory Bank B Memory bank B not almost empty. Memory bank B almost empty. Description - System Monitor - FPGA Die Temperature Alarm Normal Mode of Operation. Upper die temperature threshold reached. Description - System Monitor - Vccint Alarm Normal Mode of operation. Upper Vccint threshold reached. Description - System Monitor - Vccint Alarm Normal Mode of Operation. Upper Vccint threshold reached. Description - System Monitor - Vccaux Alarm Normal Mode of Operation. Upper Vccaux threshold reached. Description - System Monitor - Vccaux Alarm Normal Mode of Operation. Upper Vccaux threshold reached. Description - ADCa synch reference state The clock coming out of ADCa is at a low logic level at the time it's been scanned. The clock coming out of ADCa is at a high logic level at the time it's been scanned.
Setting 0 1 Setting 0 1 Setting 0 1 Setting 0 1 Setting 0 1 Setting 0 1 Setting	Bit 26 0 1 Bit 27 0 1 Bit 28 0 1 Bit 28 0 1 Bit 29 0 1 Bit 30 0 1 Bit 31	Description - DDR2 Fifo almost empty. Memory Bank BMemory bank B not almost empty.Memory bank B almost empty.Description - System Monitor - FPGA Die Temperature AlarmNormal Mode of Operation.Upper die temperature threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.Upper Vccaux threshold reached.Description - ADCa synch reference stateThe clock coming out of ADCa is at a low logic level at the time it's been scanned.Description - ADCb synch reference state
Setting 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 1 Setting 0 0 0 1 Setting 0 0 0 0 1 Setting 0 0 0 0 0 1 Setting	Bit 26 0 1 Bit 27 0 1 Bit 27 0 1 Bit 28 0 1 Bit 28 0 1 Bit 29 0 1 Bit 30 0 1 Bit 31 0	Description - DDR2 Fifo almost empty. Memory Bank BMemory bank B not almost empty.Memory bank B almost empty.Description - System Monitor - FPGA Die Temperature AlarmNormal Mode of Operation.Upper die temperature threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.Upper Vccaux threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.Upper Vccaux threshold reached.Description - ADCa synch reference stateThe clock coming out of ADCa is at a low logic level at the time it's been scanned.Description - ADCb synch reference stateThe clock coming out of ADCa is at a low logic level at the time it's been scanned.Description - ADCb synch reference stateThe clock coming out of ADCb is at a low logic level at the time it's been scanned.
Setting01Setting01Setting01Setting01Setting01Setting01Setting01Setting01Setting01Setting01	Bit 26 0 1 Bit 27 0 1 Bit 27 0 1 Bit 27 0 1 Bit 28 0 1 Bit 29 0 1 Bit 30 0 1 Bit 31 0 1	Description - DDR2 Fifo almost empty. Memory Bank BMemory bank B not almost empty.Memory bank B almost empty.Description - System Monitor - FPGA Die Temperature AlarmNormal Mode of Operation.Upper die temperature threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccint AlarmNormal Mode of operation.Upper Vccint threshold reached.Description - System Monitor - Vccaux AlarmNormal Mode of Operation.Upper Vccaux threshold reached.Description - AppendenceDescription - ADCa synch reference stateThe clock coming out of ADCa is at a low logic level at the time it's been scanned.Description - ADCb synch reference stateThe clock coming out of ADCb is at a low logic level at the time it's been scanned.Description - ADCb synch reference stateThe clock coming out of ADCb is at a low logic level at the time it's been scanned.Description - ADCb synch reference stateThe clock coming out of ADCb is at a low logic level at the time it's been scanned.

	Offset 0x0400 - Reset Register - 0x10 (write)								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
3									
Default	'0'	'0'	' 0'	'0'	'0'	'0'	'0'	' 0 '	
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
2	System Monitor Reset	Soft Reset	SHB2 Reset	SHB1 Reset	DDR2 Reset	DDR2 ChA&B Read Enable	External Trigger Selection	DDR2 Capture enable	
Default	' 0 '	'1'	'0'	'0'	'0'	'0'	'0'	' 0 '	
1	DCM Reset	ADC Calibration request (auto- clears)	Reference Clock OnBoard Divider	Reference Clock Out Divider		Ref Clock Circuitry Reset	Ref Clock Selection		
Default	'0'	'0'	'0'	'0'	'0'	'1'	'00 '	,00,	
0	Sampling Clock Selection Source	CLOCK Power Supplies Enable	ADCB Power Supplies Enable	ADCA Power Supplies Enable	ADC Reset	Clock Update (auto- clears)	ADCB Update (auto-clear)	ADCA Update (auto- clears)	
Default	'0'	'0'	'0'	'0'	'1'	'0'	'0'	'0'	

4.3.1.2.2 Set Control Register - 0x10 (write).

		Offset 0x0400 – Reset Register – 0x10 (write)
Setting	Bit 0	Description – ADCA Update (Auto-Clears)
0	0	Normal Mode of Operation
1	1	All Current ADCA Register are passed from the FPGA to the ADCA Chip
Setting	Bit 1	Description – ADCB Update (Auto-Clears)
0	0	Normal Mode of Operation
1	1	All Current ADCB Register are passed from the FPGA to the ADCB Chip
Setting	Bit 2	Description - Clock Update (Auto-Clears)
0	0	Normal Mode of Operation
1	1	All Current Clock Register are passed from the FPGA to the Clock Chip
Setting	Bit 3	Description – ADC Reset (Does not auto-clear)
0	0	Normal Mode of Operation.
1	1	ADCs kept in Reset (Default).
Setting	Bit 4	Description – ADCA Power Supplies Enable
0	0	ADCA is not powered.
1	1	Normal Mode of Operation – ADCA under power.
Setting	Bit 5	Description – ADCB Power Supplies Enable
0	0	ADCB is not powered.
1	1	Normal Mode of Operation – ADCB under power.
Setting	Bit 6	Description – CLOCK Power Supplies Enable
0	0	CLOCK circuitry is not powered.
1	1	Normal Mode of Operation – CLOCK under power.

Setting	Bit 7	Description - Sampling Clock Source Selection
0	0	ADCs are clocked using the on-board clock synthesizer.
1	1	ADCs are clocked using an external source.
Setting	Bit 9-8	Description - Reference Clock Selection
0	00	External Reference Selected.
1	01	100-MHz PXI Express Reference Clock.
2	10	10-MHz PXI Express Reference Clock.
3	11	100-MHz PXI Express Reference Clock.
Setting	Bit 10	Description - Reference Clock Circuitry Reset
0	0	Normal Mode of Operation.
1	1	Reference Clock Circuitry kept in Reset (Default).
Setting	Bit 12	Description - Reference Clock Out Divider.
0	0	Divide by 1.
1	1	Divide by 2.
Setting	Bit 13	Description - On-board Reference Clock Divider
0	0	Divide by 1.
1	1	Divide by 2.
Setting	Bit 14	Description – ADCs Calibration Request (Auto-Clears)
0	0	Normal Mode of Operation (Default)
1	1	Forces the FPGA to recalibrate its IOs. This is required when the sampling clock of the ADCs has been changed.
Setting	Bit 15	Description – ADC DCMs Reset
0	0	Normal Mode of operation
1	1	Resets ADC DCMs.
Setting	Bit 16	Description – DDR2 Capture Enable
0	0	DDR2 Memory not enabled. Nothing can be written.
1	1	DDR2 memory enabled, meaning samples can be written in memory until it is full.
Setting	Bit 17	Description - Trigger Source Selection
0	0	On-board trigger selected (bit 16)
1	1	External trigger selected (Trig Input). A Level 'high' on the Trig Input is required to start an acquisition (length of the pulse being at least $1/8^{th}$ of the ADC sampling clock.
Setting	Bit 18	Description - DDR2 read Enable
0	0	DDR2 Memory read operation not enabled.
1	1	DDR2 memory read operation enabled, meaning samples contained in DDR2 memory can be transferred to the host.
Setting	Bit 19	Description - DDR2 Reset
0	0	Normal Mode of Operation
1	1	Keeps DDR2 circuitry in Reset
Setting	Bit 20	Description – SHB1 Reset
0	0	Normal Mode of Operation
1	1	Keeps SHB1 circuitry in Reset
Setting	Bit 21	Description - SHB2 Reset
0	0	Normal Mode of Operation
1	1	Keeps SHB2 circuitry in Reset
Setting	Bit 22	Description - Soft Reset

