Sundance Multiprocessor Technology Limited **User Manual**

Unit / Module Description:	Dual 2.3GHz DAC PXI Express Module
Unit / Module Number:	SMT712
Document Issue Number:	5
Issue Date:	11/12/2012
Original Author:	PhSR

User Manual for **SMT712**

Sundance Multiprocessor Technology Ltd, Chiltern House, Waterside, Chesham, Bucks. HP5 1PS. This document is the property of Sundance and may not be copied nor communicated to a third party without prior written permission. © Sundance Multiprocessor Technology Limited 2006

Certificate Number FM 55022

Revision History

Issue	Changes Made	Date	Initials
1	Original Document released.	02/06/09	PhSR
2	DAC synchronisation function added	01/07/09	PhSR
3	FPGA Design supports xlinks	22/05/10	PhSR
4	Soft Reset added	15/07/10	PhSR
5	Updated for FX100T, SHB phase synchronisation	11/12/12	JV

Table of Contents

1	Introduction	8
2	Related Documents	9
3	Acronyms, Abbreviations and Definitions	10
	3.1 Acronyms and Abbreviations	10
4	Functional Description	10
	4.1 General Block Diagram	10
	4.2 Block Diagram - Standard SMT712 (PXIe)	11
	4.3 Block Diagram – SMT712-HYBRPXI32 (option 32-bit PXI)	12
	4.4 Block Diagram – SMT712-CPCI32 (Option 32-bit PCI)	13
	4.5 Module Description	13
	4.5.1 DACs	13
	4.5.2 FPGA	14
	4.5.2.1 General Description	14
	4.5.2.2 Resources used – XCV5FX70T	14
	4.5.2.3 Resources used – XCV5FX100T.	15
	4.5.3 Configuration (CPLD+Flash)	17
	4.5.4 DDR2 Memory	19
	4.5.5 Clock circuitry	19
	4.5.6 Data (samples) path / Data storage	20
	4.5.7 PXI Express Bus	21
	4.5.8 SHB connector	23
	4.5.9 External Trigger	23
	4.5.10Power dissipation	24
	4.5.11JTAG	24
	4.5.12PXI Express Hybrid Connectors	26
	4.6 FPGA Design	28
	4.6.1 Control Registers	29
	4.6.1.1 Register Descriptions	32
	4.6.1.1.1 General Control Register – 0x08 (read-only).	32
	4.6.1.1.2 Set Control Register – 0x10 (write)	35
	4.6.1.1.3 DACA (MAX19692) Register 0x1 – Configuration Register – ((write) 37	0x44
	4.6.1.1.4 DACB (MAX19692) Register 0x1 – Configuration Register – (0x48
	(write). 37	20
	4.6.1.1.5 DACA and B data source selection – 0x4C (write).	38
	4.6.1.1.6 Clock Generator (AD9516-2) Register 0x00 – Serial Configuration – 0xC0 (write)	Port 38
	4.6.1.1.7 Clock Generator (AD9516-2) Register 0x04 – Read-back Cont 0XC4 (write).	rol –
	4.6.1.1.8 Clock Generator (AD9516-2) Register 0x10 – PFD and Ch Pump – 0xC8 (write)	arge 39
	4.6.1.1.9 Clock Generator (AD9516-2) Register 0x11 – R Counter – 0 (write). 40)xCC

Clock Generator (AD9516-2) Register 0x12 - R Counter - 0xD0 4.6.1.1.10 (write). 40 4.6.1.1.11 Clock Generator (AD9516-2) Register 0x13 - A Counter - 0xD4 (write). 41 4.6.1.1.12 Clock Generator (AD9516-2) Register 0x14 - B Counter - 0xD8 (write). 41 4.6.1.1.13 Clock Generator (AD9516-2) Register 0x15 - B Counter - 0xDC (write). 41 4.6.1.1.14 Clock Generator (AD9516-2) Register 0x16 - PLL Control 1 -4.6.1.1.15 Clock Generator (AD9516-2) Register 0x17 - PLL Control 2 -4.6.1.1.16 Clock Generator (AD9516-2) Register 0x18 - PLL Control 3 -4.6.1.1.17 Clock Generator (AD9516-2) Register 0x19 - PLL Control 4 -4.6.1.1.18 Clock Generator (AD9516-2) Register 0x1A - PLL Control 5 -4.6.1.1.19 Clock Generator (AD9516-2) Register 0x1B – PLL Control 6 – 4.6.1.1.20 Clock Generator (AD9516-2) Register 0x1C - PLL Control 7 -4.6.1.1.21 Clock Generator (AD9516-2) Register 0x1D - PLL Control 8 -4.6.1.1.22 Clock Generator (AD9516-2) Register 0x1F - PLL Readback -4.6.1.1.23 Clock Generator (AD9516-2) Register 0xA0 - OUT6 Delay 4.6.1.1.24 Clock Generator (AD9516-2) Register 0xA1 - OUT6 Delay Fullscale – 0x10C (write)......51 4.6.1.1.25 Clock Generator (AD9516-2) Register 0xA2 - OUT6 Delay 4.6.1.1.26 Clock Generator (AD9516-2) Register 0xA3 - OUT7 Delay 4.6.1.1.27 Clock Generator (AD9516-2) Register 0xA4 - OUT7 Delay Fullscale – 0x118 (write)......52 4.6.1.1.28 Clock Generator (AD9516-2) Register 0xA5 - OUT7 Delay 4.6.1.1.29 Clock Generator (AD9516-2) Register 0xA6 - OUT8 Delay 4.6.1.1.30 Clock Generator (AD9516-2) Register 0xA7 - OUT8 Delay Full-4.6.1.1.31 Clock Generator (AD9516-2) Register 0xA8 - OUT8 Delay 4.6.1.1.32 Clock Generator (AD9516-2) Register 0xA9 - OUT9 Delay Clock Generator (AD9516-2) Register 0xAA - OUT9 Delay Full-4.6.1.1.33

4.6.1.1.34 Clock Generator (AD9516-2) Register 0xAB - OUT9 Delay 4.6.1.1.35 Clock Generator (AD9516-2) Register 0xF0 - OUT0 - 0x138 (write). 56 4.6.1.1.36 Clock Generator (AD9516-2) Register 0xF1 - OUT1 - 0x13C (write). 56 4.6.1.1.37 Clock Generator (AD9516-2) Register 0xF2 - OUT2 - 0x140 (write). 57 4.6.1.1.38 Clock Generator (AD9516-2) Register 0xF3 - OUT3 - 0x144 (write). 57 4.6.1.1.39 Clock Generator (AD9516-2) Register 0xF4 - OUT4 - 0x148 (write). 58 4.6.1.1.40 Clock Generator (AD9516-2) Register 0xF5 - OUT5 - 0x14C (write). 58 4.6.1.1.41 Clock Generator (AD9516-2) Register 0x140 - OUT6 - 0x150 (write). 59 4.6.1.1.42 Clock Generator (AD9516-2) Register 0x141 - OUT7 - 0x154 (write). 60 Clock Generator (AD9516-2) Register 0x142 - OUT8 - 0x158 4.6.1.1.43 (write). 61 4.6.1.1.44 Clock Generator (AD9516-2) Register 0x143 - OUT9 - 0x15C (write). 61 4.6.1.1.45 Clock Generator (AD9516-2) Register 0x190 - Divider0 - 0x160 (write). 62 4.6.1.1.46 Clock Generator (AD9516-2) Register 0x191 - Divider0 - 0x164 (write). 63 Clock Generator (AD9516-2) Register 0x192 – Divider0 – 0x168 4.6.1.1.47 (write). 63 4.6.1.1.48 Clock Generator (AD9516-2) Register 0x193 – Divider1 – 0x16C (write). 64 4.6.1.1.49 Clock Generator (AD9516-2) Register 0x194 – Divider1 – 0x170 (write). 64 4.6.1.1.50 Clock Generator (AD9516-2) Register 0x195 – Divider1 – 0x174 (write). 65 4.6.1.1.51 Clock Generator (AD9516-2) Register 0x196 - Divider2 - 0x178 (write). 65 4.6.1.1.52 Clock Generator (AD9516-2) Register 0x197 – Divider2 – 0x17C (write). 65 4.6.1.1.53 Clock Generator (AD9516-2) Register 0x198 – Divider2 – 0x180 (write). 66 4.6.1.1.54 Clock Generator (AD9516-2) Register 0x199 - Divider3 - 0x184 (write). 66 4.6.1.1.55 Clock Generator (AD9516-2) Register 0x19A – Divider3 – 0x188 (write). 67 4.6.1.1.56 Clock Generator (AD9516-2) Register 0x19B - Divider3 - 0x18C (write). 67 4.6.1.1.57 Clock Generator (AD9516-2) Register 0x19C - Divider 3 - 0x190 (write). 67

Clock Generator (AD9516-2) Register 0x19D - Divider3 - 0x194 4.6.1.1.58 (write). 68 Clock Generator (AD9516-2) Register 0x19E - Divider4 - 0x198 4.6.1.1.59 (write). 68 4.6.1.1.60 Clock Generator (AD9516-2) Register 0x19F - Divider4 - 0x19C (write). 69 4.6.1.1.61 Clock Generator (AD9516-2) Register 0x1A0 - Divider4 - 0x1A0 (write). 69 4.6.1.1.62 Clock Generator (AD9516-2) Register 0x1A1 - Divider 4 -Clock Generator (AD9516-2) Register 0x1A2 - Divider4 - 0x1A8 4.6.1.1.63 (write). 70 4.6.1.1.64 Clock Generator (AD9516-2) Register 0x1E0 - VCO Divider -Clock Generator (AD9516-2) Register 0x1E1 - Input CLKs -4.6.1.1.65 0x1B0 (write)......71 System Monitor - FPGA Die Temperatures - 0x1C0 (read)......72 4.6.1.1.66 System Monitor - FPGA Die Temperature thresholds - 0x1C0 4.6.1.1.67 (write). 72 System Monitor - FPGA Core Voltages - 0x1C4 (read)......73 4.6.1.1.68 4.6.1.1.69 System Monitor - FPGA core voltage thresholds - 0x1C4 (write). 73 System Monitor - FPGA Aux Voltages - 0x1C8 (read).74 4.6.1.1.70 System Monitor - FPGA aux voltage thresholds - 0x1C8 (write). 4.6.1.1.71 74 DDS Frequency Register DACA – 0x1CC (write)......75 4.6.1.1.72 4.6.1.1.73 DDS Frequency Register DACB - 0x1D0 (write)......75 4.6.1.1.74 DACA DCM Phase Shifts - 0x1D4 (write)......75 4.6.1.1.75 DACB DCM Phase Shifts - 0x1D8 (write)......76 Pattern size DACA – 0x1DC (write)......77 4.6.1.1.76 5.15.2 5.3 Software Packages85

5

6

7

8 9

10

Table of Figures

Figure 1 - SMT712 General Block Diagram	10
Figure 2 - SMT712 Block Diagram – Standard SMT712 (PXIe)	11
Figure 3 - SMT712-HYBRPXI32 Block Diagram (32-bit PXI Option)	12
Figure 4 - SMT712-CPCI32 Block Diagram (32-bit CPCI Option)	13
Figure 5 - Configuration (Flash).	17
Figure 6 - SMT712 Clock circuitry.	20
Figure 7 - Data path	21
Figure 8 - Standard SMT712 - PXI Express Peripheral Module	22
Figure 9 - SMT712-HYBRPXI32 - Hybrid Peripheral Slot Compatible PXI-1 Mod	lule22
Figure 10 - SMT712-CPCI32 - Compact PCI Module	23
Figure 11 - Forced airflow for a 3U module	24
Figure 12 - JTAG Connector	25
Figure 13 - Photo of a Xilinx Parallel IV cable and its ribbon cable for	or JTAG
connection	26
Figure 14 - Block Diagram - FPGA Design (standard Firmware)	
Figure 15 – Register Memory Map.	32
Figure 16 - Block Diagram - DACs synchronisation process	78
Figure 17 – Main Characteristics.	79
Figure 18 - Capture DACA - Sampling Frequency 2.3 GHz and Output Fr 143.5 MHz	equency 80
Figure 19 - Board Layout (Top View)	81
Figure 20 - Board picture (Top view) – SMT712.	82
Figure 21 - Board Layout (Bottom View).	83
Figure 22 - Board picture (bottom view) SMT712	
Figure 23 - SMT712 Front Panel	85
Figure 24 - SMT712 Demo application	

1 Introduction

The SMT712 is a PXI Express (opt. Hybrid or CompactPCI) Peripheral Module (3U), which integrates two fast 12-bit DACs, 2 banks of DDR2 memory, a clock circuitry and a Virtex5 Xilinx FPGA, under the 3U format.

The PXIe specification integrates PCI Express signalling into the PXI standard for more backplane bandwidth. It also enhances PXI timing and synchronisation features by incorporating a 100MHz differential reference clock and triggers. The SMT712 can also integrate the standard 32-bit PXI (Hybrid) signalling as an option or a standard 32-bit CompactPCI.

Both DAC chips are identical and can update their output at up 2.3 Giga-samples per second each, with a 12-bit resolution. The manufacturer is Maxim and the part number is MAX19692. Digital-to-Analog converters are clocked by circuitry based on a PLL coupled with a VCO in order to generate a low-jitter fixed signal. The MAX19692 is capable to achieve SFDR figures close to 70dBs. Each DAC integrates settings depending on the type of frequency response required.

The on-board PLL+VCO chip ensure a stable fixed sampling frequency (maximum rate), in order for the board to be used as frequency synthesizer without the need of external clock signal. The PLL will be able to lock the VCO either on the 100MHz PXI express reference (or 10MHz PXI reference depending on option) or on an external reference signal. The sampling clock for the converters can either be coming from the PLL+VCO chip or from an external source. The reference clock selected is also output on a connector in order to pass it to an other module.

The Virtex5 FPGA is responsible for controlling all interfaces, including CPCI (32-bit 33MHz), PXI (32-bit) and PXIe (8 lanes allocated – depending on PXIe chassis, 4 or 8 lanes would be used), as well as routing samples. The SMT712 is populated with an XC5VLX110T-3.

Two DDR2 memory banks are accessible by the FPGA in order to access data on the fly. Both banks are individually clocked at 312 MHz.

One or two SHB connector(s) is(are) available in order to collect data/samples from an other Sundance module (depending on the option). The first SHB connector is available on all versions of the board, whereas the second SHB connector is only available on the non-PCI versions.

All analog connectors on the front panel are SMA.

Examples of application where the SMT712 can be involved in are wideband communication, radar, wireless modem, software radio or waveform generator systems.

2 Related Documents

1 - Maxim MAX19692:

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/5172

2 – Analog Devices AD9516-2:

http://www.analog.com/en/prod/0,2877,AD9516-0,00.html

3 - Virtex5 FPGA:

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/index.htm

4 - PXIe specifications:

http://www.pxisa.org/Spec/PXIEXPRESS_HW_SPEC_R1.PDF

5 – Micron 2Gigabit DDR2 chip MT47H128M16:

http://download.micron.com/pdf/datasheets/dram/ddr2/2gbddr2.pdf

6 - Sundance xlink presentation:

ftp://ftp2.sundance.com/Pub/documentation/pdf-files/X-Link.pdf

7 – Sundance xlink specifications:

ftp://ftp2.sundance.com/Pub/documentation/pdf-files/D000051S-spec.pdf

3 Acronyms, Abbreviations and Definitions

3.1 Acronyms and Abbreviations

PXIe : PXI Express.

SNR: Signal-to-Noise Ratio. It is expressed in dBs. It is defined as the ratio of a signal power to the noise power corrupting the signal.

SINAD: Signal-to-Noise Ratio plus Distorsion. Same as SNR but includes harmonics too (no DC component).

ENOB: Effective Number Of Bits. This is an alternative way of defining the Signal-to-Noise Ratio and Distorsion Ratio (or SINAD). This means that the ADC is equivalent to a perfect ADC of ENOB number of bits.

SFDR: Spurious-Free Dynamic Range. It indicates in dB the ratio between the powers of the converted main signal and the greatest undesired spur.

4 Functional Description

4.1 General Block Diagram

Below is the general block diagram showing all resources available on the board. Note that not all options are implement in the standard firmware.

Figure 1 – SMT712 General Block Diagram.

The following block diagram shows all three options. The first option (PXIe) can be plugged into any PXI Express slot, the second (32-bit PXI) into any Hybrid PXI Express slot and the third can go in any CPCI system.

4.2 Block Diagram – Standard SMT712 (PXIe)

Figure 2 - SMT712 Block Diagram - Standard SMT712 (PXIe)

This option implements a PCI Express Endpoint core (Xilinx) based on 4 lanes. It can support up to 8 lanes or only one. The FPGA also has accesses to all PXI triggers and synchronisation signals.

In case the user has in mind to recompile/change the firmware, the PCI Express Core is free and provided by Xilinx. A free license locked on a PC MAC key has to be requested.

The SMT712 (PXIe version) can only be plugged into a PXI Express or CompactPCI Express Rack.

Note that not all resources are implemented in the standard FPGA firmware.

4.3 Block Diagram - SMT712-HYBRPXI32 (option 32-bit PXI)

Figure 3 - SMT712-HYBRPXI32 Block Diagram (32-bit PXI Option)

This option implements a 32-bit PCI core (33 Mhz). The FPGA also has accesses to all PXI triggers and synchronisation signals.

The PCI core source core cannot be supplied by Sundance as the license held does not cover such use for it. In case the user intends to recompile the source code or design his own firmware, he would have to purchase a license for the core.

The SMT712-HYBRPXI32 can only be plugged into a PXI Express or CompactPCI Express rack.

Note that not all ressoures shown on the above diagram are implemented in the standard firmware.

4.4 Block Diagram – SMT712–CPCI32 (Option 32–bit PCI)

Figure 4 - SMT712-CPCI32 Block Diagram (32-bit CPCI Option)

This option implements a 32-bit PCI core (33 Mhz). Note that PXI trigger signals and reference clock (10Mhz) are not accessible by the PFGA (not available on a standard CPCI rack). An external reference clock would have to be used.

The PCI core source core cannot be supplied by Sundance as the license held does not cover such use for it.

The SMT712-CPCI32 can be plugged in either a PXI (CompactPCI) or PXI Express rack.

Note that not all resources shown on the above diagram are implemented in the standard firmware.

4.5 Module Description

4.5.1 DACs

The DACs are 12-bit parts from Maxim (MAX19692). On the SMT712, each DAC can achieve up to 2.3 GSPS, via a built-in 4:1 multiplexer.