0	0	Normal Mode of Operation
1	1	Resets Xlinks blocks – usually used before starting an acquisition to clear Xlinks FIFOs.
Setting	Bit 23	Description – System Monitor Reset
0	0	Normal Mode of Operation
1	1	Keeps System Monitor circuitry in Reset

Note 1: The on-board reference clock is used by the on-board clock generator, which can only take reference clock within the range 5-80MHz. Bit13 must be set for all reference reaching the chip above 80MHz.

4.3.1.2.3 Clear Control Register - 0x20 (write).

Same as Set Control Register (0x10) but used to clear individual register bits.

4.3.1.2.4 Board Name and Version – 0x24 (read–only).

		C	Offset 0x04	00 – Reset Re	egister – 0x24	(read-only)		
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
3				Board Na	me (MSB)			
2				Board Na	ume (LSB)			
1				FPGA	Туре			
0		FPGA T	ype			PCB Re	vision	

		Offset 0x0400 - Reset Register - 0x24 (read-only)
Setting	Bit 3:0	Description - PCB Revision
		Return a number coded in binary on 4 bits.
Setting	Bit 11:4	Description - FPGA Type
		Return 110 for an LX110T FPGA, 070 for and FX70T FPGA, 100 for and FX100T FPGA.
Setting	Bit 31:12	Description - Board name
		Returns 0702, as an hexadecimal value.

4.3.1.2.5 Firmware Version and Revision Numbers - 0x40 (readonly).

		0	Offset 0x04	00 – Reset Re	egister – 0x40) (read-only)		
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3			Fir	mware Versio	on Number (M	SB)		
2		Firmware Version Number (LSB)						
1			Firi	mware Revisio	on Number (M	ISB)		
0			Fir	mware Revisi	on Number (L	SB)		

		Offset 0x0400 - Reset Register - 0x40 (read-only)
Setting	Bit 15:0	Description - Firmware Revision
		Return a number coded in binary on 16 bits.
Setting	Bit 31:16	Description - Firmware Version
		Returns 0DEF (hexadecimal value) for the default firmware.

4.3.1.2.6	ADCA	(ADC083000)	Register	0x1	-	Configuration
Re	egister – (0x44 (write).				

	Offset	0x0400 - AD	CA (ADC083	3000) Registe	er 0x1 – Confi	guration Reg	ister – 0x44 ((write)
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	Reserved	DRE	RTD	DCS	DCP	nDE	OV	OE
Default	'1'	'1'	' 0 '	'1'	'0'	'1'	'1'	'0'
0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Default	'1'	'1'	'1'	'1'	'1'	'1'	'1'	'1'

	Offset 0x04	400 - ADCA (ADC083000) Register 0x1 - Configuration Register - 0x44 (write)
Setting	Bit 14	Description (DRE – Differential Reset Enable)
0	0	Single-ended Reset enabled.
1	1	Differential Reset enabled.
Setting	Bit 13	Description (RTD - resistor Trim Disable)
0	0	Normal Operation.
1	1	Input termination resistor is not trimmed during calibration cycle.
Setting	Bit 12	Description (DCS – Duty Cycle Stabilizer)
0	0	Stabilisation circuit disabled.
1	1	Duty Cycle Stabilizer applied to the sampling clock.
Setting	Bit 11	Description (DCP – DDR Clock Phase – DDR Mode only)
0	0	0° phase – ADC output clock time-aligned with data.
1	1	90° phase – ADC output clock placed in the middle of data.
Setting	Bit 10	Description (nDE – DDR Enable)
0	0	DDR Mode.
1	1	SRD Mode.
Setting	Bit 9	Description (OV – LVDS Output Voltage amplitude)
0	0	Reduced output amplitude – 510mV. This setting is recommended on the SMT702. It reduces the overall noise on the board and therefore increases the performance of the ADCs.
1	1	Standard output amplitude – 710mV.
Setting	Bit 8	Description (OE -Output Edge)
0	0	1:4 Demux Mode (DDR Mode must be Selected).
1	1	1:2 Demux Mode (DDR Mode must be selected).

4.3.1.2.7 ADCA (ADC083000) Register 0x2 - Offset Adjust - 0x48 (write and read).

	Offset	0x0400 - AD	CA (ADC083	3000) Registe	r 0x2 – Offse	t Adjust – 0x	48 (write and	l read)
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
1				Offset	Value			
Default				"0000	0000"			
0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

Default '1' '1' '1' '1' '1' '1' '1' '1' '1'

	Offset 02	Offset 0x0400 – ADCA (ADC083000) Register 0x2 – Offset Adjust – 0x48 (write and read)							
Setting	Bit 8-15	it 8-15 Description (Offset Adjust)							
0	0	8-bit value - 0.176mV per bit – 0x0 is 0mv and 0xFF is 45mV.							
Setting	Bit 7	Description (Offset sign)							
0	0	Positive offset.							
1	1	Negative offset.							

4.3.1.2.8 ADCA (ADC083000) Register 0x3 – Full Scale Voltage Adjust – 0x4C (write and read).

	Offset 0x	Offset 0x0400 - ADCA (ADC083000) Register 0x3 - Full Scale Voltage Adjust - 0x4C (write and read)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
1		Adjust Value							
Default		"10000000"							
0	Adjust Value	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
Default	'0'	'1'	'1'	'1'	'1'	'1'	'1'	'1'	

	Offset 0x	x0400 – ADCA (ADC083000) Register 0x3 – Full Scale Voltage Adjust – 0x4C (write and read)
Setting	Bit 7-15	Description (Full Scale Voltage Adjust)
0	0	9-bit value – 20% adjustment around the nominal 700mVpp differential value – 0x0 is 560mVp-p and 0x1FF is 840mVp-p.

4.3.1.2.9 ADCA (ADC083000) Register 0xD – Extended Clock Phase Adjust Fine – 0x74 (write and read).

	Offset 02	Offset 0x0400 - ADCA (ADC083000) Register 0xD - Extended Clock Phase Adjust Fine - 0x74 (write and read)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
1		Phase Adjust (Fine)							
Default		"0000000"							
0	Phase Adjust	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
Default	'0'	'1'	'1'	'1'	'1'	'1'	'1'	'1'	

	Offset 0x0	400 – ADCA (ADC083000) Register 0xD – Extended Clock Phase Adjust Fine – 0x74 (write and read)				
Setting	Bit 7-15	Description (Fine Adjust Magnitude)				

0	0	9-bit value – With all bits set, adjust=110ps.
---	---	--

4.3.1.2.10 ADCA (ADC083000) Register 0xE – Extended Clock Phase Adjust Coarse – 0x78 (write and read).

	Offset 0x0	x0400 – ADCA (ADC083000) Register 0xE – Extended Clock Phase Adjust Coarse – 0x78 (write and read)						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	ENA		Phase Adju	ıst (Coarse)		LFS	Reserved	Reserved
Default	'0'						'1'	'1'
0	Reserved	Reserved	Reserved Reserved Reserved				Reserved	Reserved
Default	'1'	'1'	'1'	'1'	'1'	'1'	'1'	'1'

	Offset 0x04	Offset 0x0400 – ADCA (ADC083000) Register 0xE – Extended Clock Phase Adjust Coarse – 0x78 (write and read)						
Setting	Bit 10	Description (LFS – Low Frequency Sample Clock)						
0	0	Sample Clock above 900MHz.						
1	1	Sample Clock below 900MHz.						
Setting	Bit 11-14	Description (Coarse Adjust Magnitude)						
0	0	4-bit value – Each LSB adds approximately 70ps of Clock Adjust.						
Setting	Bit 15	Description (ENA – enable)						
0	0	Disabled.						
1	1	Enabled.						

4.3.1.2.11 ADCA (ADC083000) Register 0xF - Test Pattern register - 0x7C (write and read).

	Offset 0x04	Offset 0x0400 - ADCA (ADC083000) Register 0xF - Test Pattern Register - 0x7C (write and read)						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	Reserved	Reserved	Reserved	Reserved	TPO	Reserved	Reserved	Reserved
Default	'1'	'1'	'1'	'1'	'0'	'1'	'1'	'1'
0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Default	'1'	'1'	'1'	'1'	'1'	'1'	'1'	'1'

	Offset 0x0	Offset 0x0400 - ADCA (ADC083000) Register 0xF - Test Pattern Register - 0x7C (write and read)						
Setting	Bit 11	Description (TPO – Test Pattern Output Enable)						
0	0	Normal mode of Operation.						
1	1	All ADC outputs in Test Pattern mode.						

4.3.1.2.12 ADCB (ADC083000) Register 0x1 – Configuration Register – 0x84 (write and read).

	Offset 0x04	Offset 0x0400 - ADCB (ADC083000) Register 0x1 - Configuration Register - 0x84 (write and read)						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	Reserved	DRE	RTD	DCS	DCP	nDE	OV	OE
Default	'1'	'1'	' 0 '	'1'	'0'	'1'	'1'	' 0 '
0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Default	'1'	'1'	'1'	'1'	'1'	'1'	'1'	'1'

	Offset 0x0	Offset 0x0400 - ADCB (ADC083000) Register 0x1 - Configuration Register - 0x84 (write and read)						
Setting	Bit 14	Description (DRE – Differential Reset Enable)						
0	0	Single-ended Reset enabled.						
1	1	Differential Reset enabled.						
Setting	Bit 13	Description (RTD - resistor Trim Disable)						
0	0	Normal Operation.						
1	1	Input termination resistor is not trimmed during calibration cycle.						
Setting	Bit 12	Description (DCS – Duty Cycle Stabilizer)						
0	0	Stabilisation circuit disabled.						
1	1	Duty Cycle Stabilizer applied to the sampling clock.						
Setting	Bit 11	Description (DCP – DDR Clock Phase – DDR Mode only)						
0	0	0° phase – ADC output clock time-aligned with data.						
1	1	90° phase – ADc output clock placed in the middle of data.						
Setting	Bit 10	Description (nDE – DDR Enable)						
0	0	DDr Mode.						
1	1	SRD Mode.						
Setting	Bit 9	Description (OV – LVDS Output Voltage amplitude)						
0	0	Reduced output amplitude – 510mV. This setting is recommended on the SMt702. It reduces the overall noise on the board and therefore increases the performance of the ADCs.						
1	1	Standard output amplitude – 710mV.						
Setting	Bit 8	Description (OE -Output Edge)						
0	0	1:4 Demux Mode (DDR Mode must be Selected).						
1	1	1:2 Demux Mode (DDR Mode must be selected).						

4.3.1.2.13 ADCB (ADC083000) Register 0x2 - Offset Adjust - 0x88 (write and read).

	Offset	Offset 0x0400 - ADCB (ADC083000) Register 0x2 - Offset Adjust - 0x88 (write and read)							
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
1		Offset Value							
Default				"0000	0000"				
0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
Default	'1'	'1'	'1'	'1'	'1'	'1'	'1'	'1'	

	Offset 0x04	Offset 0x0400 - ADCB (ADC083000) Register 0x2 - Offset Adjust - 0x88 (write and read)						
Setting	Bit 8-15	Description (Offset Adjust)						
0	0	8-bit value - 0.176mV per bit – 0x0 is 0mv and 0xFF is 45mV.						
Setting	Bit 7	Description (Offset sign)						
0	0	Positive offset.						
1	1	Negative offset.						

4.3.1.2.14 ADCB (ADC083000) Register 0x3 – Full Scale Voltage Adjust – 0x8C (write and read).

	Offset 0x	Offset 0x0400 - ADCB (ADC083000) Register 0x3 - Full Scale Voltage Adjust - 0x8C (write and read)							
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
1		Adjust Value							
Default				"1000	0000"				
0	Adjust Value	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
Default	'0'	'1'	'1'	'1'	'1'	'1'	'1'	'1'	

	Offset 02	x0400 – ADCB (ADC083000) Register 0x3 – Full Scale Voltage Adjust – 0x8C (write and read)
Setting	Bit 7-15	Description (Full Scale Voltage Adjust)
0	0	9-bit value – 20% adjustment around the nominal 700mVpp differential value – 0x0 is 560mVp-p and 0x1FF is 840mVp-p.

4.3.1.2.15 ADCB (ADC083000) Register 0xD – Extended Clock Phase Adjust Fine 0xB4 (write and read).

	Offset 02	Offset 0x0400 – ADCB (ADC083000) Register 0xD – Extended Clock Phase Adjust Fine – 0xB4 (write and read)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
1		Phase Adjust (Fine)							
Default				"0000	0000"				
0	Phase Adjust	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
Default	' 0'	'1'	'1'	'1'	'1'	'1'	'1'	'1'	

	Offset 0x0	Offset 0x0400 - ADCB (ADC083000) Register 0xD - Extended Clock Phase Adjust Fine - 0xB4 (write and read)					
Setting	Bit 7-15	Description (Fine Adjust Magnitude)					
0	0	9-bit value – With all bits set, adjust=110ps.					

4.3.1.2.16 ADCB (ADC083000) Register 0xE – Extended Clock Phase Adjust Coarse – 0xB8 (write and read).

	Offset 0x0	Offset 0x0400 - ADCB (ADC083000) Register 0xE - Extended Clock Phase Adjust Coarse - 0xB8 (write and read)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
1	ENA		Phase Adju	ist (Coarse)		LFS	Reserved	Reserved	
Default	'0'					'0'	'1'	'1'	
0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
Default	'1'	'1'	'1'	'1'	'1'	'1'	'1'	'1'	

	Offset 0x04	Offset 0x0400 – ADCB (ADC083000) Register 0xE – Extended Clock Phase Adjust Coarse – 0xB8 (write and read)					
Setting	Bit 10	Bit 10 Description (LFS – Low Frequency Sample Clock)					
0	0	Sample Clock above 900MHz.					
1	1	Sample Clock below 900MHz.					
Setting	Bit 11-14	Description (Coarse Adjust Magnitude)					
0	0	4-bit value – Each LSB adds approximately 70ps of Clock Adjust.					
Setting	Bit 15	Description (ENA – enable)					
0	0	Disabled.					
1	1	Enabled.					