Both DACs have a selectable frequency response mode, that can be NRZ (Non-Return-to-Zero – high dynamic range and output power in the first Nyquist zone), RZ (Return-to-Zero – this mode trades off SNR for improved gain flatness in the first, second and third Nyquist zones) or RF (Radio Frequency – high SNR and dynamic range in the second and third Nyquist Zones). For more information, please refer to the MAX19692 datasheet (Maxim).

The typical output power of the MAX19692 is -2.6 dBm (50-Ohm – Full scale). These are the manufacturer figures.

Both DACs are AC coupled using RF transformers.

Each DAC has a heat sink to help the heat dissipation.

4.5.2 FPGA

4.5.2.1 General Description

The FPGA fitted as standard on the SMT712 is part of the Virtex5 LXT family: XC5VLX110T. The package used is FFG1136 and the speed grade -3 (fastest part). For more information about the LXT family, you can visit the Xilinx website.

It is fitted with a heatsink coupled with a fan to keep it within an appropriate range of temperature (no more than 85 °C) when using the default firmware provided. Nevertheless the board requires some forced cooling. It is recommended to use a PXIe-1062Q chassis or equivalent from National instrument as it already integrates a built-in regulated cooling system. Measurements have been made using a PXIe-1062Q on the maximum fan speed setting and the standard firmware with both DACs clocked at 2,3GHz:

In an ambient temperature of 25 °C, the FPGA die temperature stays close to 60 °C. In an ambient temperature of 30 °C, the FPGA die temperature stays close to 70 °C.

In order to improve the heat dissipation is a system, some slot blockers can be used (from National Instrument), which redirect the air flow of non-used slots to where it is needed.

4.5.2.2 Resources used – XCV5FX70T.

Below is a summary (ISE11.4) of the resources used in the FPGA by the default firmware (Standard SMT712-FX70T):

Slice Logic Utilization:

Number of Slice Registers:	19,258 out of 44,800 4	2%
Number used as Flip Flops:	19,251	
Number used as Latches:	1	
Number used as Latch-thrus:	б	
Number of Slice LUTs:	13,781 out of 44,800 3	0%
Number used as logic:	13,160 out of 44,800 2	9%
Number using O6 output only:	12,075	
Number using 05 output only:	457	
Number using 05 and 06:	628	
Number used as Memory:	417 out of 13,120	3%
Number used as Dual Port RAM:	308	
Number using O6 output only:	204	
Number using O5 output only:	20	
Number using O5 and O6:	84	
Number used as Shift Register:	109	
Number using O6 output only:	109	
Number used as exclusive route-thru:	204	
Number of route-thrus:	924	
Number using O6 output only:	656	
Number using 05 output only:	264	
Number using O5 and O6:	4	
Slice Logic Distribution:		
Number of occupied Slices:	7,245 out of 11,200 6	4%
Number of LUT Flip Flop pairs used:	22,949	
Number with an unused Flip Flop:	3,691 out of 22,949 1	6%
Number with an unused LUT:	9,168 out of 22,949 3	9%
Number of fully used LUT-FF pairs:	10,090 out of 22,949 4	3%

Number of unique control sets: Number of slice register sites lost

to control set restrictions: 2,779 out of 44,800 6% A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element. The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails. OVERMAPPING of BRAM resources should be ignored if the design is over-mapped for a non-BRAM resource or if placement fails.

1,143

IO Utilization:

Number of bonded IOBs:	534	out	of	640	83%
Number of LOCed IOBs:	533	out	of	534	99%
IOB Flip Flops:	724				
IOB Master Pads:	97				
IOB Slave Pads:	97				
Number of bonded IPADs:	10	out	of	50	20%
Number of bonded OPADs:	8	out	of	32	25%
Specific Feature Utilization:					
Number of BlockRAM/FIFO:	46	out	of	148	31%
Number using BlockRAM only:	30				
Number using FIFO only:	16				
Total primitives used:					
Number of 36k BlockRAM used:	15				
Number of 18k BlockRAM used:	17				
Number of 36k FIFO used:	14				
Number of 18k FIFO used:	2				
Total Memory used (KB):	1,386	out	of	5,328	26%
Total Memory used (KB): Number of BUFG/BUFGCTRLs:	1,386 26	out out	of of	5,328 32	26% 81%
Total Memory used (KB): Number of BUFG/BUFGCTRLs: Number used as BUFGs:	1,386 26 26	out out	of of	5,328 32	26% 81%
Total Memory used (KB): Number of BUFG/BUFGCTRLs: Number used as BUFGs: Number of IDELAYCTRLs:	1,386 26 26 6	out out out	of of of	5,328 32 22	26% 81% 27%
Total Memory used (KB): Number of BUFG/BUFGCTRLs: Number used as BUFGs: Number of IDELAYCTRLs: Number of BUFDSs:	1,386 26 26 6 1	out out out	of of of of	5,328 32 22 8	26% 81% 27% 12%
Total Memory used (KB): Number of BUFG/BUFGCTRLs: Number used as BUFGs: Number of IDELAYCTRLs: Number of BUFDSs: Number of BUFIOs:	1,386 26 26 6 1 18	out out out out	of of of of	5,328 32 22 8 80	26% 81% 27% 12% 22%
Total Memory used (KB): Number of BUFG/BUFGCTRLs: Number used as BUFGs: Number of IDELAYCTRLs: Number of BUFDSs: Number of BUFIOs: Number of DCM_ADVs:	1,386 26 6 1 18 8	out out out out out	of of of of of	5,328 32 22 8 80 12	26% 81% 27% 12% 22% 66%
Total Memory used (KB): Number of BUFG/BUFGCTRLs: Number used as BUFGs: Number of IDELAYCTRLs: Number of BUFDSs: Number of BUFIOs: Number of DCM_ADVs: Number of LOCed DCM_ADVs:	1,386 26 26 1 18 8 8	out out out out out out	of of of of of of of	5,328 32 22 8 80 12 8	26% 81% 27% 12% 22% 66% 100%
Total Memory used (KB): Number of BUFG/BUFGCTRLs: Number used as BUFGs: Number of IDELAYCTRLs: Number of BUFDSs: Number of BUFIOs: Number of DCM_ADVs: Number of LOCed DCM_ADVs: Number of GTX_DUALs:	1,386 26 26 1 18 8 8 2	out out out out out out out	of of of of of of of	5,328 32 22 8 80 12 8 8	26% 81% 27% 12% 22% 66% 100% 25%
Total Memory used (KB): Number of BUFG/BUFGCTRLs: Number used as BUFGs: Number of IDELAYCTRLs: Number of BUFDSs: Number of BUFIOs: Number of DCM_ADVs: Number of LOCed DCM_ADVs: Number of GTX_DUALs: Number of LOCed GTX_DUALs:	1,386 26 6 1 18 8 8 2 2	out out out out out out out	of of of of of of of of	5,328 32 22 8 80 12 8 8 8 2	26% 81% 27% 12% 22% 66% 100% 25% 100%
Total Memory used (KB): Number of BUFG/BUFGCTRLs: Number used as BUFGs: Number of IDELAYCTRLs: Number of BUFDSs: Number of BUFIOs: Number of DCM_ADVs: Number of LOCed DCM_ADVs: Number of GTX_DUALs: Number of LOCed GTX_DUALs: Number of PCIEs:	1,386 26 26 1 18 8 8 2 2 1	out out out out out out out out	of of of of of of of of of of	5,328 32 22 8 80 12 8 8 2 3	26% 81% 27% 12% 22% 66% 100% 25% 100% 33%
Total Memory used (KB): Number of BUFG/BUFGCTRLs: Number used as BUFGs: Number of IDELAYCTRLs: Number of BUFDSs: Number of BUFIOS: Number of DCM_ADVs: Number of DCM_ADVs: Number of GTX_DUALs: Number of LOCed GTX_DUALs: Number of PCIEs: Number of LOCed PCIEs:	1,386 26 6 1 18 8 8 2 2 1 1	out out out out out out out out out	of of of of of of of of of of of	5,328 32 22 8 80 12 8 8 2 3 1	26% 81% 27% 12% 22% 66% 100% 25% 100% 33% 100%
Total Memory used (KB): Number of BUFG/BUFGCTRLs: Number used as BUFGs: Number of IDELAYCTRLs: Number of BUFDSs: Number of BUFIOS: Number of DCM_ADVs: Number of LOCed DCM_ADVs: Number of GTX_DUALs: Number of GTX_DUALs: Number of PCIEs: Number of PCIEs: Number of PLL_ADVs:	1,386 26 6 1 18 8 8 2 2 1 1	out out out out out out out out out	of of of of of of of of of of of	5,328 32 22 8 80 12 8 8 2 3 1 6	26% 81% 27% 12% 22% 66% 100% 25% 100% 33% 100% 16%
Total Memory used (KB): Number of BUFG/BUFGCTRLS: Number used as BUFGs: Number of IDELAYCTRLS: Number of BUFDSs: Number of BUFIOS: Number of DCM_ADVs: Number of LOCed DCM_ADVs: Number of GTX_DUALS: Number of GTX_DUALS: Number of PCIES: Number of PCIES: Number of PLL_ADVs: Number of SYSMONs:	1,386 26 6 1 18 8 8 2 2 1 1 1 1	out out out out out out out out out out	of of of of of of of of of of of of	5,328 32 22 8 80 12 8 8 2 3 1 6 1	26% 81% 27% 12% 22% 66% 100% 25% 100% 16% 100%
Total Memory used (KB): Number of BUFG/BUFGCTRLs: Number used as BUFGs: Number of IDELAYCTRLs: Number of BUFDSs: Number of BUFIOS: Number of DCM_ADVs: Number of LOCed DCM_ADVs: Number of GTX_DUALs: Number of GTX_DUALs: Number of PCIEs: Number of PCIEs: Number of PLL_ADVs: Number of SYSMONs: Number of RPM macros: 128	1,386 26 6 1 18 8 8 2 2 1 1 1 1	out out out out out out out out out out	of of of of of of of of of of of	5,328 32 22 8 80 12 8 8 2 3 1 6 1	26% 81% 27% 12% 22% 66% 100% 33% 100% 16% 100%

4.5.2.3 Resources used – XCV5FX100T.

Below is a summary (ISE14.3) of the resources used in the FPGA by the default firmware (Standard SMT712-FX100T):

Slice Logic Utilization:						
Number of Slice Registers:	20,303 out of	64,000 31%				
Number used as Flip Flops:	20,296					
Number used as Latches:	1					
Number used as Latch-thrus:	б					
Number of Slice LUTs:	14,666 out of	64,000 22%				
Number used as logic:	13,969 out of	64,000 21%				
Number using O6 output only:	12,848					
Number using O5 output only:	493					
Number using O5 and O6:	628					
Number used as Memory:	490 out of	19,840 2%				
Number used as Dual Port RAM:	308					

Page 15 of 89

Number using O6 output only:	204		
Number using O5 output only:	20		
Number using 05 and 06:	84		
Number used as Shift Register:	182		
Number using O6 output only:	182		
Number used as exclusive route-thru:	207		
Number of route-thrus:	892		
Number using O6 output only:	698		
Number using O5 output only:	193		
Number using O5 and O6:	1		
Slice Logic Distribution:			
Number of occupied Slices:	8,232 out of	16,000	51%
Number of LUT Flip Flop pairs used:	24,867		
Number with an unused Flip Flop:	4,564 out of	24,867	18%
Number with an unused LUT:	10,201 out of	24,867	41%
Number of fully used LUT-FF pairs:	10,102 out of	24,867	40%
Number of unique control sets:	1,027		
Number of slice register sites lost			
to control set restrictions:	2,077 out of	64,000	3%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A control set is a unique combination of clock, reset, set, and enable signals for a registered element. The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails. OVERMAPPING of BRAM resources should be ignored if the design is over-mapped for a non-BRAM resource or if placement fails.

IO Utilization:

Number of bonded IOBs:	536 0	out d	эf	640	83%
Number of LOCed IOBs:	535	out	of	536	99%
IOB Flip Flops:	726				
IOB Master Pads:	97				
IOB Slave Pads:	97				
Number of bonded IPADs:	10				
Number of LOCed IPADs:	2	out	of	10	20%
Number of bonded OPADs:	8				
Specific Feature Utilization:					
Number of BlockRAM/FIFO:	45	out	of	228	19%
Number using BlockRAM only:	29				
Number using FIFO only:	16				
Total primitives used:					
Number of 36k BlockRAM used:	10				
Number of 18k BlockRAM used:	22				
Number of 36k FIFO used:	14				
Number of 18k FIFO used:	2				
Total Memory used (KB):	1,296	out	of	8,208	15%
Number of BUFG/BUFGCTRLs:	24	out	of	32	75%
Number used as BUFGs:	24				
Number of IDELAYCTRLs:	8	out	of	22	36%
Number of BUFDSs:	1	out	of	8	12%
Number of BUFIOs:	16	out	of	80	20%
Number of DCM_ADVs:	8	out	of	12	66%
Number of LOCed DCM_ADVs:	8	out	of	8	100%
Number of GTX_DUALs:	2	out	of	8	25%
Number of LOCed GTX_DUALs:	2	out	of	2	100%
Number of PCIEs:	1	out	of	3	338
Number of LOCed PCIEs:	1	out	of	1	100%
Number of PLL_ADVs:	1	out	of	6	16%

Page 16 of 89

Number of SYSMONs:		1 out of	1	100%
Number of RPM macros:	128			
Average Fanout of Non-Clock Nets	:	3.36		

The part mentioned above is also footprint compatible with the SXT series: XC5VSX50T and XC5VSX95T. The SXT series implements a DSP48E core, which if used on the SMT712 may result an increase of the power consumption. Please contact Sundance if you require details about the SXT series.

4.5.3 Configuration (CPLD+Flash)

On the SMT712, the FPGA is connected to a CPLD via a serial link. The CPLD is responsible for controlling read and write operations to and from the Flash memory and to route data to the FPGA configuration port.

The following diagram show how connections are made on the board between the CPLD, the Flash memory and the FPGA:

Figure 5 – Configuration (Flash).

A reset coming from the bus (PXI/PCI or PXI Express) triggers a configuration cycle and the FPGA is configured with the default firmware (stored in factory at location 0).

The on-board Flash memory (256-Mbit part) is big enough to store several versions (4 in total on the SMT712) of firmware. A switch (SW1) at the back of the board allows the selection among the 4 locations. It selects the bitstream to be loaded at power up (only switches 1 and 2 of SW1 are used. Each can contain up to 8Mbytes of

data, which is big enough to store an XC5LX110T bitstream (about 3.8 Mbytes) and some text (comments or description of the firmware version).

The user can store a 'user' bitstream at location 1 (see table below) for instance using the SMT6002 piece of software (host server to load bitstream into Sundance FPGA modules also called Flash Utility). The SMT6002 also allows adding text based comments above the bitstream in flash memory.

This architecture allows the SMT712 to be used as a development platform for signal processing and algorithms implementation. The function reboot can be used from the SMT6002 GUI to boot from any flash location within seconds.

Both FPGA and CPLD can be reprogrammed/reconfigured at anytime via JTAG (J8 connector – Using a Xilinx parallel/USB programming cable) but it can cause problems as it will break the access to the board from the host. JTAG has a higher priority.

At power up or under a reset on the PXI or PXI Express bus, it takes 140ms for the FPGA (XC5VLX110T-3) to be fully configured and ready to answer the requests from the host.

The following table shows the settings that can be used and the start addresses of the bitstream in the Flash memory.

Position Switch 2	Position Switch 1	Bitstream start address in flash	Description	
ON	ON	0x1800000 (Location 3)	User Bitstream 2 loaded at power up	
ON	OFF	0x1000000 (Location 2)	User Bitstream 1 loaded at power up	
OFF	ON	0x0800000 (Location 1)	User bitstream 0 loaded at power up	Default selection
OFF	OFF	0x0000000 (Location 0)	Standard bitstream loaded at power up	

Note that the CPLD routes the contents of the flash starting from the location selected (SW1) until the FPGA indicates that it is configured. Addresses are incremented by a counter that rolls over to 0 when the maximum address is reached. For instance, in the case where Location 1 is selected and a corrupted bitstream is loaded at that location (or if there is no bitstream at that location), the default bitstream will end up being loaded.

The default bitstream returns 'DEF' as firmware revision (see register 'Firmware Version and Revision numbers).

It is recommended to keep the Switch SW1 so the User bitstream 0 is selected and store a custom/user bitstream at Location 1 is needed. The card would then boot from this location. Otherwise the card would boot automatically from the default firmware (Location 0)

Storing a new bitstream using the SMT6002 first involves erasing the appropriate sectors before programming them with the bitstream. This is automatically handled

by the SMT6002. Storing a new bitstream at location 1 (User Bitstream 0) will only require from the user to select the file (.bit for instance) and to press the 'Comit' button. The advanced tab offers more options such as a full erase or a partial erase of the flash memory. None of them should be required in normal mode of operation. Note that a full erase will erase the entire contents of the flash including the default firmware and that it can take up to 3-4 minutes. The partial erase will erase the User bitstreams only.

4.5.4 DDR2 Memory

Two banks of DDR2 memory are available on the SMT712, directly connected to the FPGA. Interfaces are part of the FPGA design. Each bank is 64-bit wide and 128-Meg deep, so each bank can store up to 1 Giga bytes of samples. Each memory bank is dedicated to one DAC. Not all bits are used in the memory are 4 12-bit samples are stored in a 64-bit word.

In the standard firmware provided with the board, both DDR2 interfaces are clocked at 312MHz in order to be able to play back a pattern from the memory to match the full DAC sampling rate.

4.5.5 Clock circuitry

An on-board PLL+VCO chip ensure a stable fixed sampling frequency (maximum rate, i.e. 2300MHz), in order for the board to be used as synthesizer without the need of external clock signal. The PLL will be able to lock the VCO either on the on-board 10MHz PXI reference or the 100MHz PXI express reference or on an external reference signal. The sampling clock for the converters can be either coming from the PLL+VCO chip or from an external source. The chip used is a part from Analog Devices, the AD9516-2. The reference used for locking the VCO is output on a connector available on the front panel.

The selection Internal/External clock is made via a bit in the control register. The same applies to the selection of the reference clock.

Below is a block diagram of the clock circuitry:

Figure 6 – SMT712 Clock circuitry.

On the FPGA side, one Xilinx DCM is implemented per channel. They are used to clock the logic, to be able to change their phase shift to align outgoing data and incoming clock. Both DCM are set in High Frequency Mode. This mode has a limitation in terms of input clock (120 Mhz minimum), which implies a minimum sampling frequency of 960 MSPS.

4.5.6 Data (samples) path / Data storage

This section details how samples can be routed to the DACs. By default and after power-up or reset operation, all interfaces are in reset state. The only exception is for the PXI/PXIe bus interface. Relevant interfaces should first be taken out of the initial reset state.

The next step is to program both DACs and the clock generator and make sure it locked to a reference signal. This is not needed in case of using an external sampling clock. A DAC synchronisation cycle can be run to make sure their Fs/8 output clocks are in phase. DACs are then ready to receive samples and output a clock to the FPGA.

Here are the details of the following step. One Xilinx DCM per DAC clock is used inside the FPGA to ensure a good capture of data. The status of these DCMs should be checked to make sure they are 'locked'. They are available in the Global Control Register. The DDR2 interface uses some Xilinx specific blocks, such as idelays, DCMs and Phy, which have to be 'locked' and 'ready' as well. These have to be checked the same way, using the bits available from the Global Control Register.

Each DAC has a dedicated bank of DDR2 Memory, which can be seen as a Fifo. Both Fifos have status bits to check whether they are empty or full (bit available from Global Control Register). Each Fifo is connected to a DMA channel. DMA channel are implemented as Xlinks. Each FIFO is used in the firmware as a pattern generator. Once samples are written into it, the can be played out in a repetitive way, the size of the pattern is loaded into a register.

The following diagram shows the data path implemented:

Figure 7 – Data path.

Note the data coming from the SHB are coming on 8 bits and casted to 12 bits to match the DAC inputs.

4.5.7 PXI Express Bus

As standard, the SMT712 is a 3U PXI Express peripheral module, which means it comes with two PXI Express connectors: XP4 (PXI timing and synchronisation signals) and XP3 (x8 PCI Express and additional synchronisation signals). The SMT712 dedicates 8 lanes to the PXI Express bus, which gives an effective bandwidth per direction of 16Gb/s. It also implies core and user clocks to be 250 MHz. Note that not all PXIe Express chassis can handle 8 lanes on peripheral modules. The default SMT712 firmware (For PXIe version of the board) only implements 4 lanes.

The standard SMT712 can plug in any PXI Express Peripheral Slot or any PXI Express Hybrid Slot.

Optionally, the module can be a 3U Hybrid Peripheral Slot Compatible PXI-1 Module, means it comes with two connectors: XP4 (PXI timing and synchronisation signals) and P1 (32-bit, 33MHz PCI Signals). This version of SMT712 can only plug in any PXI Express Hybrid Slot

Figure 9 - SMT712-HYBRPXI32 - Hybrid Peripheral Slot Compatible PXI-1 Module

The SMT712 module can also be a 3U Compact PCI module, which can only be plugged into a CPCI system. It only has one connector fitted: P1 (32-bit, 33MHz PCI signals).

Figure 10 - SMT712-CPCI32 - Compact PCI Module

The FPGA requires a reference clock to implement either the PCI or PCI Express core. The selection is made via J11. The Jumper should be fitted in Position1-2 when a PCI core is used (a 250MHz clock is then available to the FPGA) or in Position2-3 when a PCI Express core is used (the 100-MHz express reference is then routed to the FPGA).

4.5.8 SHB connector

An SHB (1) Connector is available from the FPGA. It maps 32 single-ended data lines and a set of control signals including a clock.

It can be used to transfer samples from an other Sundance module, for instance the SMT702.

A second SHB (2) connector is also available on non-PCI versions of the board.

As an example, both SHBs can be used to link an SMT702 and an SMT712 to create a dual-channel, 2GSPS PXIe platform.

SHB clock should match the FPGA clock rate used for DAC (clk/8) and SHB data is automatically phase shifted to be aligned with internal clock.

4.5.9 External Trigger.

The external trigger function is not implemented in current version of the default firmware.

4.5.10 Power dissipation

The PXI Express chassis receiving the SMT712 module should provide enough forced air flow in order to dissipate the heat generated by the module. The air flow must be going against gravity or upwards, as specified in the PXI Specification.

The FPGA is fitted with a heatsink to keep it within an appropriate range of temperature (no more than 85 °C) when using the default firmware provided. Nevertheless the board requires some forced cooling. It is recommended to use a PXIe-1062Q chassis or equivalent from National instrument as it already integrates a built-in regulated cooling system. Measurements have been made using a PXIe-1062Q on the maximum fan speed setting and the standard firmware with both DACs clocked at 2,3GHz (both DDR2 memory banks used as a pattern generator):

In an ambient temperature of 25 °C, the FPGA die temperature stays close to 60 °C.

In an ambient temperature of 30 °C, the FPGA die temperature stays close to 70 °C.

In order to improve the heat dissipation is a system, some slot blockers can be used (from National Instrument), which redirect the air flow of non-used slots to where it is needed. Keeping the FPGA die temperature below 70-75 °C ensures constant performance in time.

The temperature of the FPGA die is available within the register to read-back so it can be monitored.

It is also specified that a 3U PXI Express module should not dissipate more than 30 Watts of heat.

The following picture shows the direction of the forced air flow across a 3U PXI Express module:

Figure 11 – Forced airflow for a 3U module.

A PXI Express rack has a capacity of dissipating 30 watts of heat per slot using forced air-cooling system via typically two 110-cfm fans with filter.

4.5.11 JTAG

A connector (J8) is specifically dedicated for FPGA and CPLD detection and programming. Both the CPLD and the FPGA are part of the JTAG chain. A 14-

position (2x7) connector (2mm) is available and shows TDI, TDO, TCK and TMS lines, as well as a Ground and a reference voltage, as shown below:

Figure 12 - JTAG Connector.

This connector has been chosen because it can connect easily to a Xilinx Parallel IV cable using the ribbon cable provided by Xilinx. The connector is a Molex part: Molex 87831-1428.

Figure 13 – Photo of a Xilinx Parallel IV cable and its ribbon cable for JTAG connection The JTAG connector should only be needed when reprogramming the CPLD. The FPGA is accessible from the host using the SMT6002 software.

4.5.12 PXI Express Hybrid Connectors

As being a PXI Express Hybrid Peripheral Module, the SMT712 is a 3U card with 2 PXI connectors, XP3, XP4 and P1. The following table shows their pinouts.

Pin	Z	A	В	С	D	E	F			
1	GND	GA4	GA3	GA2	GA1	GA0	GND			
2	GND	5Vaux	GND	SYSEN#	WAKE#	ALERT#	GND			
3	GND	12V	12V	GND	GND	GND	GND			
4	GND	GND	GND	3.3V	3.3V	3.3V	GND	XP4/XJ4	l Con	nector
5	GND	PXI TRIG3	PXI TRIG4	PXI TRIG5	GND	PXI TRIG6	GND			
6	GND	PXI TRIG2	GND	ATNLED	PXI STAR	PXI CLK10	GND			
7	GND	PXI TRIG1	PXI TRIG0	ATNSW#	GND	PXI TRIG7	GND			
8	GND	RSV	GND	RSV	PXI LBL6	PXI LBR6	GND			
Pin	А	В	ab	С	D	cd	E	F	ef	×
1	PXIe CLK100+	PXIe CLK100-	GND	PXIe SYNC100+	PXIe SYNC100-	GND	PXIe DSTARC+	PXIe DSTARC-	GND	Ð
2	PRSNT#	PWREN#	GND	PXIe DSTARB+	PXIe DSTARB-	GND	PXIe DSTARA+	PXIe DSTARA-	GND	3
3	SMBDAT	SMBCLK	GND	RSV	RSV	GND	RSV	RSV	GND	Ş
4	MPWRGD	PERST#	GND	RSV	RSV	GND	1RefClk+	1RefClk-	GND	5
5	1PETp0	1PETn0	GND	1PERp0	1PERn0	GND	1PETp1	1PETn1	GND	3
6	1PETp2	1PETn2	GND	1PERp2	1PERn2	GND	1PERp1	1PERn1	GND	8
7	1PETp3	1PFTn3	GND	1PERn3	1PERn3	GND	1PFTp4	1PFTn4	GND	ă
8	1PETp5	1PETn5	GND	1PERp5	1PERn5	GND	1PERn4	1PERn4	GND	n
<u>q</u>	1PETn6	1PETn6	GND	1PERn6	1PERn6	GND	1PETp7	1PETn7	GND	č
10	RSV	RSV	GND	RSV	RSV	GND	1PERn7	1PERn7	GND	g
`			0.10	1101		0.10	in Ertipi		0.10	
Pin	Z	A	В	С	D	E	F			
25	GND	5V	REQ64#	ENUM#	3.3V	5V	GND			
24	GND	AD[1]	5V	V(VO)	AD[0]	ACK64#	GND			
23	GND	3.3V	AD[4]	AD[3]	5V	AD[2]	GND			
22	GND	AD[7]	GND	3.3V	AD[6]	AD[5]	GND			
21	GND	3.3V	AD[9]	AD[8]	M66EN	C/BE[0]#	GND			
20	GND	AD[12]	GND	V(VO)	AD[11]	AD[10]	GND			
19	GND	3.3V	AD[15]	AD[14]	GND	AD[13]	GND			
18	GND	SERR#	GND	3.3V	PAR	C/BE[1]#	GND			
17	GND	3.3V	IPMB_SCL	IPMB_SDA	GND	PERR#	GND			
16	GND	DEVSEL#	GND	V(VO)	STOP#	LOCK#	GND			
15	GND	3.3V	FRAME#	IRDY#	BD_SEL#	TRDY#	GND	D1/11/	~~nn	ootor
12-14			•	Key Area	•	•			20nn	ector
11	GND	AD[18]	AD[17]	AD[16]	GND	C/BE[2]#	GND			
10	GND	AD[21]	GND	3.3V	AD[20]	AD[19]	GND	1		
9	GND	C/BE[3]#	IDSEL	AD[23]	GND	AD[22]	GND	1		
8	GND	AD[26]	GND	V(I/O)	AD[25]	AD[24]	GND	1		
7	GND	AD[30]	AD[29]	AD[28]	GND	AD[27]	GND	1		
6	GND	REQ#	GND	3.3V	CLK	AD[31]	GND	1		
5	GND	BRSVP1A5	BRSVP1B5	RST#	GND	GNT#	GND	1		
4	GND	IPMB PWR	HEALTHY#	V(VO)	INTP	INTS	GND	1		
3	GND	INTA#	INTB#	INTC#	5V	INTD#	GND	1		
2	GND	тск	5V	TMS	TDO	TDI	GND			
1	GND	5V	-12V	TRST#	+12V	5V	GND	1		

The SMT712 can implement up to eight 2.5-Gigabit PCI Express lanes, allowing a maximum data transfer of 2 gigabytes per second. It also implements optionally a 32-bit, 33-MHz PXI/PCI interface.

4.6 FPGA Design

The following block diagram shows how the default FPGA design is organised.

Figure 14 - Block Diagram - FPGA Design (standard Firmware).

The FPGA implements some control registers in order to configure and control all blocks. Most of them are available to read-back.

DDR2 interfaces have been designed in such way that both banks can be used as a pattern generator. Each memory interface uses some Xilinx specific blocks such as IDelay and DCM. Their respective status Ready and Lock are available from the Control Register. A pattern can be stored on the DDR2 memory and played back.

A 32-bit SHB (1) connector is available. A second one is shared with the PCI 32-bit bus, i.e. you can have one or the other depending on the option ordered.

DACs provide the FPGA with with a divided version of the sampling clock (sampling clock/8). DCMs are used so they can be phase-adjusted. DCMs Status is available from the Control Register. DCMs introduces a limitation of the sampling clock (DCMs won't work when sampling clocks are below 960MHz).

The PCI Express interface (when option purchased) implements 4 Express lanes.

The PCI 32-bit (33Mhz) (when option purchased) implements some Xilinx specific blocks such as IDelays and DCMs. Status bits are available from the Control Register. On non-PCI versions of the board a second 32-bit SHB (2) connector is fitted.

The FPGA is also responsible for accesses to the CPLD in order to access the flash memory that can contain up to 4 bitstreams. The CPLD can be triggered to reload the FPGA with a different bistream. In this situation, the Sundance driver (SMT6300) ensures that the link between the host application and the board is not lost.

4.6.1 Control Registers

The write packets must contain the address where the data must be written to and the read packets must contain the address where the required data must be read. The following figure shows the memory map for the writable and readable registers on the SMT712.

The access to a specific register is made by reading or writing to the address: *Address from Host* = *Offset* + *Register Address*

Offset	Description.
0x0000	SMT7xx Boards common registers (Reboot, global reset).
0x0400	SMT712 Registers (DACs, Clock and control).
0x0800	DACa data channel (Xlink 1)
0x0C00	DACb data channel (Xlink 2)
0x1000	Table of Contents (see Xlink Specifications for more details).
0x1400	Flash memory for bitstream storage.
0x2400	Event Block

Offset 0x0000 - SMT7xx Common Registers.						
Register Address	Writable Registers	Readable Registers				
0x04	Global Reset (bit31).	Reserved.				
0x80	Reconfiguration – Bitstream number.	Reserved.				
	Offset 0x0400 - SMT712	2 Registers.				
Register Address	Writable Registers	Readable Registers				
0x08	Reserved.	General Control register.				
0x10	Set Control Register.	Reserved.				
0x20	Clear Control Register.	Reserved.				
0x24	Reserved	Board Name and Version.				
0x40	Reserved.	Firmware Version and Revision Numbers.				
0x44	DACA (MAX19692) Register 0x1.	Read-back (FPGA Register) DACA (MAX19692) Register 0x1.				
0x48	DACB (MAX19692) Register 0x1.	Read-back (FPGA Register) DACB (MAX19692) Register 0x1.				
0x4C	DACA and B data source selection	Read-back (FPGA Register) DACA and B data source selection				
0xC0	Clock Generator (AD9516-2) register 0x00 – Serial Port Configuration	Read-back (FPGA register) Clock Generator (AD9516-2) register 0x00 – Serial Port Configuration				
0xC4	Clock Generator (AD9516-2) register 0x04 – Read- back control	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x04 – Read-back control				
0xC8	Clock Generator (AD9516-2) register $0x10 - PDF$ and Charge Pumpe	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x10 – PDF and Charge Pumpe				

Over	Clock Generator (AD9516-2) register 0v11 - P	Read-back (EPGA Register) Clock Cenerator
UACC	Counter	(AD9516-2) register 0x11 - R Counter
0xD0	Clock Generator (AD9516-2) register 0x12 – R Counter	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x12 – R Counter
0xD4	Clock Generator (AD9516-2) register 0x13 – A Counter	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x13 – A Counter
0xD8	Clock Generator (AD9516-2) register 0x14 – B Counter	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x14 – B Counter
0xDC	Clock Generator (AD9516-2) register 0x15 – B Counter	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x15 – B Counter
0xE0	Clock Generator (AD9516-2) register 0x16 – PLL Control 1	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x16 – PLL Control 1
0xE4	Clock Generator (AD9516-2) register 0x17 – PLL Control 2	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x17 – PLL Control 2
0xE8	Clock Generator (AD9516-2) register 0x18 – PLL Control 3	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x18 – PLL Control 3
0xEC	Clock Generator (AD9516-2) register 0x19 – PLL Control 4	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x19 – PLL Control 4
0xF0	Clock Generator (AD9516-2) register 0x1A – PLL Control 5	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x1A – PLL Control 5
0xF4	Clock Generator (AD9516-2) register 0x1B – PLL Control 6	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x1B – PLL Control 6
0xF8	Clock Generator (AD9516-2) register 0x1C – PLL Control 7	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x1C – PLL Control 7
0xFD	Clock Generator (AD9516-2) register 0x1D – PLL Control 8	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x1D – PLL Control 8
0x100	Clock Generator (AD9516-2) register 0x1E – PLL Control 9	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x1E – PLL Control 9
0x104	Clock Generator (AD9516-2) register 0x1F – PLL readback	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x1F – PLL readback
0x108	Clock Generator (AD9516-2) register 0xA0 – OUT6 Delay Bypass	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xA0 – OUT6 Delay Bypass
0x10C	Clock Generator (AD9516-2) register 0xA1 – OUT6 Delay Full Scale	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xA1 - OUT6 Delay Full Scale
0x110	Clock Generator (AD9516-2) register 0xA2 – OUT6 Delay Fraction	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xA2 – OUT6 Delay Fraction
0x114	Clock Generator (AD9516-2) register 0xA3 – OUT7 Delay Bypass	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xA3 – OUT7 Delay Bypass
0x118	Clock Generator (AD9516-2) register 0xA4 – OUT7 Delay Full Scale	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xA4 - OUT7 Delay Full Scale
0x11C	Clock Generator (AD9516-2) register 0xA5 – OUT7 Delay Fraction	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xA5 – OUT7 Delay Fraction
0x120	Clock Generator (AD9516-2) register 0xA6 – OUT8 Delay Bypass	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xA6 – OUT8 Delay Bypass
0x124	Clock Generator (AD9516-2) register 0xA7 – OUT8 Delay Full Scale	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xA7 - OUT8 Delay Full Scale
0x128	Clock Generator (AD9516-2) register 0xA8 – OUT8 Delay Fraction	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xA8 – OUT8 Delay Fraction
0x12C	Clock Generator (AD9516-2) register 0xA9 – OUT9 Delay Bypass	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xA9 – OUT9 Delay Bypass
0x130	Clock Generator (AD9516-2) register 0xAA – OUT9 Delay Full Scale	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xAA – OUT9 Delay Full Scale
0x134	Clock Generator (AD9516-2) register 0xAB – OUT9 Delay Fraction	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xAB – OUT9 Delay Fraction