4.3.1.2.17 ADCB (ADC083000) Register 0xF - Test Pattern register - 0xBC (write and read).

	Offset 0x04	Offset 0x0400 - ADCB (ADC083000) Register 0xF - Test Pattern Register - 0xBC (write and read)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
1	Reserved	Reserved	Reserved	Reserved	TPO	Reserved	Reserved	Reserved	
Default	'1'	'1'	'1'	'1'	'0'	'1'	'1'	'1'	
0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
Default	'1'	'1'	'1'	'1'	'1'	'1'	'1'	'1'	

	Offset 0x0400 – ADCB (ADC083000) Register 0xF – Test Pattern Register – 0xBC (write and read)					
Setting	Bit 11	Description (TPO – Test Pattern Output Enable)				
0	0	Normal mode of Operation.				
1	1	All ADC outputs in Test Pattern mode.				

4.3.1.2.18 Frequency Synthesizer (LMX2531) Register R0 – 0xC0 (write and read).

The LMX2531 in the SMT702 is a clock synthesizer that generates a frequency within the range 1499-1510MHz. The chip has a built-in VCO and uses a reference clock to lock its pll.

	Offset	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R0 - 0xC0 (write and read)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
2	Reserved				N[7:4]				
Default	,0000,				·0000'				
1	N[3:0]				NUM[11:8]				
Default		·0000'				'0000'			
0		NUM[7:0]							
Default				,00000)000'				

	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R0 - 0xC0 (write and read)					
Setting	Bit 11-0	actional numerator (NUM[11:0])				
0	0	Value between 0 (all 0s) and 4194303 (all 1s)				
Setting	Bit 21-12	N Counter (N[7:0])				
0	0	Value between 0 (0x0) and 2039 (0x3F7)				

4.3.1.2.19 Frequency Synthesizer (LMX2531) Register R1 – 0xC4 (write and read).

	Offset 0x0400 – Frequency Synthesizer (LMX2531) Register R1 – 0xC4 (write and read)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2	Reserved ICP[4							ICP[4]
Default		ʻ000000'						'0'
1		ICP[3:0] N[10:8]					NUM	[21:20]
Default	,000, ,000,						'(00'
0	NUM[19:12]							
Default	ʻ0000000'							

	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R1 - 0xC4 (write and read)				
Setting	Bit 9-0	Fractional numerator (NUM[21:12])			
0	0	Value between 0 (all 0s) and 4194303 (all 1s)			
Setting	Bit 12-10	N Counter (N[10:8])			
0	0	Value between 0 (0x37) and 2039 (0x3F7)			
Setting	Bit 16-13	Charge Pump Current (ICP[4:0])			
0	0	0x0 corresponds to 90uA (state 1x) and 0xF (State 16x) to 1440uA (90uA per state)			

4.3.1.2.20 Frequency Synthesizer (LMX2531) Register R2 – 0xC8 (write and read).

	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R2 - 0xC8 (write and read)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2	Reserved Reserved DEN[11:0]							[[11:0]
Default	'00000' '1' '00'						00'	
1		DEN[11:0]						
Default		ʻ0000000'						
0	DEN[11:0] R[5:0]							
Default	,00, ,000000,							

	Offset 0x0	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R2 - 0xC8 (write and read)				
Setting	Bit 5-0	R Counter Value (R[5:0])				
0	0	R Country Value – These bits determine the phase detector frequency. Only possible values are 1, 2, 4, 8, 16 or 32				
Setting	Bit 17-6	Fractional Denominator DEN[11:0]				
0	0	Value between 0 (all 0s) and 4194303 (all 1s)				

4.3.1.2.21 Frequency Synthesizer (LMX2531) Register R3 – 0xCC (write and read).

	Offset 0x0400 – Frequency Synthesizer (LMX2531) Register R3 – 0xCC (write and read)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2	Reserved				DIV2	FDM	DITH	ER[1:0]
Default	·0000'				'0'	'0'	' 00 '	
1	ORDER[1:0] FoLD[0]='0000'		DEN[21:12]	
Default	,00, ,				,000,)0'
0	DEN[21:12]							
Default	,0000000,							

	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R3 - 0xCC (write and read)					
Setting	Bit 9-0	Fractional Denominator DEN[21:12]				
0	0	Value between 0 (all 0s) and 4194303 (all 1s)				
Setting	Bit 13-10	Multiplexed Output for Ftest/LD pin FoLD[3:0]				
0	0x0	Ftest/LD pin not used on the SMT702 – Set Register to 0x0				
Setting	Bit 15-14	Order of Delta Sigma modulator ORDER[1:0]				
0	0x0	Fourth				
1	0x1	Reset Modulator (all fractions are ignored)				
2	0x2	Second				
3	0x3	Third				
Setting	Bit 17-16	Dithering DITHER[1:0]				
0	0x0	Weak dithering				
1	0x1	Reserved				
2	0x2	Strong Dithering				
3	0x3	Dithering Disabled				
Setting	Bit 18	Fractional Denominator Mode FDM				
0	0x0	Only 12 LSBs of the fractional numerator and denominator are considered				
1	0x1	Only the 10 MSBs of the fractional numerator and denominator are considered				
Setting	Bit 19	Divide By 2 option DIV2				
0	0x0	VCO output frequency not divided by 2				
1	0x1	VCO output frequency divided by 2				

4.3.1.2.22 Frequency Synthesizer (LMX2531) Register R4 – 0xD0 (write and read).

	Offset 0x0400 – Frequency Synthesizer (LMX2531) Register R4 – 0xD0 (write and read)							
Byte	Bit 7	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit						Bit 0
2		Reserved ICPFL[3:0]						
Default	,000,000, ,00,						00'	
1	ICPFL[3:0] TOC[13:0]							
Default	·00'		ʻ000000'					

0	TOC[13:0]
Default	·0000000'

	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R4 - 0xD0 (write and read)				
Setting	Bit 13-0	Timeout Counter for fastlock (TOC[13:0])			
0	0	0x0 Timeout 0 – 0x1 Timeout always enable – 0x2 – timeout 0 – 0x3 timeout 0 – 0x4 timeout 4x2 phase detector 0x3FFF 16383x2 phase detector			
Setting	Bit 17-14	Charge Pump Current for fastlock ICPFL[3:0]			
0	0	0x0 corresponds to 90uA (state 1x) and 0xF (State 16x) to 1440uA (90uA per state)			

4.3.1.2.23 Frequency Synthesizer (LMX2531) Register R5 - 0xD4 (write and read).

	Offset 0	x0400 – Freq	0 – Frequency Synthesizer (LMX2531) Register R5 – 0xD4 (write and read)					
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
1				TOC[13:0]				
Default					'000000)'		
0	Reserved	EN_DIGLO D	EN_PLLLDO 2	EN_PLLL DO1	EN_VCOLD	EN_OSC	EN_VCO	EN_PLL
Default	' 0 '	'0'	' 0 '	'0'	' 0'	' 0'	' 0'	' 0'