0x138	Clock Generator (AD9516-2) register 0xF0 – OUT0	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xF0 – OUT0
0x13C	Clock Generator (AD9516-2) register 0xF1 – OUT1	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xF1 – OUT1
0x140	Clock Generator (AD9516-2) register 0xF2 – OUT2	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xF2 – OUT2
0x144	Clock Generator (AD9516-2) register 0xF3 – OUT3	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xF3 – OUT3
0x148	Clock Generator (AD9516-2) register 0xF4 – OUT4	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xF4 - OUT4
0x14C	Clock Generator (AD9516-2) register 0xF5 – OUT5	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0xF5 - OUT5
0x150	Clock Generator (AD9516-2) register 0x140 – OUT6	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x140 – OUT6
0x154	Clock Generator (AD9516-2) register 0x141 – OUT7	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x141 - OUT7
0x158	Clock Generator (AD9516-2) register 0x142 – OUT8	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x142 – OUT8
0x15C	Clock Generator (AD9516-2) register 0x143 – OUT9	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x143 – OUT9
0x160	Clock Generator (AD9516-2) register 0x190 – Divider0	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x190 - Divider0
0x164	Clock Generator (AD9516-2) register 0x191 – Divider0	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x191 - Divider0
0x168	Clock Generator (AD9516-2) register 0x192 – Divider0	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x192 - Divider0
0x16C	Clock Generator (AD9516-2) register 0x193 – Divider1	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x193 - Divider1
0x170	Clock Generator (AD9516-2) register 0x194 – Divider1	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x194 – Divider1
0x174	Clock Generator (AD9516-2) register 0x195 – Divider1	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x195 – Divider1
0x178	Clock Generator (AD9516-2) register 0x196 – Divider2	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x196 – Divider2
0x17C	Clock Generator (AD9516-2) register 0x197 – Divider2	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x197 – Divider2
0x180	Clock Generator (AD9516-2) register 0x198 – Divider2	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x198 – Divider2
0x184	Clock Generator (AD9516-2) register 0x199 – Divider3	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x199 - Divider3
0x188	Clock Generator (AD9516-2) register 0x19A – Divider3	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x19A – Divider3
0x18C	Clock Generator (AD9516-2) register 0x19B – Divider3	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x19B – Divider3
0x190	Clock Generator (AD9516-2) register 0x19C – Divider3	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x19C – Divider3
0x194	Clock Generator (AD9516-2) register 0x19D – Divider3	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x19D - Divider3
0x198	Clock Generator (AD9516-2) register 0x19E – Divider4	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x19E - Divider4
0x19C	Clock Generator (AD9516-2) register 0x19F – Divider4	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x19F – Divider4
0x1A0	Clock Generator (AD9516-2) register 0x1A0 – Divider4	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x1A0 - Divider4

0x1A4	Clock Generator (AD9516-2) register 0x1A1 – Divider4	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x1A1 – Divider4
0x1A8	Clock Generator (AD9516-2) register 0x1A2 – Divider4	Clock Generator (AD9516-2) register 0x1A2 – Divider4
0x1AC	Clock Generator (AD9516-2) register 0x1E0 – VCO Divider	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x1E0 – VCO Divider
0x1B0	Clock Generator (AD9516-2) register 0x1E1 – Input CLKs	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x1E1 – Input CLKs
0x1B4	Clock Generator (AD9516-2) register 0x230 – Power-down and Sync	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x230 – Power-down and Sync
0x1B8	Clock Generator (AD9516-2) register 0x232 – Update all registers	Read-back (FPGA Register) Clock Generator (AD9516-2) register 0x232 – Update all registers
0x1C0	System Monitor upper and lower FPGA Die Temperature thresholds	System Monitor – Read-back FPGA max and min die temperature measured
0x1C4	System Monitor upper and lower FPGA Vccint (Core Voltage) upper and lower thresholds	System Monitor – Read-back FPGA max and min Vccint (Core Voltage) measured
0x1C8	System Monitor upper and lower FPGA Vccaux (Core Voltage) upper and lower thresholds	System Monitor – Read-back FPGA max and min Vccaux (Core Voltage) measured
0x1CC	DDS (DACA) Frequency Register	
0x1D0	DDS (DACB) Frequency Register	
0x1D4	DACA DCM Phase Shifts.	Reserved.
0x1D8	DACB DCM Phase Shifts.	Reserved.
0x1DC	DACA Pattern Size.	Reserved.
0x1E0	DACB Pattern Size.	Reserved.

Figure 15 – Register Memory Ma	ap.
--------------------------------	-----

4.6.1.1 Register Descriptions

4.6.1.1.1 General Control Register – 0x08 (read–only).

	Offset 0x0400 – General control Register – 0x08 (Read-only register).									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
3	DACA or DACB DCM Busy status	System Monitor - Over Temperature alarm	System Monitor - Vccaux alarm	System Monitor - Vccint alarm	System Monitor - Die temperature alarm	DDR2 Fifo Almost Empty (Memory Bank B)	DDR2 Fifo Almost Empty (Memory Bank A)	DDR2 Fifo Full (Memory Bank B)		
Default	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'		
2	DDR2 Fifo Full (Memory Bank A)			DDR2 Fifo empty (Memory Bank B)		DDR2 phy init done (Memory Bank B)	DACB Synch Reference State	DACA Synch Reference State		
Default	' 0 '	'0'	'0'	'0'	' 0 '	' 0 '	'0'	'0'		

1	DDR2 Fifo empty (Memory Bank A)		DDR2 phy init done (Memory Bank A)		Clock Chip Lock Detect Pin	Clock Chip Reference Monitoring Pin	Clock Chip Status Pin	XOR Synch Reference State
Default	'0'	' 0 '	'0'	'0'	'0'	' 0 '	'1'	'0'
0	PCI32 Idelay ready	Iodelay clock (200mhz) locked	DACb DCM Lock Status	DACa DCM Lock Status	Iodelay Ready ddr2 chb	Iodelay ready ddr2 cha	lock dcm ddr2 chb	lock dcm ddr2 cha
Default	' 0 '	' 0 '	'0'	' 0'	' 0'	' 0 '	' 0 '	' 0 '

		Offset 0x0400 - General control Register - 0x08 (Read-only register).					
Setting	Bit 0	Description – DCM Lock Status DDR2 BankA					
0	0	DCM generating clock for DDR2 bank A not locked.					
1	1	DCM generating clock for DDR2 bank A locked – normal mode of operation.					
Setting	Bit 1	Description – DCM Lock Status DDR2 BankB					
0	0	DCM generating clock for DDR2 bank B not locked.					
1	1	DCM generating clock for DDR2 bank B locked – normal mode of operation.					
Setting	Bit 2	Description – IoDelay Ready DDR2 BankA					
0	0	IoDelays not ready.					
1	1	IoDelays ready. Normal Mode of operation.					
Setting	Bit 3	Description – IoDelay Ready DDR2 BankB					
0	0	IoDelays not ready.					
1	1	IoDelays ready. Normal Mode of operation.					
Setting	Bit 4	Description – DACA DCM Lock Status.					
0	0	DCM DACA not locked.					
1	1	DCM DACA Locked. Normal Mode of Operation.					
Setting	Bit 5	Description – DACB DCM Lock Status.					
0	0	DCM DACB not locked.					
1	1	DCM DACB Locked. Normal Mode of Operation.					
Setting	Bit 6	Description – Lock Status PCI IoDelay Clock					
0	0	DCM IoDelay clock - PCI interface - not locked.					
1	1	DCM IoDelay clock - PCI interface - locked. Normal Mode of Operation.					
Setting	Bit 7	Description – IoDelays PCI Interface Ready					
0	0	IoDelays PCI Interface not ready.					
1	1	IoDelays PCI Interface ready. Normal Mode of operation.					
Setting	Bit 8	Description – XOR Synchronisation Reference State					
0	0	DACA and DACB reference clocks are at the same levels. Either both '0' or both '1'.					
1	1	DACA and DACB reference clocks are at opposite levels. One is '0' and the other is '1'.					
Setting	Bit 9	Description – Clock Chip Status Pin.					
0	0	Programmable pin. See AD9516-2 register settings.					
1	1	Programmable pin. See AD9516-2 register settings.					
Setting	Bit 10	Description - Clock Chip Reference Monitoring Pin.					
0	0	Programmable pin. See AD9516-2 register settings.					
1	1	Programmable pin. See AD9516-2 register settings.					

Setting	Bit 11	Description - Clock Chip Lock Detect Pin.
0	0	Programmable pin. See AD9516-2 register settings.
1	1	Programmable pin. See AD9516-2 register settings.
Setting	Bit 13	Description – DDR2 phy init done. Memory Bank A.
0	0	A problem occurred or Memory Bank A is kept in reset.
1	1	Normal Mode of Operation.
Setting	Bit 15	Description – DDR2 fifo empty. Memory Bank A.
0	0	DDR2 fifo contains samples.
1	1	DDR2 fifo is empty.
Setting	Bit 16	Description – DACA Synchronisation Reference State.
0	0	DACA reference clock at a logical '0' level.
1	1	DACA reference clock at a logical '1' level.
Setting	Bit 17	Description - DACB Synchronisation Reference State.
0	0	DACB reference clock at a logical '0' level.
1	1	DACB reference clock at a logical '1' level.
Setting	Bit 18	Description – DDR2 phy init done. Memory Bank B.
0	0	A problem occurred or Memory Bank B is kept in reset.
1	1	Normal Mode of Operation.
Setting	Bit 20	Description – DDR2 fifo empty. Memory Bank B.
0	0	DDR2 fifo contains samples.
1	1	DDR2 fifo is empty.
Setting	Bit 23	Description – DDR2 Fifo Full. Memory Bank A
0	0	Memory bank A not full.
1	1	Memory bank A full.
Setting	Bit 24	Description – DDR2 Fifo Full. Memory Bank B
0	0	Memory bank B not full.
1	1	Memory bank B full.
Setting	Bit 25	Description - DDR2 Fifo almost empty. Memory Bank A
0	0	Memory bank A not almost empty.
1	1	Memory bank A almost empty.
Setting	Bit 26	Description – DDR2 Fifo almost empty. Memory Bank B
0	0	Memory bank B not almost empty.
1	1	Memory bank B almost empty.
Setting	Bit 27	Description - System Monitor - FPGA Die Temperature Alarm
0	0	Normal Mode of Operation.
1	1	Upper die temperature threshold reached.
Setting	Bit 28	Description – System Monitor – Vccint Alarm
0	0	Normal Mode of operation.
1	1	Upper Vccint threshold reached.
Setting	Bit 29	Description - System Monitor - Vccaux Alarm
0	0	Normal Mode of Operation.
1	1	Upper Vccaux threshold reached.
Setting	Bit 30	Description - System Monitor - Over Temperature Alarm
0	0	Normal Mode of Operation.

1	1	Over Temperature lower threshold reached.
Setting	Bit 31	Description - DACA or DACB DCM Busy Status
0	0	Normal Mode of Operation.
1	1	Either DACA DCM or DACB DCM is busy changing the value of the delay.

4.6.1.1.2 Set Control Register – 0x10 (write).

	Offset 0x0400 – Reset Register – 0x10 (write)								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
3		DDS / DDR2 Pattern Generator Start/nStop				DACA sampling clock cancel cycle	DCM DACB Force Reset	DCM DACA Force Reset	
Default	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
2	System Monitor Reset		SHB2 Reset	SHB1 Reset	DDR2 Reset		External Trigger Selection		
Default	'1'	' 0 '	'1'	'1'	'1'	'0'	'0'	'0'	
1	On-board clock synch (active low)	On-board clock reset and power down	Reference Clock OnBoard Divider	Reference Clock Out Divider	Soft Reset	Ref Clock Circuitry Reset	Ref Clock Selection		
Default	'1'	'1'	'0'	'0'	'1'	'1'	'0	0'	
0	Sampling Clock Selection Source	CLOCK Power Supplies Enable	DACB Power Supplies Enable	DACA Power Supplies Enable	DAC Reset	Clock Update (auto- clear)	DACB Update (auto- clear)	DACA Update (auto- clear)	
Default	'0'	' 0 '	'0'	'0'	'1'	'0'	'0'	'0'	

	Offset 0x0400 – Reset Register – 0x10 (write)	
Setting	Bit 0	Description - DACA Update (do not Auto-Clear)
0	0	Normal Mode of Operation
1	1	All Current ADCA Register are passed from the FPGA to the ADCA Chip
Setting	Bit 1	Description - DACB Update (do not Auto-Clear)
0	0	Normal Mode of Operation
1	1	All Current ADCB Register are passed from the FPGA to the ADCB Chip
Setting	Bit 2	Description - Clock Update (do not Auto-Clear)
0	0	Normal Mode of Operation
1	1	All Current Clock Register are passed from the FPGA to the Clock Chip
Setting	Bit 3	Description - DACs Reset (does not Auto-Clear)
0	0	Normal Mode of Operation
1	1	DACs in Reset mode (does not auto-clear)
Setting	Bit 4	Description - DACA power supply.
0	0	DACA not powered.
1	1	DACA under power.
Setting	Bit 5	Description - DACB power supply.
0	0	DACB not powered.

1	1	DACB under power.
Setting	Bit 6	Description - Clock power supply.
0	0	Clock chip not powered.
1	1	Clock chip under power.
Setting	Bit 7	Description – Sampling Clock Source Selection
0	0	ADCs are clocked using the on-board clock synthesizer.
1	1	ADCs are clocked using an external source.
Setting	Bit 9-8	Description - Reference Clock Selection
0	00	External Reference Selected.
1	01	100-MHz PXI Express Reference Clock.
2	10	10-MHz PXI Express Reference Clock.
3	11	100-MHz PXI Express Reference Clock.
Setting	Bit 10	Description - Reference Clock Circuitry Reset
0	0	Normal Mode of Operation.
1	1	Reference Clock Circuitry kept in Reset (Default).
Setting	Bit 11	Description - Soft Reset
0	0	Normal Mode of Operation
1	1	Resets Xlinks blocks – usually used before starting an acquisition to clear Xlinks FIFOs.
Setting	Bit 12	Description - Reference Clock Out Divider.
0	0	Divide by 1.
1	1	Divide by 2.
Setting	Bit 13	Description - On-board Reference Clock Divider
0	0	Divide by 1.
1	1	Divide by 2.
Setting	Bit 14	Description - On-board Clock Reset.
0	0	Normal mode of operation.
1	1	On-board Clock chip in reset mode.
Setting	Bit 15	Description – On-board Clock Synch (active low).
0	0	
1	1	
Setting	Bit 17	Description – Trigger Source Selection
0	0	On-board trigger selected (bit 16)
1	1	External trigger selected (Trig Input). A Level 'high' on the Trig Input is required to start an acquisition (length of the pulse being at least $1/8^{th}$ of the ADC sampling clock.
Setting	Bit 19	Description - DDR2 Reset
0	0	Normal Mode of Operation
1	1	Keeps DDR2 circuitry in Reset
Setting	Bit 20	Description - SHB1 Reset
0	0	Normal Mode of Operation
1	1	Keeps SHB1 circuitry in Reset
Setting	Bit 21	Description – SHB2 Reset
0	0	Normal Mode of Operation
1	1	Keeps SHB2 circuitry in Reset
Setting	Bit 24	Description Force DACA DCM to Reset (Auto-Clear).
0	0	Normal Mode of Operation.
---------	--------	--
1	1	DCM gets reset (Auto-Clear)
Setting	Bit 25	Description Force DACB DCM to Reset (Auto-Clear).
0	0	Normal Mode of Operation.
1	1	DCM gets reset (Auto-Clear)
Setting	Bit 26	Description DACA sampling clock cancel cycle.
0	0	Normal Mode of Operation.
1	1	Cancels 7 clock cycles (of sampling clock) on DACA. This is used in the process of synchronising DACs.
Setting	Bit 30	Description – DDS / DDR2 Pattern Generator Start_nStop
0	0	The DDS/DDR2 Pattern Generator implemented in the FPGA is not running (default).
1	1	The DDS/DDR2 Pattern Generator starts running (after relevant parameter have been loaded).

4.6.1.1.3 DACA (MAX19692) Register 0x1 - Configuration Register - 0x44 (write).

	DACA (MAX19692) Register 0x1 – Configuration Register – 0x44 (write)										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O			
0	Reserved	Reserved	Reserved	Reserved	Cal (DacA)	Delay (DacA)	RZ (DacA)	RF (DacA)			
Default	'0'	' 0 '	' 0 '	'0'	'0'	'0'	'0'	'0'			

	DA	DACA (MAX19692) Register 0x1 - Configuration Register - 0x44 (write)						
Setting	Bit 3	escription (Cal – DACA Output Resistance Calibration)						
0	0	Output Resistors are un-calibrated.						
1	1	Output Resistors are calibrated.						
Setting	Bit 2	Description (Delay - DACA Data Clock Delay Mode Input)						
0	0	No Delay added.						
1	1	Adds a delay of half of the input data period (2 DAC clock cycles).						
Setting	Bit 1	Description (RZ - DACA Return-to-Zero Mode select input)						
0	0	Normal DAC mode of operation (NRZ – high dynamic range and output power in the first Nyquist Zone).						
1	1	Return-to-Zero mode of Operation (RZ – this mode trades-off SNR for improved gain flatness in the first, second and third Nyquist zones)						
Setting	Bit 0	Description (RF - DACA Radio Frequence Mode Input)						
0	0	NRZ or RZ DAC operation.						
1	1	RF DAC operation (Provides higher SNR and dynamic performance in the second and third Nyquist Zone).						

4.6.1.1.4 DACB (MAX19692) Register 0x1 – Configuration Register – 0x48 (write).

User Manual SMT712

	DACB (MAX19692) Register 0x1 – Configuration Register – 0x48 (write)								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	Reserved	Reserved	Reserved	Reserved	Cal (DacB)	Delay (DacB)	RZ (DacB)	RF (DacB)	
Default	'0'	'0'	'0'	'0'	'0'	'0'	' 0 '	'0'	

	DA	ACB (MAX19692) Register 0x1 - Configuration Register - 0x48 (write)
Setting	Bit 3	Description (Cal – DACB Output Resistance Calibration)
0	0	Output Resistors are un-calibrated.
1	1	Output Resistors are calibrated.
Setting	Bit 2	Description (Delay – DACB Data Clock Delay Mode Input)
0	0	No Delay added.
1	1	Adds a delay of half of the input data period (2 DAC clock cycles).
Setting	Bit 1	Description (RZ - DACB Return-to-Zero Mode select input)
0	0	Normal DAC mode of operation (NRZ – high dynamic range and output power in the first Nyquist Zone).
1	1	Return-to-Zero mode of Operation (RZ – this mode trades-off SNR for improved gain flatness in the first, second and third Nyquist zones)
Setting	Bit 0	Description (RF – DACB Radio Frequence Mode Input)
0	0	NRZ or RZ DAC operation.
1	1	RF DAC operation (Provides higher SNR and dynamic performance in the second and third Nyquist Zone).

4.6.1.1.5 DACA and B data source selection – 0x4C (write).

	DACA and B data source selection – 0x4C (write)										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		Reserv	ved		DACB da sele	ata source ction	DACA da selec	ta source ction			
Default		' 000'	0'		"()0'	'0	0'			

	DACA and B data source selection – 0x4C (write)							
Setting	Bit 32	Description (DACB data source selection)						
0	' 00 '	All data lines are assigned with logical '0'.						
1	ʻ01'	amples routed from the SHB2 to the DACB. This only applies when SHB2 is fitted on the oard (non-PCI versions of the board).						
2	'10'	Samples routed from the DDS (FPGA) to the DACB.						
3	'11'	Samples routed from the DDR2 memory to the DACB.						
Setting	Bit 10	Description (DACA data source selection)						
0	' 00 '	All data lines are assigned with logical '0'.						
1	'01'	Samples routed from the SHB1 to the DACA.						
2	'10'	Samples routed from the DDS (FPGA) to the DACA.						
3	'11'	Samples routed from the DDR2 memory to the DACA.						

4.6.1.1.6 Clock Generator (AD9516-2) Register 0x00 - Serial Port Configuration - 0xC0 (write).

User Manual SMT712

	Clock Generator (AD9516-2) Register 0x00 - Serial Port Configuration - 0xC0 (write)									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	SDO Active	LSB First	Soft reset	Long Instruction	Long Instruction	Soft Reset	LSB First	SDO Active		
Default	'0'	'0'	'0'	'1'	'1'	'0'	'0'	'0'		

	Clock Ge	Clock Generator (AD9516-2) Register 0x00 - Serial Port Configuration - 0xC0 (write)						
Setting	Bit 3	Description (Long Instruction)						
0	0	N/A						
1	1	16-bit instruction (long).						
Setting	Bit 2	Description (Soft Reset)						
0	0	Must be cleared to '0' to complete reset operation.						
1	1	'1' (not self-clearing). Soft reset						
Setting	Bit 1	Description (LSB First)						
0	0	data-oriented MSB first; addressing decrements.						
1	1	data-oriented LSB first; addressing increments.						
Setting	Bit O	Description (SDO Active)						
0	0	SDIO pin used for write and read; SDO set high impedance; bidirectional mode.						
1	1	SDO used for read; SDIO used for write; unidirectional mode						

4.6.1.1.7 Clock Generator (AD9516-2) Register 0x04 - Read-back Control - 0XC4 (write).

	Clock Generator (AD9516-2) Register 0x04 - Read-back Control - 0XC4 (write)										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Reserved										
Default				,0000000,				' 0 '			

	Clock	Clock Generator (AD9516-2) Register 0x04 - Read-back Control - 0XC4 (write)						
Setting	Bit 0	Description (Read-back Active Registers)						
0	0	read back buffer registers						
1	1	read back active registers.						

4.6.1.1.8 Clock Generator (AD9516-2) Register 0x10 - PFD and Charge Pump - 0xC8 (write).

	Clo	Clock Generator (AD9516-2) Register 0x10 - PFD and Charge Pump - 0xC8 (write)										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0	PFD Polarity	Charge Pump Current			Charge Pu	ımp Mode	PLL Pow	er Down				
Default	'0'	'111'			'11'		'1	1'				

Clock Generator (AD9516-2) Register 0x10 - PFD and Charge Pump - 0xC8 (write)

Setting	Bit 7	Description (PFD Polarity)
0	0	positive (higher control voltage produces higher frequency).
1	1	negative (higher control voltage produces lower frequency).
Setting	Bit 46	Description (Charge Pump Current)
7	111	4.8mA
5	110	4.2mA.
5	101	3.6mA.
4	100	3.0mA.
3	011	2.4mA.
2	010	1.8mA.
1	001	1.2mA.
0	000	0.6mA.
Setting	Bit 23	Description (Charge Pump Mode)
3	11	Normal operation.
2	10	Force sink current (pump down).
1	01	Force source current (pump up).
0	00	High impedance state.
Setting	Bit 10	Description (PLL Power Down)
3	11	Synchronous power-down.
2	10	Normal operation.
1	01	Asynchronous power-down.
0	00	Normal operation.

4.6.1.1.9 Clock Generator (AD9516-2) Register 0x11 - R Counter - 0xCC (write).

	Clock Generator (AD9516-2) Register 0x11 - R Counter - 0xCC (write)										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		R Counter (70)									
Default				,0000	00001'						

	C	Clock Generator (AD9516-2) Register 0x11 - R Counter - 0xCC (write)						
Setting	Bit 0	Description (R Counter)						
0	0	14-bit R divider						

4.6.1.1.10 Clock Generator (AD9516-2) Register 0x12 - R Counter - 0xD0 (write).

	Clock Generator (AD9516-2) Register 0x12 - R Counter - 0xD0 (write)									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Reserved		R Counter (138)							
Default	'0'				,0000000,					

Clock Generator (AD9516-2) Register 0x12 - R Counter - 0xD0 (write)

Setting	Bit 0	Description (R Counter)
0	0	14-bit R divider

4.6.1.1.11 Clock Generator (AD9516-2) Register 0x13 - A Counter - 0xD4 (write).

	Clock Generator (AD9516-2) Register 0x13 - A Counter - 0xD4 (write)										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Reserved		R Counter (50)								
Default	'0'				,0000000,						

	C	Clock Generator (AD9516-2) Register 0x13 - A Counter - 0xD4 (write)						
Setting	Bit O	Description (ACounter)						
0	0	6-bit R divider						

4.6.1.1.12 Clock Generator (AD9516-2) Register 0x14 - B Counter - 0xD8 (write).

	Clock Generator (AD9516-2) Register 0x14 - B Counter - 0xD8 (write)										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		B Counter (70)									
Default				'0000 '	0011'						

	C	Clock Generator (AD9516-2) Register 0x14 - B Counter - 0xD8 (write)							
Setting	Bit 0	Description (B Counter)							
0	0	13-bit B divider							

4.6.1.1.13 Clock Generator (AD9516-2) Register 0x15 - B Counter - 0xDC (write).

	Clock Generator (AD9516-2) Register 0x15 - B Counter - 0xDC (write)										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O			
0	Reserved	Reserved		B Counter (128)							
Default	ʻ0'	' 0'			' 00	0000'					

	C	Clock Generator (AD9516-2) Register 0x15 - B Counter - 0xDC (write)						
Setting	Bit 0	Description (B Counter)						
0	0	13-bit B divider						

4.6.1.1.14 Clock Generator (AD9516-2) Register 0x16 - PLL Control 1 - 0xE0 (write).

	Clock Generator (AD9516-2) Register 0x16 - PLL Control 1 - 0xE0 (write)										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Set CP Pin to Vcp/2	Reset R Counter	Reset A and B Counters	Reset All Counters	B Counter Bypass		Prescaler				
Default	'0'	'0'	'0'	'0'	'0'		'110'				

	Clo	ck Generator (AD9516-2) Register 0x16 - PLL Control 1 - 0xE0 (write)
Setting	Bit 7	Description (Set CP Pin to Vcp/2)
0	0	CP normal operation.
1	1	CP pin set to VCP/2.
Setting	Bit 6	Description (Reset R Counter)
0	0	Normal Mode of operation
1	1	reset R counter
Setting	Bit 5	Description (Reset A and B Counters)
0	0	Normal Mode of operation
1	1	reset A and B counters.
Setting	Bit 4	Description (Reset all Counters)
0	0	Normal Mode of operation
1	1	reset R, A, and B counters.
Setting	Bit 3	Description (B Counter Bypass)
0	0	Normal mode of operation
1	1	B counter is set to divide-by-1.
Setting	Bit 20	Description (Prescaler)
7	111	FD Divide-by-3.
6	110	DM Divide-by-32 and divide-by-33 when A!=0; divide-by-32 when A = 0.
5	101	DM Divide-by-16 and divide-by-17 when $A!=0$; divide-by-16 when $A=0$.
4	100	DM Divide-by-8 and divide-by-9 when $A = 0$; divide-by-8 when $A = 0$.
3	011	DM Divide-by-4 and divide-by-5 when A!=0; divide-by-4 when A=0.
2	010	DM Divide-by-2 and divide-by-3 when A!=0; divide-by-2 when A=0.
1	001	FD Divide-by-2.
0	000	FD Divide-by-1.

4.6.1.1.15 Clock Generator (AD9516-2) Register 0x17 - PLL Control 2 - 0xE4 (write).

		Clock Generator (AD9516-2) Register 0x17 - PLL Control 2 - 0xE4 (write)					
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2				Bit 1	Bit 0
0	STATUS Pin control					Antibackl Wie	ash Pulse dth
Default	,000,000, ,000,					0'	

	Clo	Clock Generator (AD9516-2) Register 0x17 - PLL Control 2 - 0xE4 (write)						
Setting	Bit 72	Description (Prescaler)						
63	111111	This sequence gives complete control over when the VCO calibration occurs relative to the programming of other registers that can impact the calibration.						
62	111110	LVL Holdover active (active low).						
61	111101	LVL Digital lock detect (DLD) (active low).						
60	111100	LVL Selected reference (low = REF2, high = REF1).						
59	111011	LVL Status of VCO Frequency (active low).						
58	111010	LVL (DLD) AND (Status of selected reference) AND (Status of VCO).						
57	111001	LVL (Status of REF1 frequency) AND (Status of REF2 frequency).						
56	111000	LVL Status of REF2 frequency (active low).						
55	110111	LVL Status of REF1 frequency (active low).						
54	110110	LVL Status of unselected reference (not available in differential mode); active low.						
53	110101	DYN Unselected reference to PLL (not available when in differential mode).						
52	110100	DYN Unselected reference to PLL (not available when in differential mode).						
51	110011	DYN Selected reference to PLL (differential reference when in differential mode).						
50	110010	DYN REF2 clock (not available in differential mode).						
49	110001	DYN REF1 clock (differential reference when in differential mode).						
48	110000	LVL VS (PLL supply).						
47	101111	LVL LD pin comparator output (active high).						
46	101110	LVL Holdover active (active high).						
45	101101	LVL Digital lock detect (DLD); active high.						
44	101100	LVL Selected reference (low = REF1, high = REF2).						
43	101011	LVL Status of VCO frequency (active high).						
42	101010	LVL (DLD) AND (status of selected reference) AND (status of VCO).						
41	101001	LVL (Status REF1 frequency) AND (status REF2 frequency).						
40	101000	LVL Status REF2 frequency (active high).						
39	100111	LVL Status REF1 frequency (active high).						
38	100110	LVL Status of unselected reference (not available in differential mode); active high.						
37	100101	LVL Status of selected reference (status of differential reference); active high.						
36	100100	DYN Unselected reference to PLL (not available in differential mode).						
35	100011	DYN Selected reference to PLL (differential reference when in differential mode).						

34	100010	DYN REF2 clock (N/A in differential mode).
33	100001	DYN REF1 clock (differential reference when in differential mode).
32	100000	LVL Ground (dc).
	0xxxxx	LVL Ground (dc); for all other cases of 0XXXXX not specified above. The selections that follow are the same as REFMON.
6	000110	DYN PFD down pulse.
5	000101	DYN PFD up pulse.
4	000100	DYN Prescaler output.
3	000011	DYN A divider output.
2	000010	DYN R divider output (after the delay).
1	000001	DYN N divider output (after the delay).
0	000000	LVL Ground (dc).
Setting	Bit 10	Description (Antibacklash Pulse Width)
3	11	2.9ns.
2	10	6.0ns.
1	01	1.3ns.
0	00	2.9ns.

LVL stands for level and DYN for dynamic.

4.6.1.1.16 Clock Generator (AD9516-2) Register 0x18 - PLL Control 3 - 0xE8 (write).

	Clock Generator (AD9516-2) Register 0x18 - PLL Control 3 - 0xE8 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	Reserved	Lock Detect Counter		Digital Lock Detect Window	Disable Digital Lock Detect	VCO Cal Divi	ibration der	VCO Cal now
Default	' 0'	,00, ,0,		'0'	'1	1'	'0'	

	Clo	Clock Generator (AD9516-2) Register 0x18 - PLL Control 3 - 0xE8 (write)				
Setting	Bit 3	Description (Lock Detect Counter)				
3	11	255				
2	10	64				
1	01	16				
0	00	5				
Setting	Bit 3	Description (Digital Lock Detect Window)				
0	0	high range.				
1	1	low range.				
Setting	Bit 2	Description (Disable Digital Lock Detect)				
0	0	normal lock detect operation.				
1	1	disable lock detect.				
Setting	Bit 1	Description (VCO Calibration Divider)				
3	11	16 (default)				
2	10	8				

1	01	4
0	00	2
Setting	Bit O	Description (VCO Calibration Now)
0	0	Bit used to initiate the VCO calibration. This bit must be toggled from 0 to 1 in the active registers. The sequence to initiate a calibration is: program to a 0, followed by an update bit ; then programmed to 1, followed by another update bit

4.6.1.1.17 Clock Generator (AD9516-2) Register 0x19 - PLL Control 4 - 0xEC (write).

		Clock Generator (AD9516-2) Register 0x19 - PLL Control 4 - 0xEC (write)						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	R, A, B counters /SYNC Pin reset		R Path Delay			N Path Delay		
Default	ʻ00 '		'000 '				' 000 '	

	Clo	ck Generator (AD9516-2) Register 0x19 - PLL Control 4 - 0xEC (write)
Setting	Bit 76	Description (Charge Pump Current)
3	11	Do nothing on SYNC.
2	10	Synchronous reset.
1	01	Asynchronous reset.
0	00	Do nothing on SYNC (default).
Setting	Bit 53	Description (R Path Delay)
7	111	
6	110	
5	101	
4	100	
3	011	
2	010	
1	001	
0	000	
Setting	Bit 20	Description (N Path Delay)
7	111	
6	110	
5	101	
4	100	
3	011	
2	010	
1	001	
0	000	

4.6.1.1.18 Clock Generator (AD9516-2) Register 0x1A - PLL Control 5 - 0xF0 (write).

		Clock Generator (AD9516-2) Register 0x1A - PLL Control 5 - 0xF0 (write)						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	Reserved	Reference Frequency Monitor Threshold			LD pin co	ntrol (50)		
Default	' 0'	' 0'			' 00	0000'		

	Clock Generator (AD9516-2) Register 0x1A - PLL Control 5 - 0xF0 (write)					
Setting	Bit 6	Description (B Counter)				
0	0	frequency valid if frequency is above the higher frequency threshold.				
1	1	frequency valid if frequency is above the lower frequency threshold.				
Setting	Bit 50	Description (LD pin control)				
63	111111	LVL N/A—do not use.				
62	111110	LVL Holdover active (active low).				
61	111101	LVL Digital lock detect (DLD); active low.				
60	111100	LVL Selected reference (low = REF2, high = REF1).				
59	111011	LVL Status of VCO frequency (active low).				
58	111010	LVL (DLD) AND (Status of selected reference) AND (Status of VCO).				
57	111001	LVL (Status of REF1 frequency) AND (Status of REF2 frequency).				
56	111000	LVL Status of REF2 frequency (active low).				
55	110111	LVL Status of REF1 frequency (active low).				
54	110110	LVL Status of unselected reference (not available in differential mode); active low.				
53	110101	LVL Status of selected reference (status of differential reference);active low.				
52	110100	DYN Unselected reference to PLL (not available when in differential mode).				
51	110011	DYN Selected reference to PLL (differential reference when in differential mode).				
50	110010	DYN REF2 clock (not available in differential mode).				
49	110001	DYN REF1 clock (differential reference when in differential mode).				
48	110000	LVL VS (PLL supply).				
47	101111	LVL N/A—do not use.				
46	101110	LVL Holdover active (active high).				
45	101101	LVL Digital lock detect (DLD); active high.				
44	101100	LVL Selected reference (low = REF1, high = REF2).				
43	101011	LVL Status of VCO frequency (active high).				
42	101010	LVL (DLD) AND (status of selected reference) AND (status of VCO).				
41	101001	LVL (Status REF1 frequency) AND (status REF2 frequency).				
40	101000	LVL Status REF2 frequency (active high).				
39	100111	LVL Status REF1 frequency (active high).				
38	100110	LVL Status of unselected reference (not available in differential mode); active high.				
37	100101	LVL Status of selected reference (status of differential reference); active high.				

36	100100	DYN Unselected reference to PLL (not available in differential mode).
35	100011	DYN Selected reference to PLL (differential reference when in differential mode).
34	100010	DYN REF2 clock (N/A in differential mode).
33	100001	DYN REF1 clock (differential reference when in differential mode).
32	100000	LVL Ground (dc).
	0xxxxx	LVL Ground (dc); for all other cases of 0XXXXX not specified above. The selections that follow are the same as REFMON.
4	000100	CUR Current source lock detect (110 ìA when DLD is true).
3	000011	HIZ High-Z LD pin.
2	000010	DYN N-channel, open-drain lock detect (analog lock detect).
1	000001	DYN P-channel, open-drain lock detect (analog lock detect).
0	000000	LVL Digital lock detect (high = lock, low = unlock).

LVL stands for Level and DYN for dynamic

4.6.1.1.19 Clock Generator (AD9516-2) Register 0x1B - PLL Control 6 - 0xF4 (write).

		Clock Generator (AD9516-2) Register 0x1B - PLL Control 6 - 0xF4 (write)								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
0	VCO Freq Monitor	REF2 Freq Monitor	REF1 Freq Monitor	REFMON Pin Control						
Default	'0'	' 0 '	'0'	ʻ00000'						

	Clo	Clock Generator (AD9516-2) Register 0x1B - PLL Control 6 - 0xF4 (write)						
Setting	Bit 7	Description (VCO Freq Monitor)						
0	0	disable VCO frequency monitor.						
1	1	enable VCO frequency monitor.						
Setting	Bit 6	Description (REF2 Frequency Monitor)						
0	0	disable REF2 frequency monitor.						
1	1	enable REF2 frequency monitor.						
Setting	Bit 5	Description (REF1 Frequency Monitor)						
0	0	disable REF1 (REFIN) frequency monitor.						
1	1	enable REF1 (REFIN) frequency monitor.						
Setting	Bit 40	Description (REFMON Pin Control)						
31	11111	LVL LD pin comparator output (active low).						
30	11110	LVL Holdover active (active low).						
29	11101	LVL Digital lock detect (DLD); active low.						
28	11100	LVL Selected reference (low = REF2, high = REF1).						
27	11011	LVL Status of VCO frequency (active low).						
26	11010	LVL (DLD) AND (Status of selected reference) AND (Status of VCO).						
25	11001	LVL (Status of REF1 frequency) AND (Status of REF2 frequency).						
24	11000	LVL Status of REF2 frequency (active low).						
23	10111	LVL Status of REF1 frequency (active low).						
22	10110	LVL Status of unselected reference (not available in differential mode); active low.						
21	10101	LVL Status of selected reference (status of differential reference);active low.						