	Offset 0x0	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R5 - 0xD4 (write and read)					
Setting	Bit 0	Enable bit for pll – EN_PLL					
0	0	PLL powered off					
1	1	PLL powered on					
Setting	Bit 1	Enable bit for vco – EN_VCO					
0	0	VCO powered off					
1	1	VCO powered on					
Setting	Bit 2	Enable bit for Oscillator inverter - EN_OSC					
0	0	Reference Oscillator powered off					
1	1	Reference Oscillator powered on					
Setting	Bit 3	Enable bit for VCO LDO – EN_VCOLDO					
0	0	LDO powered off					
1	1	LDO powered on					
Setting	Bit 4	Enable bit for PLL LDO1 - EN_PLLLDO1					
0	0	LDO powered off					
1	1	LDO powered on					
Setting	Bit 5	Enable bit for PLL LDO2 - EN_PLLLDO2					
0	0	LDO powered off					
1	1	LDO powered on					
Setting	Bit 6	Enable bit for Digital LDO - EN_DIGLDO					
0	0	PLL powered off					
1	1	PLL powered on					
Setting	Bit 14	Reset all register REG_RST					

0	0	Normal Operation
1	1	All register set to the default values

4.3.1.2.24 Frequency Synthesizer (LMX2531) Register R6 – 0xD8 (write and read).

	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R6 - 0xD8 (write and read)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
2			Reserved				XTLSEL	[2:0]
Default			ʻ00000'			' 000 '		
1		VCO_ACI_SEL[3:0]				R4_ADJ[1:0] R4_ADJ_]		R4_ADJ_FL[1:0]
Default		' 000	0'		'0'	'()0'	' 00 '
0	R4_AD	[_FL[1:0]	R3_AD	J[1:0]	R3_ADJ	_FL[1:0]	C3_	4_ADJ[2:0]
Default	'()0'	'00)'	'0	0'		' 000 '
	Offset 0x04	400 – Frequen	cy Synthesize	r (LMX2531)	Register R	6 - 0xD8 (v	write and r	ead)
Setting	Bit 2-0	Value for C3	and C4 in the	internal loop	<mark>o filter – C</mark> 3	8_4_ADJ[2:	0]	
0	0x0	C3=50pF and	C4=50pF					
1	0x1	C3=50pF and	C4=100pF					
2	0x2	C3=50pF and	C4=150pF					
3	0x3	C3=100pF and	d C4=50pF					
4	0x4	C3=150pF and	d C4=50pF					
5	0x5	C3=100pF and	d C4=100pF					
6	0x6	C3=50pF and	C4=150pF					
7	0x7	C3=50pF and	C4=150pF					
Setting	Bit 4-3	Value for inte	ernal loop filte	er resistor R3	during fa	stlock – R3	_ADJ_FL[1	:0]
0	0x0	10 kΩ						
1	0x1	20 kΩ						
2	0x2	30 kΩ						
3	0x3	40 kΩ						
Setting	Bit 6-5	Value for inte	ernal loop filte	er resistor R3	B - R3_ADJ	[1:0]		
0	0x0	10 kΩ						
1	0x1	20 kΩ						
2	0x2	30 kΩ						
3	0x3	40 kΩ						
Setting	Bit 8-7	Value for inte	ernal loop filte	er resistor R4	during fa	stlock – R3	_ADJ_FL[1	:0]
0	0x0	10 kΩ						
1	0x1	20 kΩ						
2	0x2	30 kΩ						
3	0x3	40 kΩ						
Setting	Bit 10-9	Value for inte	ernal loop filte	er resistor R4	- R4_ADJ	[1:0]		
0	0x0	10 kΩ						
1	0x1	20 kΩ						
2	0x2	30 kΩ						
3	0x3	40 kΩ						

Setting	Bit 11	Enable for partially integrated internal loop filter - EN_LPFLTR
0	0	Disabled (R3 and R4=0R and C3+C4=200pF)
1	1	Enabled
Setting	Bit 15-12	Optimisation of VCO Phase noise - VCO_ACI_SEL
0	0	Should always be set to 8
Setting	Bit 18-16	Crystal Selection - XTLSEL[2:0]
0	0x0	<25MHz
1	0x1	25-50MHz
2	0x2	50-70MHz
3	0x3	>70MHz
4	0x4	Manual mode
5	0x5	Reserved
6	0x6	Reserved
7	0x7	Reserved

4.3.1.2.25 Frequency Synthesizer (LMX2531) Register R7 – 0xDC (write and read).

	Offset	t 0x0400 - Fre	x0400 – Frequency Synthesizer (LMX2531) Register R7 – 0xDC (write and read)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
2			Reserved	l			XTL	.MAN[11:0]		
Default			,00000, ,000000000, ,00000000, ,00000000							
1				XTLMAN[]	11:0]					
Default				,00000000	0000'					
0	XTLM	AN[11:0]	XTLD	IV[1:0]		Reserved				
Default	' 00000	0000000'	' 0	·00'		ʻ0000'				
	Offset 0x0	9400 – Frequer	00 - Frequency Synthesizer (LMX2531) Register R7 - 0xDC (write and read)							
Setting	Bit 5-4	Division Rati	o for the Crys	tal Frequenc	y – XTLDIV	[1:0]				
0	0x0	Reserved								
1	0x1	Divide by 2 -	<20Mhz							
2	0x2	Divide by 4 –	Divide by 4 – 20-40Mhz							
3	0x3	Divide by 8 - 2	Divide by 8 - >40Mhz							
Setting	Bit 17-6	Manual Cryst	al Mode – XTI	LMAN[11:0]						
0	0x0	To be program	nmed with 0s							

4.3.1.2.26 Frequency Synthesizer (LMX2531) Register R8 – 0xE0 (write and read).

	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R8 - 0xE0 (write and read)								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
2		Reserved							
Default		ʻ0000000'							
1				Reserve	d				

Default	ʻ0000000'	
0	Reserved	XTLMAN 2
Default	ʻ0000000'	'0'

	Offset 0x	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R8 - 0xE0 (write and read)						
Setting	Bit 0	Manual crystal mode second adjustment – XTLMAN2						
0	0x0	To be programmed with zeros						

4.3.1.2.27 Frequency Synthesizer (LMX2531) Register R9 – 0xE4 (write and read).

	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R9 - 0xE4 (write and read)								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
2		Reserved							
Default		ʻ0000000'							
1		Reserved							
Default		ʻ0000000'							
0				Reserve	d				
Default				'101110	10'				

	Offset 0x	Offset 0x0400 – Frequency Synthesizer (LMX2531) Register R9 – 0xE4 (write and read)							
Setting									
0	0x0	Should be programmed as above							

4.3.1.2.28 Frequency Synthesizer (LMX2531) Register R12 – 0xE8 (write and read).

	Offset 0x0400 - Frequency Synthesizer (LMX2531) Register R12 - 0xE8 (write and read)								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
2		Reserved							
Default		ʻ0000000'							
1		Reserved							
Default				' 0001000)0'				
0				Reserve	d				
Default				<u>'0100100</u>	00'				

	Offset 0x0	Offset 0x0400 – Frequency Synthesizer (LMX2531) Register R12 – 0xE8 (write and read)								
Setting										
0	0x0	Should be programmed as above								

4.3.1.2.29 ADCA - DCM Phase Shift - 0x108 (write).

		Offset 0x0400 - ADCA - DCM Phase Shift - 0x108 (write).							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
1								Phase Shift Sign	
Default		,0,							
0		Phase Shift[7:0]							
Default				·000000	00'				

		Offset 0x0400 – ADCA – DCM Phase Shift – 0x108 (write)							
Setting	Bit 8	Sign of Phase Shift							
0	0x0	Positive phase shift							
1	0x1	Negative phase shift							
Setting	Bit 7-0	Phase Shift value							
0		8-bit phase shift value to describe a phase shift between 0 and 255							

The default firmware implements one DCM_ADV (see Xilinx Virtex 5 documentation for more details) per ADC data path, i.e. one DCM_ADV for ADCA and one for ADCB. Both are set to have a programmable phase shift, which means it can be changed from the host application. Both DCMs are set in mode VARIABLE_CENTER.