20	10100	DYN Unselected reference to PLL (not available when in differential mode).
19	10011	DYN Selected reference to PLL (differential reference when in differential mode).
18	10010	DYN REF2 clock (not available in differential mode).
17	10001	DYN REF1 clock (differential reference when in differential mode).
16	10000	LVL VS (PLL supply).
15	01111	LVL LD pin comparator output (active high).
14	01110	LVL Holdover active (active high).
13	01101	LVL Digital lock detect (DLD); active low.
12	01100	LVL Selected reference (low = REF1, high = REF2).
11	01011	LVL Status of VCO frequency (active high).
10	01010	LVL (DLD) AND (status of selected reference) AND (status of VCO).
9	01001	LVL (Status REF1 frequency) AND (status REF2 frequency).
8	01000	LVL Status REF2 frequency (active high).
7	01111	LVL Status REF1 frequency (active high).
6	00110	LVL Status of unselected reference (not available in differential mode); active high.
5	00101	LVL Status of selected reference (status of differential reference); active high.
4	00100	DYN Unselected reference to PLL (not available in differential mode).
3	00011	DYN Selected reference to PLL (differential reference when in differential mode).
2	00010	DYN REF2 clock (N/A in differential mode).
1	00001	DYN REF1 clock (differential reference when in differential mode).
0	00000	LVL Ground (dc).

4.6.1.1.20 Clock Generator (AD9516–2) Register 0x1C – PLL Control 7 – 0xF8 (write).

		Clock Generator (AD9516-2) Register 0x1C - PLL Control 7 - 0xF8 (write)								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Disable Switchover Deglitch	Select REF2	Use REF_SEL pin	Automatic Reference Switchover	Stay on REF2	REF2 Power on	REF1 Power on	Differential Reference		
Default	'0'	'0'	' 0 '	'1'	'1'	'0'	'0'	' 0 '		

	Clo	Clock Generator (AD9516-2) Register 0x1C - PLL Control 7 - 0xF8 (write)						
Setting	Bit 7	Description (Disable Switchover)						
0	0	enable switchover deglitch circuit.						
1	1	disable switchover deglitch circuit.						
Setting	Bit 6	escription (Select REF2)						
0	0	select REF1.						
1	1	select REF2.						
Setting	Bit 5	Description (Use REF_SEL pin)						
0	0	use Register 0x1C<6>.						
1	1	use REF_SEL pin.						
Setting	Bit 4	Description (Automatic Reference Switchover)						
0	0	manual reference switchover.						

1	1	automatic reference switchover.
Setting	Bit 3	Description (Stay on REF2)
0	0	return to REF1 automatically when REF1 status is good again.
1	1	stay on REF2 after switchover. Do not automatically return to REF1.
Setting	Bit 2	Description (REF2 Power on)
0	0	REF2 power off.
1	1	REF2 power on.
Setting	Bit 1	Description (REF1 Power on)
0	0	REF1 power off.
1	1	REF1 power on.
Setting	Bit 0	Description (Differential Reference)
0	0	single-ended reference mode.
1	1	differential reference mode.

4.6.1.1.21 Clock Generator (AD9516-2) Register 0x1D - PLL Control 8 - 0xFC (write).

	Clock Generator (AD9516-2) Register 0x1D - PLL Control 8 - 0xFC (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Reserved			PLL Status Register Disable	LD Pin Comparator Enable	Holdover Enable	External Holdover Control	Holdover Enable
Default	' 000 '			' 0'	' 0 '	' 0'	'0'	' 0'

	Clo	Clock Generator (AD9516-2) Register 0x1D - PLL Control 8 - 0xFC (write)						
Setting	Bit 4	Description (PLL Status Register Disable)						
0	0	PLL status register enable.						
1	1	PLL status register disable.						
Setting	Bit 3	Description (LD pin Comparator Enable)						
0	0	disable LD pin comparator; internal/automatic holdover controller treats this pin as true (high).						
1	1	enable LD pin comparator.						
Setting	Bit 2	Description (Holdover Enable)						
0	0	holdover disabled.						
1	1	holdover enabled.						
Setting	Bit 1	Description (External Holdover Enable)						
0	0	automatic holdover mode—holdover controlled by automatic holdover circuit.						
1	1	external holdover mode—holdover controlled by SYNC pin.						
Setting	Bit 0	Description (Holdover Enable)						
0	0	holdover disabled.						
1	1	holdover enabled.						

4.6.1.1.22 Clock Generator (AD9516-2) Register 0x1F - PLL Readback - 0x104 (write).

		Clock Generator (AD9516-2) Register 0x1F - PLL Readback - 0x104 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	Reserved	VCO Cal finished	Holdover Active	REF2 Selected	VCO Frequency Threshold	REF2 Frequency Threshold	REF1 Frequency threshold	Digital Lock Detect	
Default	'0'	'0'	' 0 '	'1'	'1'	'0'	'0'	'0'	

	Cloc	Clock Generator (AD9516-2) Register 0x1F - PLL Readback - 0x104 (write)						
Setting	Bit 6	Description (VCO Cal finished)						
0	0	VCO calibration not finished.						
1	1	VCO calibration finished.						
Setting	Bit 5	Description (Holdover Active)						
0	0	not in holdover.						
1	1	holdover state active.						
Setting	Bit 4	Description (REF2 Selected)						
0	0	REF1 selected (or differential reference if in differential mode).						
1	1	REF2 selected.						
Setting	Bit 3	Description (VCO Frequency Threshold)						
0	0	VCO frequency is less than the threshold.						
1	1	VCO frequency is greater than the threshold.						
Setting	Bit 2	Description (REF2 Frequency Threshold)						
0	0	REF2 frequency is less than threshold frequency.						
1	1	REF2 frequency is greater than threshold frequency.						
Setting	Bit 1	Description (REF1 Frequency Threshold)						
0	0	REF1 frequency is less than threshold frequency.						
1	1	REF1 frequency is greater than threshold frequency.						
Setting	Bit 0	Description (Digital Lock Detect)						
0	0	PLL is not locked.						
1	1	PLL is locked.						

4.6.1.1.23 Clock Generator (AD9516-2) Register 0xA0 - OUT6 Delay Bypass - 0x108 (write).

	Clock Generator (AD9516-2) Register 0xA0 - Out6 Delay Bypass - 0x108 (write)									
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1								
0	Reserved									
Default				,0000000,				'1'		

	Clock	Clock Generator (AD9516-2) Register 0xA0 - Out6 Delay Bypass - 0x108 (write)						
Setting	Bit 0	Description (OUT6 Delay Bypass)						
0	0	use delay function.						
1	1	bypass delay function.						

4.6.1.1.24 Clock Generator (AD9516-2) Register 0xA1 - OUT6 Delay Full-scale - 0x10C (write).

	Clock Generator (AD9516-2) Register 0xA1 - OUT6 Delay Full-scale - 0x10C (write)										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Reserved	Reserved	OUT6 Ramp Capacitors			OU	Г6 Ramp Curi	ent			
Default	'0'	'0'		' 000 '			' 000 '				

	Clock Ge	Clock Generator (AD9516-2) Register 0xA1 - OUT6 Delay Full-scale - 0x10C (write)							
Setting	Bit 53	Description (OUT6 Ramp Capacitors)							
7	'111'	1							
6	'110'	2							
5	'101'	2							
4	'100'	3							
3	'011'	2							
2	'010'	3							
1	'001'	3							
0	' 000 '	4							
Setting	Bit 20	Description (OUT6 Ramp Current – uA)							
7	'111'	1600							
6	'110'	1400							
5	'101'	1200							
4	'100'	1000							
3	'011'	800							
2	ʻ010'	600							
1	ʻ001'	400							
0	' 000 '	200							

4.6.1.1.25 Clock Generator (AD9516-2) Register 0xA2 - OUT6 Delay Fraction - 0x110 (write).

	Clock Generator (AD9516-2) Register 0xA2 - OUT6 Delay Fraction - 0x110 (write)									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Reserved	Reserved		OUT6 Delay Fraction						
Default	' 0'	' 0 '			'00'	0000'				

	Clock G	Clock Generator (AD9516-2) Register 0xA2 - OUT6 Delay Fraction - 0x110 (write)						
Setting	Bit 50	Bit 50 Description (OUT6 Delay Fraction)						
0		"000000" gives zero delay. Only delay values up to 47 decimals (101111b; 0x2F) are supported.						

4.6.1.1.26 Clock Generator (AD9516-2) Register 0xA3 - OUT7 Delay Bypass - 0x114 (write).

	Clock Generator (AD9516-2) Register 0xA3 - Out7 Delay Bypass - 0x114 (write)										
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1									
0		Reserved									
Default				'0000000'				'1'			

	Clock	Clock Generator (AD9516-2) Register 0xA3 - Out7 Delay Bypass - 0x114 (write)						
Setting	Bit O	Description (OUT7 Delay Bypass)						
0	0	use delay function.						
1	1	bypass delay function.						

4.6.1.1.27 Clock Generator (AD9516-2) Register 0xA4 - OUT7 Delay Full-scale - 0x118 (write).

	Clo	Clock Generator (AD9516-2) Register 0xA4 - OUT7 Delay Full-scale - 0x118 (write)										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O				
0	Reserved	Reserved	OUT7 Ramp Capacitors			OUT7 Ramp Current						
Default	' 0 '	' 0 '		' 000 '			' 000'					

	Clock Ge	Clock Generator (AD9516-2) Register 0xA4 - OUT7 Delay Full-scale - 0x118 (write)							
Setting	Bit 53	Description (OUT7 Ramp Capacitors)							
7	'111'	1							
6	'110'	2							
5	'101'	2							
4	'100'	3							
3	'011'	2							
2	' 010 '	3							
1	'001'	3							
0	' 000 '	4							
Setting	Bit 20	Description (OUT7 Ramp Current – uA)							
7	'111'	1600							
6	'110'	1400							
5	'101'	1200							
4	'100'	1000							
3	'011'	800							
2	ʻ010'	600							
1	'001'	400							

0	' 000 '	200
---	-----------------------	-----

4.6.1.1.28 Clock Generator (AD9516–2) Register 0xA5 – OUT7 Delay Fraction – 0x11C (write).

	Clock Generator (AD9516-2) Register 0xA5 - OUT7 Delay Fraction - 0x11C (write)										
Byte	Bit 7	Bit 6	Bit 5	Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0							
0	Reserved	Reserved		OUT7 Delay Fraction							
Default	'0'	'0'			' 00'	0000'					

	Clock G	Clock Generator (AD9516-2) Register 0xA5 - OUT7 Delay Fraction - 0x11C (write)							
Setting	Bit 50	Bit 50 Description (OUT7 Delay Fraction)							
0		"000000" gives zero delay. Only delay values up to 47 decimals (101111b; 0x2F) are supported.							

4.6.1.1.29 Clock Generator (AD9516-2) Register 0xA6 - OUT8 Delay Bypass - 0x120 (write).

	Cl	Clock Generator (AD9516-2) Register 0xA6 - Out8 Delay Bypass - 0x120 (write)										
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1										
0		Reserved										
Default				'0000000'				'1'				

	Clock (Clock Generator (AD9516-2) Register 0xA6 - Out8 Delay Bypass - 0x120 (write)					
Setting	Bit 0	Bit 0 Description (OUT8 Delay Bypass)					
0	0	use delay function.					
1	1	bypass delay function.					

4.6.1.1.30 Clock Generator (AD9516-2) Register 0xA7 - OUT8 Delay Full-scale - 0x124 (write).

	Clock Generator (AD9516-2) Register 0xA7 - OUT8 Delay Full-scale - 0x124 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 5Bit 4Bit 3Bit 2Bit 1Bi				
0	Reserved	Reserved	OUT8 Ramp Capacitors			OUT8 Ramp Current		
Default	'0'	'0'	ʻ000'				' 000 '	

	Clock Generator (AD9516-2) Register 0xA7 - OUT8 Delay Full-scale - 0x124 (write)							
Setting	Bit 53	53 Description (OUT8 Ramp Capacitors)						
7	'111'	1						
6	'110'	2						
5	'101'	2						
4	'100'	3						

3	'011'	2
2	'010'	3
1	'001'	3
0	' 000 '	4
Setting	Bit 20	Description (OUT8 Ramp Current – uA)
7	'111'	1600
6	'110'	1400
5	'101'	1200
4	'100'	1000
3	'011'	800
2	ʻ010 '	600
1	'001'	400
0	' 000 '	200

4.6.1.1.31 Clock Generator (AD9516-2) Register 0xA8 - OUT8 Delay Fraction - 0x128 (write).

		Clock Generator (AD9516-2) Register 0xA8 - OUT8 Delay Fraction - 0x128							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	Reserved	Reserved		OUT8 Delay Fraction					
Default	'0'	' 0 '		ʻ000000'					

	Clock Generator (AD9516-2) Register 0xA8 - OUT8 Delay Fraction - 0x128						
Setting	Bit 50	Bit 50 Description (OUT8 Delay Fraction)					
0		"000000" gives zero delay. Only delay values up to 47 decimals (101111b; 0x2F) are supported.					

4.6.1.1.32 Clock Generator (AD9516–2) Register 0xA9 – OUT9 Delay Bypass – 0x12C (write).

	Clock Generator (AD9516-2) Register 0xA9 - Out9 Delay Bypass - 0x12C (write)							
Byte	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1							
0		Reserved						
Default		,000000,						

	Clock (Clock Generator (AD9516-2) Register 0xA9 - Out9 Delay Bypass - 0x12C (write)					
Setting	Bit 0	Description (OUT9 Delay Bypass)					
0	0	use delay function.					
1	1	bypass delay function.					

4.6.1.1.33 Clock Generator (AD9516–2) Register 0xAA – OUT9 Delay Full-scale – 0x130 (write).

User Manual SMT712

	Cloc	Clock Generator (AD9516-2) Register 0xAA - OUT9 Delay Full-scale - 0x130 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
0	Reserved	Reserved	OUT9 Ramp Capacitors			OUT9 Ramp Current			
Default	'0'	'0'	,000,			,000,			

	Clock Ge	Clock Generator (AD9516-2) Register 0xAA - OUT9 Delay Full-scale - 0x130 (write)						
Setting	Bit 53	Description (OUT9 Ramp Capacitors)						
7	'111'	1						
6	'110'	2						
5	'101'	2						
4	'100'	3						
3	'011'	2						
2	'010'	3						
1	'001'	3						
0	' 000 '	4						
Setting	Bit 20	Description (OUT9 Ramp Current – uA)						
7	'111'	1600						
6	'110'	1400						
5	'101'	1200						
4	'100'	1000						
3	'011'	800						
2	ʻ010'	600						
1	'001'	400						
0	' 000 '	200						

4.6.1.1.34 Clock Generator (AD9516-2) Register 0xAB - OUT9 Delay Fraction - 0x134 (write).

	Clock Generator (AD9516-2) Register 0xAB - OUT9 Delay Fraction - 0x134 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Reserved	Reserved		OUT8 Delay Fraction				
Default	' 0 '	' 0 '		,000000,				

	Clock Generator (AD9516-2) Register 0xAB - OUT9 Delay Fraction - 0x134 (write)					
Setting	Bit 50	Description (OUT9 Delay Fraction)				
0		"000000" gives zero delay. Only delay values up to 47 decimals (101111b; 0x2F) are supported.				

4.6.1.1.35 Clock Generator (AD9516-2) Register 0xF0 - OUT0 - 0x138 (write).

		Clock Generator (AD9516-2) Register 0xF0 - OUT0 - 0x138 (write)						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Reserved	Reserved	Reserved	OUT0 Invert	OUT0 LVPECL Differential Voltage		OUT0 Pov	wer-down
Default	'0'	'0'	'0'	'0'	'10'		'0	0'

		Clock Generator (AD9516-2) Register 0xF0 - OUT0 - 0x138 (write)					
Setting	Bit 4	Description (OUT0 Invert)					
0	0	noninverting.					
1	1	inverting.					
Setting	Bit 32	Description (OUT0 LVPECL Differential Voltage – (VOD – mV))					
3	'11'	960					
2	'10'	780					
1	' 01 '	600					
0	' 00 '	400					
Setting	Bit 10	Description (OUT0 Power-down)					
3	'11'	Total power-down, reference off; use only if there are no external load resistors. Off.					
2	'10'	Partial power-down, reference on, safe LVPECL power-down.					
1	' 01 '	Partial power-down, reference on; use only if there are no external load resistors.					
0	' 00'	Normal operation.					

4.6.1.1.36 Clock Generator (AD9516-2) Register 0xF1 - OUT1 - 0x13C (write).

		Clock Generator (AD9516-2) Register 0xF1 - OUT1 - 0x13C (write)						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	Reserved	Reserved	Reserved	OUT1 Invert	OUT1 LVPECL Differential Voltage		OUT1 Pov	wer-down
Default	' 0 '	' 0 '	' 0'	' 0'	'10'		'10'	

		Clock Generator (AD9516-2) Register 0xF1 - OUT1 - 0x13C (write)					
Setting	Bit 4	Description (OUT1 Invert)					
0	0	noninverting.					
1	1	inverting.					
Setting	Bit 32	Description (OUT1 LVPECL Differential Voltage - (VOD - mV))					
3	'11'	960					
2	'10'	780					
1	'01'	600					
0	' 00'	400					

Setting	Bit 10	Description (OUT1 Power-down)
3	'11'	Total power-down, reference off; use only if there are no external load resistors. Off.
2	'10'	Partial power-down, reference on, safe LVPECL power-down.
1	'01'	Partial power-down, reference on; use only if there are no external load resistors.
0	' 00 '	Normal operation.

4.6.1.1.37 Clock Generator (AD9516-2) Register 0xF2 - OUT2 - 0x140 (write).

	Clock Generator (AD9516-2) Register 0xF2 - OUT2 - 0x140 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Reserved	Reserved	Reserved	OUT2 Invert	OUT2 LVPECL Differential Voltage		OUT2 Pov	wer-down
Default	'0'	' 0 '	'0'	'0'	'10'		·00'	

		Clock Generator (AD9516-2) Register 0xF2 - OUT2 - 0x140 (write)					
Setting	Bit 4	Description (OUT2 Invert)					
0	0	noninverting.					
1	1	inverting.					
Setting	Bit 32	Description (OUT2 LVPECL Differential Voltage - (VOD - mV))					
3	'11'	960					
2	'10'	780					
1	'01'	600					
0	' 00 '	400					
Setting	Bit 10	Description (OUT2 Power-down)					
3	'11'	Total power-down, reference off; use only if there are no external load resistors. Off.					
2	'10'	Partial power-down, reference on, safe LVPECL power-down.					
1	ʻ01'	Partial power-down, reference on; use only if there are no external load resistors.					
0	' 00'	Normal operation.					

4.6.1.1.38 Clock Generator (AD9516-2) Register 0xF3 - OUT3 - 0x144 (write).

	Clock Generator (AD9516-2) Register 0xF3 - OUT4 - 0x144 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Reserved	Reserved	Reserved	OUT3 Invert	OUT3 LVPECL Differential Voltage		OUT3 Power-down	
Default	' 0 '	'0'	' 0'	'0'	'10'		'10'	

		Clock Generator (AD9516-2) Register 0xF3 - OUT3 - 0x144 (write)					
Setting	Bit 4	Description (OUT3 Invert)					
0	0	noninverting.					
1	1	inverting.					
Setting	Bit 32	Description (OUT3 LVPECL Differential Voltage - (VOD - mV))					

3	'11'	960
2	'10'	780
1	'01'	600
0	' 00 '	400
Setting	Bit 10	Description (OUT3 Power-down)
3	'11'	Total power-down, reference off; use only if there are no external load resistors. Off.
2	'10'	Partial power-down, reference on, safe LVPECL power-down.
1	·01'	Partial newer down, reference on use only if there are no external load resistors
	01	ratual power-down, reference on, use only it there are no external load resistors.

4.6.1.1.39 Clock Generator (AD9516-2) Register 0xF4 - OUT4 - 0x148 (write).

	Clock Generator (AD9516-2) Register 0xF4 - OUT4 - 0x148 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Reserved	Reserved	Reserved	OUT4 Invert	OUT4 LVPECL Differential Voltage		OUT4 Pov	wer-down
Default	'0'	'0'	'0'	'0'	'10'		,00,	

		Clock Generator (AD9516-2) Register 0xF4 - OUT4 - 0x148 (write)					
Setting	Bit 4	Description (OUT4 Invert)					
0	0	noninverting.					
1	1	inverting.					
Setting	Bit 32	Description (OUT4 LVPECL Differential Voltage – (VOD – mV))					
3	'11'	960					
2	'10'	780					
1	'01'	600					
0	' 00 '	400					
Setting	Bit 10	Description (OUT4 Power-down)					
3	'11'	Total power-down, reference off; use only if there are no external load resistors. Off.					
2	'10'	Partial power-down, reference on, safe LVPECL power-down.					
1	'01'	Partial power-down, reference on; use only if there are no external load resistors.					
0	' 00 '	Normal operation.					

4.6.1.1.40 Clock Generator (AD9516-2) Register 0xF5 - OUT5 - 0x14C (write).

		Clock Generator (AD9516-2) Register 0xF5 - OUT5 - 0x14C (write)						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Reserved	Reserved	Reserved	OUT5 Invert	OUT5 LVPECL Differential Voltage		OUT5 Pov	wer-down
Default	' 0 '	' 0 '	'0'	'0'	ʻ10' ʻ		'1	0'

		Clock Generator (AD9516-2) Register 0xF4 – OUT5 – 0x14C (write)				
Setting	Bit 4	Description (OUT5 Invert)				
0	0	noninverting.				
1	1	inverting.				
Setting	Bit 32	Description (OUT5 LVPECL Differential Voltage – (VOD – mV))				
3	'11'	960				
2	'10'	780				
1	'01'	600				
0	' 00 '	400				
Setting	Bit 10	Description (OUT5 Power-down)				
3	'11'	Total power-down, reference off; use only if there are no external load resistors. Off.				
2	'10'	Partial power-down, reference on, safe LVPECL power-down.				
1	ʻ01'	Partial power-down, reference on; use only if there are no external load resistors.				
0	' 00 '	Normal operation.				

4.6.1.1.41 Clock Generator (AD9516-2) Register 0x140 - OUT6 - 0x150 (write).

		Clock Generator (AD9516-2) Register 0x140 - OUT6 - 0x150 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	OUT CMOS Output Polarity		OUT LVDS/CMOS Output Polarity	OUT CMOS B	OUT Select LVDS/CMOS	OUT LVD Cur	98 Output rent	OUT Power- down	
Default	·0)1'	' 0'	' 0'	' 0'	'0	1'	'0'	

		Clock Generator (AD9516-2) Register 0x140 - OUT6 - 0x150 (write)				
Setting	Bit 75	Description (OUT CMOS Output Polarity - OUTA (CMOS) OUTB (CMOS) OUT (LVDS))				
7	'111'	Noninverting Inverting Inverting				
6	'110'	Inverting Noninverting Noninverting				
5	'101'	Noninverting Noninverting Inverting				
4	'100'	Inverting Inverting Noninverting				
3	'011'	Inverting Inverting				
2	' 010 '	Noninverting Noninverting				
1	'001'	Inverting Noninverting Inverting				
0	' 000'	Noninverting Inverting Noninverting				
Setting	Bit 4	Description (OUT CMOS B)				
0	0	turn off the CMOS B output.				
1	1	turn on the CMOS B output.				
Setting	Bit 3	Description (OUT Select LVDS/CMOS)				
0	0	LVDS				
1	1	CMOS				
Setting	Bit 21	Description (OUT LVDS Output Current - Current mA / Termination Ohms)				

3	11	7 / 50.
2	10	5.25 / 50.
1	01	3.5 / 100.
0	00	1.75 / 100.
Setting	Bit O	Description (OUT Power-down)
0	0	power on.
1	1	power off.

4.6.1.1.42 Clock Generator (AD9516-2) Register 0x141 - OUT7 - 0x154 (write).

		Clock Generator (AD9516-2) Register 0x141 - OUT7 - 0x154 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	OUT CMOS Output Polarity		OUT LVDS/CMOS Output Polarity	OUT CMOS B	OUT Select LVDS/CMOS	OUT LVD Curr	S Output rent	OUT Power- down	
Default	ʻ0)1'	'0'	'0'	'0'	'0	1'	'0'	

	(Clock Generator (AD9516-2) Register 0x141 - OUT7 - 0x154 (write)
Setting	Bit 75	Description (OUT CMOS Output Polarity - OUTA (CMOS) OUTB (CMOS) OUT (LVDS))
7	'111'	Noninverting Inverting Inverting
6	'110'	Inverting Noninverting Noninverting
5	'101'	Noninverting Noninverting Inverting
4	'100'	Inverting Inverting Noninverting
3	'011'	Inverting Inverting Inverting
2	'010'	Noninverting Noninverting
1	'001'	Inverting Noninverting Inverting
0	'000'	Noninverting Inverting Noninverting
Setting	Bit 4	Description (OUT CMOS B)
0	0	turn off the CMOS B output.
1	1	turn on the CMOS B output.
Setting	Bit 3	Description (OUT Select LVDS/CMOS)
0	0	LVDS
1	1	CMOS
Setting	Bit 21	Description (OUT LVDS Output Current – Current mA / Termination Ohms)
3	11	7 / 50.
2	10	5.25 / 50.
1	01	3.5 / 100.
0	00	1.75 / 100.
Setting	Bit O	Description (OUT Power-down)
0	0	power on.
1	1	power off.

4.6.1.1.43	Clock	Generator	(AD9516-2)	Register	0x142 -	- 0	UT8	_
0x	158 (wi	rite).		-				

		Clock Generator (AD9516-2) Register 0x142 - OUT8 - 0x158 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	OUT CMOS Output Polarity		OUT LVDS/CMOS Output Polarity	OUT CMOS B	OUT Select LVDS/CMOS	OUT LVD Curr	eS Output rent	OUT Power- down	
Default	ʻ())1'	' 0'	' 0 '	' 0 '	'0	1'	' 0 '	

	(Clock Generator (AD9516-2) Register 0x142 – OUT8 – 0x158 (write)
Setting	Bit 75	Description (OUT CMOS Output Polarity - OUTA (CMOS) OUTB (CMOS) OUT (LVDS))
7	'111'	Noninverting Inverting Inverting
6	'110'	Inverting Noninverting Noninverting
5	'101'	Noninverting Noninverting Inverting
4	'100'	Inverting Inverting Noninverting
3	'011'	Inverting Inverting Inverting
2	'010'	Noninverting Noninverting
1	'001'	Inverting Noninverting Inverting
0	' 000'	Noninverting Inverting Noninverting
Setting	Bit 4	Description (OUT CMOS B)
0	0	turn off the CMOS B output.
1	1	turn on the CMOS B output.
Setting	Bit 3	Description (OUT Select LVDS/CMOS)
0	0	LVDS
1	1	CMOS
Setting	Bit 21	Description (OUT LVDS Output Current - Current mA / Termination Ohms)
3	11	7 / 50.
2	10	5.25 / 50.
1	01	3.5 / 100.
0	00	1.75 / 100.
Setting	Bit O	Description (OUT Power-down)
0	0	power on.
1	1	power off.

4.6.1.1.44 Clock Generator (AD9516-2) Register 0x143 - OUT9 - 0x15C (write).

		Clock Generator (AD9516-2) Register 0x143 - OUT9 - 0x15C (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
0	OUT CMOS Output Polarity		OUT LVDS/CMOS Output Polarity	OUT CMOS B	OUT Select LVDS/CMOS	OUT LVD Curr	S Output rent	OUT Power- down	
Default	ʻC)1'	' 0'	'0'	' 0'	'0	1'	'0'	

	(Clock Generator (AD9516-2) Register 0x143 – OUT9 – 0x15C (write)
Setting	Bit 75	Description (OUT CMOS Output Polarity - OUTA (CMOS) OUTB (CMOS) OUT (LVDS))
7	'111'	Noninverting Inverting Inverting
6	'110'	Inverting Noninverting Noninverting
5	'101'	Noninverting Noninverting Inverting
4	'100'	Inverting Inverting Noninverting
3	'011'	Inverting Inverting Inverting
2	' 010 '	Noninverting Noninverting
1	'001'	Inverting Noninverting Inverting
0	' 000'	Noninverting Inverting Noninverting
Setting	Bit 4	Description (OUT CMOS B)
0	0	turn off the CMOS B output.
1	1	turn on the CMOS B output.
Setting	Bit 3	Description (OUT Select LVDS/CMOS)
0	0	LVDS
1	1	CMOS
Setting	Bit 21	Description (OUT LVDS Output Current – Current mA / Termination Ohms)
3	11	7 / 50.
2	10	5.25 / 50.
1	01	3.5 / 100.
0	00	1.75 / 100.
Setting	Bit O	Description (OUT Power-down)
0	0	power on.
1	1	power off.

4.6.1.1.45 Clock Generator (AD9516-2) Register 0x190 - Divider0 - 0x160 (write).

		Clock Generator (AD9516-2) Register 0x190 - Divider0 - 0x160 (write)								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0		Divider Lov	v Cycles		Divider High Cycles					
Default		,000	0'			' 00	00'			

	Cl	Clock Generator (AD9516-2) Register 0x190 - Divider0 - 0x160 (write)					
Setting	Bit 74	Description (Divider Low Cycles)					
0		Number of clock cycles of the divider input during which divider output stays low.					
Setting	Bit 30	Description (Divider High Cycles)					
0		Number of clock cycles of the divider input during which divider output stays high.					

4.6.1.1.46 Clock Generator (AD9516-2) Register 0x191 - Divider0 - 0x164 (write).

		Clock Generator (AD9516-2) Register 0x191 - Divider0 - 0x164 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	Divider bypass	Divider Nosync	Divider Force High	Divider Start High		Divider Ph	ase Offset		
Default	'1'	' 0 '	' 0 '	'0'		' 00'	00'		

	Cl	Clock Generator (AD9516-2) Register 0x191 - Divider0 - 0x164 (write)						
Setting	Bit 7	escription (Divider Bypass)						
0	0	use divider.						
1	1	bypass divider.						
Setting	Bit 6	Description (Divider Nosync)						
0	0	obey chip-level SYNC signal.						
1	1	gnore chip-level SYNC signal.						
Setting	Bit 5	Description (Divider Force High)						
0	0	divider output forced to low.						
1	1	divider output forced to high.						
Setting	Bit 4	Description (Divider Start High)						
0	0	start low.						
1	1	start high.						
Setting	Bit 30	Description (REF2 Frequency Threshold)						
0	0	Phase offset.						

4.6.1.1.47 Clock Generator (AD9516-2) Register 0x192 - Divider0 - 0x168 (write).

		Clock Generator (AD9516-2) Register 0x192 - Divder0 - 0x168 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0		Reserved Divider Divid						Divider DCCOFF	
Default			' 000'	0000'			'0'	'0'	

	Clock Generator (AD9516-2) Register 0x192 - Divder0 - 0x168 (write)							
Setting	Bit 1	escription (Divider Direct to Output)						
0	0	VCO calibration not finished.						
1	1	CO calibration finished.						
Setting	Bit 0	Description (Divider DCCOFF)						
0	0	not in holdover.						
1	1	holdover state active.						

4.6.1.1.48 Clock Generator (AD9516-2) Register 0x193 - Divider1 - 0x16C (write).

		Clock Generator (AD9516-2) Register 0x193 - Divider1 - 0x16C (write)								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0		Divider Low Cycles				Divider High Cycles				
Default		' 000 '),			' 00	00'			

	Cl	Clock Generator (AD9516-2) Register 0x193 - Divider1 - 0x16C (write)					
Setting	Bit 74	Description (Divider Low Cycles)					
0		Number of clock cycles of the divider input during which divider output stays low.					
Setting	Bit 30	Description (Divider High Cycles)					
0		Number of clock cycles of the divider input during which divider output stays high.					

4.6.1.1.49 Clock Generator (AD9516-2) Register 0x194 - Divider1 - 0x170 (write).

		Clock Generator (AD9516-2) Register 0x194 – Divider1 – 0x170 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	Divider bypass	Divider Nosync	Divider Force High	Divider Start High		Divider Ph	ase Offset		
Default	'1'	'0'	'0'	'0'		' 00 '	00'		

	Cl	Clock Generator (AD9516-2) Register 0x194 – Divider1 – 0x170 (write)						
Setting	Bit 7	escription (Divider Bypass)						
0	0	use divider.						
1	1	bypass divider.						
Setting	Bit 6	Description (Divider Nosync)						
0	0	obey chip-level SYNC signal.						
1	1	gnore chip-level SYNC signal.						
Setting	Bit 5	Description (Divider Force High)						
0	0	divider output forced to low.						
1	1	divider output forced to high.						
Setting	Bit 4	Description (Divider Start High)						
0	0	start low.						
1	1	tart high.						
Setting	Bit 30	Description (REF2 Frequency Threshold)						
0	0	Phase offset.						

4.6.1.1.50 Clock Generator (AD9516-2) Register 0x195 - Divider1 - 0x174 (write).

		Clock Generator (AD9516-2) Register 0x195 - Divder1 - 0x174 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0		Reserved Divider Divid							
Default			,000)000'			'0'	' 0 '	

	Clock Generator (AD9516-2) Register 0x195 – Divder1 – 0x174 (write)							
Setting	Bit 1	Description (Divider Direct to Output)						
0	0	VCO calibration not finished.						
1	1	VCO calibration finished.						
Setting	Bit 0	Description (Divider DCCOFF)						
0	0	not in holdover.						
1	1	holdover state active.						

4.6.1.1.51 Clock Generator (AD9516-2) Register 0x196 - Divider2 - 0x178 (write).

		Clock Generator (AD9516-2) Register 0x196 - Divider2 - 0x178 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0		Divider Lov	v Cycles		Divider High Cycles				
Default		' 000) '			' 00	00'		

	Cl	Clock Generator (AD9516-2) Register 0x196 – Divider2 – 0x178 (write)					
Setting	Bit 74	Description (Divider Low Cycles)					
0		Number of clock cycles of the divider input during which divider output stays low.					
Setting	Bit 30	Description (Divider High Cycles)					
0		Number of clock cycles of the divider input during which divider output stays high.					

4.6.1.1.52 Clock Generator (AD9516-2) Register 0x197 - Divider2 - 0x17C (write).

		Clock Generator (AD9516-2) Register 0x197 - Divider2 - 0x17C (write)						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Divider bypass	Divider Nosync	Divider Force High	Divider Start High	Divider Phase Offset			
Default	'1'	'0'	' 0'	' 0'		' 00	00'	

	Cl	Clock Generator (AD9516-2) Register 0x197 - Divider2 - 0x17C (write)					
Setting	Bit 7	Description (Divider Bypass)					
0	0	use divider.					
1	1	bypass divider.					
Setting	Bit 6	Description (Divider Nosync)					
0	0	obey chip-level SYNC signal.					
1	1	ignore chip-level SYNC signal.					
Setting	Bit 5	Description (Divider Force High)					
0	0	divider output forced to low.					
1	1	divider output forced to high.					
Setting	Bit 4	Description (Divider Start High)					
0	0	start low.					
1	1	start high.					
Setting	Bit 30	Description (REF2 Frequency Threshold)					
0	0	Phase offset.					

4.6.1.1.53 Clock Generator (AD9516-2) Register 0x198 - Divider2 - 0x180 (write).

		Clock Generator (AD9516-2) Register 0x198 – Divder2 – 0x180 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0		Reserved Divide Output						Divider DCCOFF	
Default			' 000'	0000'			'0'	'0'	

	C	Clock Generator (AD9516-2) Register 0x198 – Divder2 – 0x180 (write)						
Setting	Bit 1	Description (Divider Direct to Output)						
0	0	VCO calibration not finished.						
1	1	VCO calibration finished.						
Setting	Bit 0	Description (Divider DCCOFF)						
0	0	not in holdover.						
1	1	holdover state active.						

4.6.1.1.54 Clock Generator (AD9516-2) Register 0x199 - Divider3 - 0x184 (write).

		Clock Generator (AD9516-2) Register 0x199 - Divider3 - 0x184 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
0		Divider 3.1 L	ow Cycles			Divider 3.1	High Cycles		
Default		'001	0'			'00	10'		

	Cl	Clock Generator (AD9516-2) Register 0x199 - Divider3 - 0x184 (write)					
Setting	Bit 74	Description (Divider 3.1 Low Cycles)					
0		Number of clock cycles of the divider input during which divider output stays low.					
Setting	Bit 30	Description (Divider 3.1 High Cycles)					
0		Number of clock cycles of the divider input during which divider output stays high.					