There is one bit to set the sign of the phase shit and 8 bit to set the value. The phase shift range is -255...+255. Once the control word of send, the DCM is being reset and programmed with the new phase shift. By default, the shift register is set to 0.

4.3.1.2.30 ADCB - DCM Phase Shift - 0x10C (write).

	Offset 0x0400 - ADCB - DCM Phase Shift - 0x10C (write).							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
1								Phase Shift Sign
Default		' 0 '						
0	Phase Shift[7:0]							
Default	·0000000'							

		Offset 0x0400 - ADCB - DCM Phase Shift - 0x10C (write)				
Setting	Bit 8	Sign of Phase Shift				
0	0x0	Positive phase shift				
1	0x1	Negative phase shift				
Setting	Bit 7-0	Phase Shift value				
0		8-bit phase shift value.				

The default firmware implements one DCM_ADV per ADC data path, i.e. one DCM_ADV for ADCA and one for ADCB. Both are set to have a programmable phase shift, which means it can be changed from the host application. Both DCMs are set in mode VARIABLE_CENTER.

There is one bit to set the sign of the phase shit and 8 bit to set the value. The phase shift range is -255...+255. Once the control word of send, the DCM is being reset and programmed with the new phase shift. By default, the shift register is set to 0.

4.3.1.2.31 System Monitor - FPGA Die Temperatures - 0x180 (read).

		Offset 0x0400 – System Monitor – FPGA Die Temperatures – 0x180 (read).								
Byte	Bit 7	Bit 6Bit 5Bit 4Bit 3Bit 2Bit					Bit 1	Bit 0		
3	Res	erved		Ν	aximum Die Temperature[9:4]					
Default	,00, ,					000000'				
2	М	aximum Die Te	emperature[3	3:0]	Mii	nimum Die T	e Temperature[9:6]			
Default		' 00	00'		·0000'					
1		Minimum Die Temperature[5:0] Current Die Temperature[9:8]						ent Die rature[9:8]		
Default	,000000, ,00,						00'			
0		Current Die Temperature[7:0]								
Default				' 000'	00000'					

	Offset 0x0400 - System Monitor - FPGA Die Temperatures - 0x180 (read).					
Setting	Bit 2920	Maximum FPGA Die Temperature (measured)				
2		The Temperature is coded on 10 bits.				
Setting	Bit 1910	Minimum FPGA Die Temperature (measured)				
1		The Temperature is coded on 10 bits.				
Setting	Bit 90	Current FPGA Die Temperature (measured)				
0		The Temperature is coded on 10 bits.				

4.3.1.2.32 System Monitor - FPGA Die Temperature thresholds - 0x180 (write).

	Offset 0x0400 - System Monitor - FPGA Die Temperature thresholds - 0x180 (write).								
Byte	Bit 7	Bit 6	Bit 5	Bit 5Bit 4Bit 3Bit 2Bit 1					
3	Res	erved	Die Temperature OT lower threshold[9:4]						
Default	'()0'	,000000,						
2	Die Temperature OT lower threshold[3:0]				Die Temperature upper threshold[9:6]				
Default	ʻ0000'				·0000'				
1		Die Temperature upper threshold[5:0] Die Temperature lowe threshold[9:8]						erature lower hold[9:8]	
Default	,000,000, ,000,						00'		
0	Die Temperature lower threshold[7:0]								
Default				' 0000	00000'				

	Offset 0x0400 - System Monitor - FPGA Die Temperature thresholds - 0x180 (write).					
Setting	Bit 2920	2920 Die Temperature OT (Over temperature) lower threshold				
2		The Temperature is coded on 10 bits.				
Setting	Bit 1910	Die Temperature upper threshold				
1		The Temperature is coded on 10 bits.				

Setting	Bit 90	Die Temperature lower threshold
0		The Temperature is coded on 10 bits.

4.3.1.2.33 System Monitor - FPGA Core Voltages - 0x184 (read).

	Offset 0x0400 - System Monitor - FPGA Core Voltages - 0x184 (read).								
Byte	Bit 7	Bit 6	Bit 5	Bit 5Bit 4Bit 3Bit 2Bit 1					
3	Reserved			Maximum Vccint[9:4]					
Default	,00,				,000000,				
2		Maximum V	Vccint[3:0]		Minimum Vccint [9:6]				
Default	ʻ0000'				·0000'				
1	Minimum Vccint [5:0]					Current	Vccint [9:8]		
Default	,000000, ,00,					00'			
0	Current Vccint [7:0]								
Default				' 000 '	00000'				

	Off	Offset 0x0400 - System Monitor - FPGA Core Voltages - 0x184 (read).				
Setting	Bit 2920	Maximum FPGA Vccint (measured)				
2		The Voltage is coded on 10 bits.				
Setting	Bit 1910	Minimum FPGA Vccint (measured)				
1		The Voltage is coded on 10 bits.				
Setting	Bit 90	Current FPGA Vccint (measured)				
0		The Voltage is coded on 10 bits.				

4.3.1.2.34 System Monitor - FPGA core voltage thresholds - 0x184 (write).

	Offset 0x0400 - System Monitor - FPGA core voltage thresholds - 0x184 (write).								
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 3						Bit 0	
3		Reserved							
Default		ʻ0000000'							
2	Reserved				Vccint upper threshold[9:6]				
Default	·0000'				·0000'				
1	Vccint upper threshold[5:0] Vccint lower threshold[9:8]					nt lower nold[9:8]			
Default	,000000,					"	00'		
0	Vccint lower threshold[7:0]								
Default				' 000	00000'				

	Offset 0x0400 - System Monitor - FPGA core voltage thresholds - 0x184 (write).				
Setting	Bit 1910	FPGA Core voltage upper threshold			
1		The Voltage is coded on 10 bits.			

Setting	Bit 90	FPGA Core voltage lower threshold
0		The Voltage is coded on 10 bits.

4.3.1.2.35 System Monitor - FPGA Aux Voltages - 0x188 (read).

		Offset 0x	:0400 - Syste	em Monitor -	FPGA Aux Vo	ltages – 0x1	88 (read).		
Byte	Bit 7	Bit 6	Bit 5	Bit 5Bit 4Bit 3Bit 2Bit 1Bit					
3	Res	erved		Maximum Vccaux[9:4]					
Default	،	00'	ʻ000000'						
2	Maximum Vccaux [3:0]			Minimum Vccaux [9:6]					
Default	ʻ0000'			·0000'					
1	Minimum Vccaux [5:0]			Current Vccaux [9:8]					
Default	,000,000, ,000,				00'				
0	Current Vccaux [7:0]								
Default				' 000 '	00000'				

	Off	Offset 0x0400 – System Monitor – FPGA Aux Voltages – 0x188 (read).			
Setting	Bit 2920	Maximum FPGA Vccaux (measured)			
2		The Voltage is coded on 10 bits.			
Setting	Bit 1910	Minimum FPGA Vccaux (measured)			
1		The Voltage is coded on 10 bits.			
Setting	Bit 90	Current FPGA Vccaux (measured)			
0		The Voltage is coded on 10 bits.			

4.3.1.2.36 System Monitor - FPGA aux voltage thresholds - 0x188 (write).

	(Offset 0x0400	- System M	onitor - FPGA	A aux voltage	thresholds –	0x188 (writ	e).
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3	Reserved							
Default		,0000000,						
2	Reserved			Vccaux upper threshold[9:6]				
Default	ʻ0000'			' 0000'				
1	Vccaux upper threshold[5:)]		Vccau thresh	ıx lower 10ld[9:8]	
Default	,000000,					"	00'	
0	Vccaux lower threshold[7:0]							
Default				' 0000	00000'			

	Offset 0	Offset 0x0400 – System Monitor – FPGA aux voltage thresholds – 0x188 (write).			
Setting	Bit 1910	FPGA Aux voltage upper threshold			
1		The Voltage is coded on 10 bits.			
Setting	Bit 90	FPGA Aux voltage lower threshold			

4.3.1.2.37 Amount of samples stored in DDR2 - Bank A - 0x18C (write).

		Offset 0x0400 - Amount of samples stored in DDR2 - Bank A - 0x18C (read).						
Byte	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2						Bit 1	Bit 0
3	Reserved Amoun					Amount	of samples	
Default	,000,00,						00'	
2		Amount of samples						
Default		ʻ0000000'						
1		Amount of samples						
Default		,0000000,						
0				Amount	of samples			
Default				' 000	00000'			

	Offset	0x0400 - Amount of samples stored in DDR2 - Bank A - 0x18C (read).
Setting	Bit 250	Amount of samples.
0		Returns the amount of samples currently left to be transferred to the host.

4.3.1.2.38 Amount of samples stored in DDR2 - Bank B - 0x190 (write).

		Offset 0x0400 – Amount of samples stored in DDR2 – Bank B – 0x190 (read).						
Byte	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2							Bit 0
3			Rese	rved			Amount	of samples
Default	,000000, ,00,						00'	
2		Amount of samples						
Default		ʻ0000000'						
1		Amount of samples						
Default		,0000000,						
0				Amount	of samples			
Default				' 000 '	00000'			

	Offset	0x0400 - Amount of samples stored in DDR2 - Bank B - 0x190 (read).
Setting	Bit 250	Amount of samples.
0		Returns the amount of samples currently left to be transferred to the host.

4.3.2 System Monitor.

Virtex 5 FPGAs implement a function block called System Monitor (Xilinx). It allows the user to monitor the FPGA Die temperature, the FPGA core voltage (Vccint) and the Auxiliary voltage (Vccaux). It also provides the minimum and maximum values measured since a system monitor reset has been applied.

The SMT702 firmware implements a state machine that collects minimum, maximum and current readings for the die temperature, Vccint and Vccaux. They are all accessible

4.3.3 External Signal characteristics

The main characteristics of all external signals of the SMT702 are gathered into the following table.

Anal	ogue Inputs				
Input voltage range	AC coupled option . 600 or 800mV - AC coupled via RF transformer.				
Impedance	50Ω.				
Bandwidth	ADC bandwidth: 3 Ghz (ADC datasheet).				
External	Reference Input				
Input Voltage Level	10-15dBm (AC-coupled)				
Input Impedance	50-Ohm (Termination implemented at the connector)				
Frequency Range	0 – 100 MHz.				
External I	Reference Output				
Output Voltage Level	1.6 Volts peak-to-peak (AC-coupled)				
Output Impedance	50-Ohm (Termination implemented at the connector)				
External Sa	mpling Clock Input				
Input Voltage Level	0.5 – 3.3 Volts peak-to-peak (AC-coupled)				
Input Format	Single-ended or differential on option (3.3V LVPECL).				
Frequency range	500-1500 MHz (DDR sampling clock)				
External	Trigger Inputs				
Input Voltage Level	1.5-3.3 Volts peak-to-peak.				
Format	DC-coupled and Single-ended (Termination implemented at the connector). Differential on option (3.3 V PECL).				
Impedance	50-Ohm.				
Frequency range	62.5 MHz maximum				
<i>ADCs</i> Out The figures below have been obtained us On-board VCO used - ADCs E4433B Signal Generator coupled with	put characteristics sing WaveVision version 5 with default options. running at 3GSPS – 16k-point FFT - a 6 th -order filter – Coherent sampling captures				
Bandwidth					
at -3dBs	2.2GHz 2.6GHz				
at -oubs	2.00112				
373 MHz (filtered) – Full Scale-0.5dB – 3GSPS – On-board VCO	7.1 bits (<i>Cha</i>) 6.76 bits (<i>Chb</i>)				
749 MHz (filtered) – Full Scale-0.5dB –	7.2 bits (<i>Cha</i>) 6.906 bits (<i>Chb</i>)				
3CSPS On board VCO	7.2 bits (Cha) 6.906 bits (Chb)				

3GSPS – On-board VCO		
SNR		
373 MHz (filtered) – Full Scale-0.5dB – 3GSPS – On-board VCO	44.6dBs (Cha)	42.5dBs (Chb)
749 MHz (filtered) – Full Scale-0.5dB – 3GSPS – On-board VCO	46.5dBs (Cha)	46.3dBs (<i>Chb</i>)
1498 MHz (filtered) – Full Scale-0.5dB – 3GSPS – On-board VCO	43.2dBs (Cha)	41.8dBs (<i>Chb</i>)
SINAD		
373 MHz (filtered) – Full Scale-0.5dB – 3GSPS – On-board VCO	44.6dBs (Cha)	42.4dBs (Chb)
749 MHz (filtered) – Full Scale-0.5dB –	45.1dBs (Cha)	43.3dBs (<i>Chb</i>)
3GSPS – On-board VCO	42.6dBs (Cha)	41.6dBs (<i>Chb</i>)
1498 MHz (filtered) – Full Scale-0.5dB – 3GSPS – On-board VCO		
SFDR		
373 MHz (filtered) – Full Scale-0.5dB – 3GSPS – On-board VCO	58.165dBs (Cha)	46.722dBs (Chb)
749 MHz (filtered) – Full Scale-0.5dB –	53.183dBs (Cha)	47.234dBs (Chb)
3GSPS – On-board VCO 1409 MHz (filtered) – Evyl Seele 0.5dB	54.454dBs (Cha)	47.859dBs (Chb)
3GSPS – On-board VCO		
Output Data Width	8-B	lits
Data Format	Offset	Binary
Minimum Sampling Clock (DDR)	500 MHz (equivalent to A	ADC sampling at 1GSPS)
Maximum Sampling Clock (DDR)	1500 MHz (equivalent to A	ADC sampling at 1GSPS)

Figure 15 - Main Characteristics.

5 Board Layout

5.1 Top View

Figure 16 - Board Layout (Top View)

Figure 17 - Board Layout (Bottom View)

6 Photo

6.1 Overview of the board

Figure 18 - Overview of the board

6.2 Front panel

On the front panel of the SMT702, 6 SMA connectors are available for ADC ChannelA, ADC ChannelB, External Reference and Clock in and out. There is also a dual SATA-I connector.

Figure 19 - SMT702 Front Panel.

6.3 How is it going to stand on your desk?

The SMT702 has been designed to be plugged into a PXI Express chassis from National Instrument – The NI PXIe-1062Q is an example.

Figure 20 - SMT702 - PXI Express Chassis.

7 Software Packages

Here is a list of the software packages that will be required for the SMT702 to work.

- *SMT6300* is the software package that installs the Sundance driver for the SMT702 board.
- *SMT6002* is the software package that installs the server application to write into flash memory (this is to store bitstreams and to reboot dynamically the board). The application is called *Flash Utility*.
- *SMT7002* is the software package that installs a demo application (*smt702 Configuration*) for the SMT702 as shown below:

As soon as the application is launched, it reads from the FPGA the board name, type of FPGA, PCB revision and the firmware version. Once running, status flags are displayed in the status section as well as the temperature of the FPGA and its internal voltages (1.0V and 2.5V). A log is available on the right hand side.

Figure 21 – SMT702 Demo application.

Parameters to configure the clock chip and dcm phase shifts can be loaded (Hardware selection section – example files are provided in \\Program Files\Sundance\SMT7026\Host\Smt702Config\Custom_Parameters) from a configuration file, as well as the clock and reference source. Samples can be stored into DDR2 memory, played back, stored into files and displayed into 2 graphs. The first one shows the raw samples and the second the FFT of the captured samples (2048 points). Each captured can be stored into individual files (smt7002_cha.txt or smt7002_chb.txt) and also a concatenated version of all captures made (smt7002_total_cha.txt or smt7002_total_chb.txt)

In order to have the software source code for the *SMT7002*, the *SMT7026* package will have to be purchased. They come as a visual C++ project with all necessary files to recompile the application and modify it.

8 Physical Properties

Dimensions	PXI Express 3U <i>SMT702-LX110T</i>	BoardBootedADCsOFFClockOFFSHBsOFF	BoardBootedADCsONClockONSHBsOFF	BoardBootedADCsONClockONSHBsON
Weight	272 grams			
Supply Currents	+12V	0.88 amp.	1.03 amps.	1.07 amps.
	+3.3V	1.70 amps.	4.4 amps.	5.5 amps.
MTBF				
Dimensions	PXI Express 3U <i>SMT702-FX70T</i>	BoardBootedADCsOFFClockOFFSHBsOFF	BoardBootedADCsONClockONSHBsOFF	Board BootedADCsONClockONSHBsON
Dimensions Weight	PXI Express 3U SMT702-FX70T 272 grams	BoardBootedADCsOFFClockOFFSHBsOFF	BoardBootedADCsONClockONSHBsOFF	Board Booted ADCs ON Clock ON SHBs ON
Dimensions Weight Supply Currents	PXI Express 3U SMT702-FX70T 272 grams +12V	BoardBootedADCsOFFClockOFFSHBsOFF0.9 amp.	Board Booted ADCs ON Clock ON SHBs OFF 1.06 arbs	Board Boted ADCs ON Clock ON SHBs ON
Dimensions Weight Supply Currents	PXI Express 3U SMT702-FX70T 272 grams +12V +3.3V	Board Boted ADCs OFF Clock OFF SHBs OFF 0.9 am 1.95 am	Board Booted ADCs ON Clock ON SHBs OFF 1.06 arr 4.4 arr	Board Boted ADCs ON Clock ON SHBs ON 1.08 amptrox 5.4 amptrox

The SMT7002 GUI has been used to configure the boards from which currents consumed were measured. Boards were setup as follows, internal clock locked on external 10-MHz reference, ADCs clocked at 3GSPS and set in Test mode, continuous acquisitions (DMAs).

9 Hardware Modification

It has been found that modifying the converter reset structure improves the synchronisation between the ADCs. The non-symetrical structure previously used would add a non-wanted delay on the second ADC channels.

The new structure consists in removing some ICs and replacing them by 2 sets of differential wires. ADCs can now be more accurately synchronised in frequency. A software function has been added to the software package, returning the skew between the 2 ADC sampling clocks. A typical skew measured at the FPGA is 170pS.

Figure 22 - ADC Reset structure modification.

10 Safety

This module presents no hazard to the user when in normal use.

11 EMC

This module is designed to operate from within an enclosed host system, which is build to provide EMC shielding. Operation within the EU EMC guidelines is not guaranteed unless it is installed within an adequate host system.

This module is protected from damage by fast voltage transients originating from outside the host system which may be introduced through the output cables.

Short circuiting any output to ground does not cause the host PC system to lock up or reboot.

12 Ordering Information

Three variations of this product are available:

1 – SMT702 with an XC5VLX110T-3 (fastest speed grade available) FPGA and works as a PXI Express Peripheral Module. The part number for this option is **SMT702**. Requires a PXI Express chassis such as the NI-1062Q from National Instrument.

2 – SMT702 with an XC5VLX110T-3 (fastest speed grade available) FPGA and works as a PXI Express Hybrid Peripheral Module (PXI P1 connector). The part number for this option is **SMT702–HYBRPXI32**. Requires a PXI Express chassis such as the NI-1062Q from National Instrument.

3 - SMT702 with an XC5VLX110T-3 (fastest speed grade available) FPGA and works as a Compact PCI Module. The part number for this option is **SMT702–CPCI32**. Requires a Compact PCI rack. Note that it can also be plugged into a PXI Express chassis such as the NI-1062Q from National Instrument.

4 - SMT702 with an XC5VLX110T-3 (fastest speed grade available) FPGA and works in standalone. It can be fitted in a PCI slot (Can be PCI-32 or 64 or PCI-X on a PC motherboard) without being electrically connected to it. This option requires an external power cable and a connection to an other piece of hardware from Sundance via SHB or RSL or SATA (optional). The part number for this option is **SMT702–STANDALONE.** Note that the Standalone version of the SMT702 does not have any dual SATA connector.

5 – SMT702 with an XC5VFX70T-3 (fastest speed grade available) FPGA and works as a PXI Express Peripheral Module. The part number for this option is **SMT702**–**FX70T**. Requires a PXI Express chassis such as the NI-1062Q from National Instrument.

6 – SMT702 with an XC5VFX70T-3 (fastest speed grade available) FPGA and works as a PXI Express Hybrid Peripheral Module (PXI P1 connector). The part number for this option is **SMT702–HYBRPXI32–FX70T**. Requires a PXI Express chassis such as the NI-1062Q from National Instrument.

7 - SMT702 with an XC5VFX70T-3 (fastest speed grade available) FPGA and works as a Compact PCI Module. The part number for this option is **SMT702–CPCI32–FX70T**. Requires a Compact PCI rack. Note that it can also be plugged into a PXI Express chassis such as the NI-1062Q from National Instrument.

8 – SMT702 with an XC5VFX100T-3 (fastest speed grade available) FPGA and works as a PXI Express Peripheral Module. The part number for this option is **SMT702–FX100T**. Requires a PXI Express chassis such as the NI-1062Q from National Instrument.

9 – SMT702 with an XC5VFX100T-3 (fastest speed grade available) FPGA and works as a PXI Express Hybrid Peripheral Module (PXI P1 connector). The part number for this option is **SMT702–HYBRPXI32–FX100T**. Requires a PXI Express chassis such as the NI-1062Q from National Instrument.

710- SMT702 with an XC5VFX100T-3 (fastest speed grade available) FPGA and works as a Compact PCI Module. The part number for this option is **SMT702–CPCI32–FX100T**. Requires a Compact PCI rack. Note that it can also be plugged into a PXI Express chassis such as the NI-1062Q from National Instrument.

Note that an SMT702 can also be used in a PC. This will require a PXIe to PCIe adaptor (Sundance part number <u>SMT580</u>) as show below:

The SMT580 only routes the PCI express lanes, reference clock and power supplies. None of the PXI signals are routed.