4.6.1.1.55 Clock Generator (AD9516-2) Register 0x19A - Divider3 - 0x188 (write).

		Clock Generator (AD9516-2) Register 0x19A - Divider3 - 0x188 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0		Phase Offset I	Divider 3.2			Phase Offset	t Divider 3.1		
Default		' 000 '	0'			'00	00'		

	Cl	Clock Generator (AD9516-2) Register 0x19A – Divider3 – 0x188 (write)					
Setting	Bit 74	Description (Phase Offset Divider 3.2)					
0		Phase Offset.					
Setting	Bit 30	Description (Phase Offset Divider 3.1)					
0		Phase Offset.					

4.6.1.1.56 Clock Generator (AD9516-2) Register 0x19B - Divider3 - 0x18C (write).

		Clock Generator (AD9516-2) Register 0x19B - Divider3 - 0x18C (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	
0		Divider 3.2 L	ow Cycles			Divider 3.2	High Cycles		
Default		' 000	1'			'00	01'		

	Cl	Clock Generator (AD9516-2) Register 0x19B - Divider3 - 0x18C (write)					
Setting	Bit 74	Description (Divider 3.2 Low Cycles)					
0		Number of clock cycles of the divider input during which divider output stays low.					
Setting	Bit 30	Description (Divider 3.2 High Cycles)					
0		Number of clock cycles of the divider input during which divider output stays high.					

4.6.1.1.57 Clock Generator (AD9516-2) Register 0x19C - Divider 3 -0x190 (write).

		Clock Generator (AD9516-2) Register 0x19C – Divider 3 – 0x190 (write)								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Reserved		Bypass Divider 3.2	Bypass Divider 3.1	Divider 3 Nosync	Divider 3 Force High	Start High Divider 3.2	Start High Divider 3.1		

Default '00' '0' '0' '0' '0' '0' '0' '0'	
--	--

	Cl	ock Generator (AD9516-2) Register 0x19C - Divider 3- 0x190 (write)
Setting	Bit 5	Description (Bypass Divider 3.2)
0	0	use divider.
1	1	bypass divider.
Setting	Bit 4	Description (Bypass Divider 3.1)
0	0	use divider.
1	1	bypass divider.
Setting	Bit 3	Description (Divider 3 Nosync)
0	0	obey chip-level SYNC signal.
1	1	ignore chip-level SYNC signal.
Setting	Bit 2	Description (Divider 3 Force High)
0	0	divider output forced to low.
1	1	divider output forced to high.
Setting	Bit 1	Description (Start High Divider 3.2)
0	0	start low.
1	1	start high.
Setting	Bit 0	Description (Start High Divider 3.1)
0	0	start low.
1	1	start high.

4.6.1.1.58 Clock Generator (AD9516-2) Register 0x19D - Divider3 - 0x194 (write).

	Clock Generator (AD9516-2) Register 0x19D - Divder3 - 0x194 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Reserved							
Default				' 000000 '				'0'

	Cl	Clock Generator (AD9516-2) Register 0x19D - Divder3 - 0x194 (write)						
Setting	Bit 0	Description (Divider DCCOFF)						
1	1	disable duty-cycle correction.						
0	0	enable duty-cycle correction.						

4.6.1.1.59 Clock Generator (AD9516-2) Register 0x19E - Divider4 - 0x198 (write).

		Clock Generator (AD9516-2) Register 0x19E – Divider4 – 0x198 (write)									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O			
0		Divider 4.1 L	ow Cycles		Divider 4.1 High Cycles						
Default		' 0010),		ʻ0010'						

	Cl	Clock Generator (AD9516-2) Register 0x19E - Divider4 - 0x198 (write)					
Setting	Bit 74	Description (Divider 4.1 Low Cycles)					
0		Number of clock cycles of the divider input during which divider output stays low.					
Setting	Bit 30	Description (Divider 4.1 High Cycles)					
0		Number of clock cycles of the divider input during which divider output stays high.					

4.6.1.1.60 Clock Generator (AD9516-2) Register 0x19F - Divider4 - 0x19C (write).

		Clock Generator (AD9516-2) Register 0x19F - Divider4 - 0x19C (write)									
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
0		Phase Offset I	Divider 4.2		Phase Offset Divider 4.1						
Default		' 000 '	0'		,0000,						

	Cl	Clock Generator (AD9516-2) Register 0x19F - Divider4 - 0x19C (write)					
Setting	Bit 74	Description (Phase Offset Divider 4.2)					
0		Phase Offset.					
Setting	Bit 30	Description (Phase Offset Divider 4.1)					
0		Phase Offset.					

4.6.1.1.61 Clock Generator (AD9516-2) Register 0x1A0 - Divider4 - 0x1A0 (write).

	Clock Generator (AD9516-2) Register 0x1A0 - Divider4 - 0x1A0 (write)									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Divider 4.2 Low Cycles				Divider 4.2 High Cycles					
Default		' 000'	1'		ʻ0001'					

	Cle	Clock Generator (AD9516-2) Register 0x1A0 – Divider4 – 0x1A0 (write)					
Setting	Bit 74	Description (Divider 4.2 Low Cycles)					
0		Number of clock cycles of the divider input during which divider output stays low.					
Setting	Bit 30	Description (Divider 4.2 High Cycles)					
0		Number of clock cycles of the divider input during which divider output stays high.					

4.6.1.1.62 Clock Generator (AD9516-2) Register 0x1A1 - Divider 4 - 0x1A4 (write).

		Clock Generator (AD9516-2) Register 0x1A1 – Divider 4 – 0x1A4 (write)								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Reserved		Bypass Divider 3.2	Bypass Divider 3.1	Divider 3 Nosync	Divider 3 Force High	Start High Divider 3.2	Start High Divider 3.1		
Default	'0	0'	' 0 '	' 0 '	' 0 '	' 0'	' 0 '	' 0 '		

	Cle	Clock Generator (AD9516-2) Register 0x1A1 – Divider 4– 0x1A4 (write)						
Setting	Bit 5	escription (Bypass Divider 4.2)						
0	0	se divider.						
1	1	pass divider.						
Setting	Bit 4	Description (Bypass Divider 4.1)						
0	0	use divider.						
1	1	bypass divider.						
Setting	Bit 3	escription (Divider 4 Nosync)						
0	0	obey chip-level SYNC signal.						
1	1	ignore chip-level SYNC signal.						
Setting	Bit 2	Description (Divider 4 Force High)						
0	0	divider output forced to low.						
1	1	divider output forced to high.						
Setting	Bit 1	Description (Start High Divider 4.2)						
0	0	start low.						
1	1	start high.						
Setting	Bit 0	Description (Start High Divider 4.1)						
0	0	start low.						
1	1	start high.						

4.6.1.1.63 Clock Generator (AD9516-2) Register 0x1A2 - Divider4 - 0x1A8 (write).

	Clock Generator (AD9516-2) Register 0x1A2 - Divder3 - 0x1A8 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	Reserved							Divider DCCOFF
Default		'000000'						

	Cl	Clock Generator (AD9516-2) Register 0x1A2 - Divder3 - 0x1A8 (write)					
Setting	Bit 0	escription (Divider DCCOFF)					
1	1	disable duty-cycle correction.					
0	0	0 enable duty-cycle correction.					

4.6.1.1.64 Clock Generator (AD9516-2) Register 0x1E0 - VCO Divider - 0x1AC (write).

	Clock Generator (AD9516-2) Register 0x1E0 - VCO Divider - 0x1AC (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0			Reserved		VCO Divider			
Default			' 00000 '		'010'			

		Clock Generator (AD9516-2) Register 0x1E0 - VCO Divider - 0x1AC (write)						
Setting	Bit 20	escription (VCO Divider)						
7	'111'	Output static.						
6	'110'	Output static.						
5	'101'	Output static.						
4	'100'	6						
3	'011'	5						
2	' 010 '	4						
1	'001'	3						
0	' 000 '	2						

4.6.1.1.65 Clock Generator (AD9516-2) Register 0x1E1 - Input CLKs - 0x1B0 (write).

	Clock Generator (AD9516-2) Register 0x1E1 – Input CLKs – 0x1B0 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0		Reserved		Power- down Clock Input Section	Power- down VCO Clock Interface	Power- down VCO and CLK	Select VCO or CLK	Bypass VCO Divider
Default		' 000 '		'0'	'0'	'0'	'0'	'0'

	Clo	Clock Generator (AD9516-2) Register 0x1E1 - Input CLKs - 0x1B0 (write)						
Setting	Bit 4	Description (Power-down Clock Input Section)						
0	0	normal operation.						
1	1	power-down.						
Setting	Bit 3	Description (Power-down VCO Clock Interface)						
0	0	normal operation.						
1	1	ower-down.						
Setting	Bit 2	Description (Power-down VCO and CLK)						
0	0	normal operation.						
1	1	power-down.						
Setting	Bit 1	Description (Select VCO or CLK)						
0	0	select external CLK as input to VCO divider.						
1	1	select VCO as input to VCO divider; cannot bypass VCO divider when this is selected.						
Setting	Bit O	Description (Bypass VCO Divider)						
0	0	use VCO divider.						
1	1	bypass VCO divider.						

		Offset 0x0400 - System Monitor - FPGA Die Temperatures - 0x1C0 (read).								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
3	Reserved		Maximum Die Temperature[9:4]							
Default	,00, ,00,				' 0000	0000'				
2	Maximum Die Temperature[3:0] Minimum Die Temperature[9:6]						9:6]			
Default	,0000, ,0000,									
1		Minimum Die Temperature[5:0] Current Die Temperature[9:8]						ent Die ature[9:8]		
Default	,000000, ,00,									
0		Current Die Temperature[7:0]								
Default				' 0000	ʻ0000000'					

4.6.1.1.66 System Monitor - FPGA Die Temperatures - 0x1C0 (read).

	Offset 0x0400 - System Monitor - FPGA Die Temperatures - 0x1C0 (read).					
Setting	Bit 2920	Maximum FPGA Die Temperature (measured)				
2		The Temperature is coded on 10 bits.				
Setting	Bit 1910	nimum FPGA Die Temperature (measured)				
1		The Temperature is coded on 10 bits.				
Setting	Bit 90	Current FPGA Die Temperature (measured)				
0		The Temperature is coded on 10 bits.				

4.6.1.1.67 System Monitor - FPGA Die Temperature thresholds - 0x1C0 (write).

	Off	Offset 0x0400 – System Monitor – FPGA Die Temperature thresholds – 0x1C0 (write).							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
3	Reserved		Die Temperature OT lower threshold[9:4]						
Default	' 00 '		ʻ000000'						
2	Die Te	mperature OT	lower thresh	old[3:0]	Die Temperature upper threshold[9:6]				
Default	,0000,					'00	'0000'		
1		Die Temperature upper threshold[5:0] Die Temperature lower threshold[9:8]						erature lower hold[9:8]	
Default		,000,00, ,00,						00'	
0		Die Temperature lower threshold[7:0]							
Default				,000)0000'				

	Offset 0x0400 - System Monitor - FPGA Die Temperature thresholds - 0x1C0 (write).				
Setting	Bit 2920	ie Temperature OT (Over temperature) lower threshold			
2		The Temperature is coded on 10 bits.			
Setting	Bit 1910	Die Temperature upper threshold			
1		The Temperature is coded on 10 bits.			
Setting	Bit 90	Die Temperature lower threshold			
0

4.6.1.1.68 System Monitor - FPGA Core Voltages - 0x1C4 (read).

		Offset 0x	0400 – Syste	m Monitor -	FPGA Core Vo	oltages – 0x1	C4 (read).		
Byte	Bit 7	Bit 6	Bit 5Bit 4Bit 3Bit 2					Bit 0	
3	Reserved				Maximum Vccint[9:4]				
Default	٤	00'			' 000	000'			
2		Maximum '	Vccint[3:0]		Minimum Vccint [9:6]				
Default		' 00	00'			'00)00'		
1			Minimum	Vccint [5:0]			Current	Vccint [9:8]	
Default		,000,00, ,00,						00'	
0		Current Vccint [7:0]							
Default				' 000)0000'				

	Off	Offset 0x0400 - System Monitor - FPGA Core Voltages - 0x1C4 (read).					
Setting	Bit 2920	it 2920 Maximum FPGA Vccint (measured)					
2		The Voltage is coded on 10 bits.					
Setting	Bit 1910	Minimum FPGA Vccint (measured)					
1		The Voltage is coded on 10 bits.					
Setting	Bit 90	Current FPGA Vccint (measured)					
0		The Voltage is coded on 10 bits.					

4.6.1.1.69 System Monitor - FPGA core voltage thresholds - 0x1C4 (write).

	(Offset 0x0400 – System Monitor – FPGA core voltage thresholds – 0x1C4 (write).							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
3		Reserved							
Default		ʻ0000000'							
2		Reserved Vccint upper threshold[9:6]							
Default		,0000, ,0000,							
1		N	/ccint upper	threshold[5:0)]		Vccir thresh	nt lower hold[9:8]	
Default		,000,000, ,000,							
0		Vccint lower threshold[7:0]							
Default				' 000	00000'				

	Offset 02	Offset 0x0400 – System Monitor – FPGA core voltage thresholds – 0x1C4 (write).							
Setting	Bit 1910	FPGA Core voltage upper threshold							
1		The Voltage is coded on 10 bits.							
Setting	Bit 90	FPGA Core voltage lower threshold							
0		The Voltage is coded on 10 bits.							

		Offset 0x	0400 - Syste	em Monitor -	FPGA Aux Vo	ltages – 0x1	C8 (read).		
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 1	Bit 0			
3	Res	erved			Maximum V	/ccaux[9:4]			
Default	"(00'			' 000 '	000'			
2		Maximum V	'ccaux [3:0]		Minimum Vccaux [9:6]				
Default		' 000	00'			'00)00'		
1			Minimum V	/ccaux [5:0]			Current V	Vccaux [9:8]	
Default		,000,000, ,000,						00'	
0		Current Vccaux [7:0]							
Default				' 000)0000'				

4.6.1.1.70 System Monitor - FPGA Aux Voltages - 0x1C8 (read).

	Off	Offset 0x0400 – System Monitor – FPGA Aux Voltages – 0x1C8 (read).						
Setting	Bit 2920	Bit 2920 Maximum FPGA Vccaux (measured)						
2		The Voltage is coded on 10 bits.						
Setting	Bit 1910	Minimum FPGA Vccaux (measured)						
1		The Voltage is coded on 10 bits.						
Setting	Bit 90	Current FPGA Vccaux (measured)						
0		The Voltage is coded on 10 bits.						

4.6.1.1.71 System Monitor - FPGA aux voltage thresholds - 0x1C8 (write).

	(Offset 0x0400 – System Monitor – FPGA aux voltage thresholds – 0x1C8 (write).							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
3		Reserved							
Default		ʻ0000000'							
2		Reserved Vccaux upper threshold[9:6]							
Default		,0000, ,0000,							
1		V	ccaux upper	threshold[5:0)]		Vccau thresh	ıx lower 10ld[9:8]	
Default	,000,000, ,000,						00'		
0		Vccaux lower threshold[7:0]							
Default				,0000)0000'				

	Offset 0	Offset 0x0400 – System Monitor – FPGA aux voltage thresholds – 0x1C8 (write).					
Setting	Bit 1910	1910 FPGA Aux voltage upper threshold					
1		The Voltage is coded on 10 bits.					
Setting	Bit 90	FPGA Aux voltage lower threshold					
0		The Voltage is coded on 10 bits.					

		DDS Frequency Register DACB - 0x1CC (write)								
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
3		DDS Frequency Register[31:24]								
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
2		DDS Frequency Register[23:16]								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O		
1		DDS Frequency Register[15:8]								
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
0				DDS Frequenc	y Register[7:0	0]				

4.6.1.1.72 DDS Frequency Register DACA - 0x1CC (write).

The FPGA implements a DDS block that takes a 32-bit word to set the frequency (phase increment). Note that the phse increment should be an entire multiple of 8. The maximum frequency that can be programmed is 0xFFFFFF8, which corresponds to $1/8^{th}$ of the DAC sampling frequency.

The DDS output frequency is calculated as follows:

Fout = 0.125 * Phase Increment / 2^{32} .

4.6.1.1.73 DDS Frequency Register DACB - 0x1D0 (write).

	DDS Frequency Register DACB - 0x1D0 (write)									
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
3			D	DS Frequency	Register[31:2	24]				
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
2		DDS Frequency Register[23:16]								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
1		DDS Frequency Register[15:8]								
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
0				DDS Frequenc	y Register[7:0	0]				

The FPGA implements a DDS block that takes a 32-bit word to set the frequency (phase increment). Note that the phse increment should be an entire multiple of 8. The maximum frequency that can be programmed is 0xFFFFFF8, which corresponds to $1/8^{th}$ of the DAC sampling frequency.

The DDS output frequency is calculated as follows:

Fout = 0.125 * Phase Increment / 2^{32} .

4.6.1.1.74 DACA DCM Phase Shifts - 0x1D4 (write).

		Offset 0x0400 – DACA DCM Phase Shifts – 0x1D4 (write).						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
1			DACA DCM Phase Shift Sign					
Default		,0,						
0	DACA DCM Phase Shift[7:0]							
Default				·000000	00'			

		Offset 0x0400 - DACA DCM Phase Shifts - 0x1D4 (write).							
Setting	Bit 8	DACA DCM Sign of Phase Shift							
0	0x0	Positive phase shift							
1	0x1	Negative phase shift							
Setting	Bit 7-0	DACA DCM Phase Shift value							
0		8-bit phase shift value.							

The default firmware implements one DCM_ADV (see Xilinx Virtex 5 documentation for more details) per DAC data path, i.e. one DCM_ADV for DACA and one for DACB. Both are set to have a programmable phase shift, which means it can be changed from the host application. Both DCMs are set in mode VARIABLE_CENTER.

There is one bit to set the sign of the phase shit and 8 bit to set the value. The phase shift range is -255...+255. Once the control word of send, the DCM is being reset and programmed with the new phase shift. By default, the shift register is set to 0.

4.6.1.1.75 DACB DCM Phase Shifts - 0x1D8 (write).

	Offset 0x0400 – DACB DCM Phase Shifts – 0x1D8 (write).							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1			DACB DCM Phase Shift Sign					
Default	.0,							
0	DACB DCM Phase Shift[7:0]							
Default	,0000000,							

	Offset 0x0400 -DACB DCM Phase Shifts - 0x1D8 (write).				
Setting	Bit 8	DACB DCM Sign of Phase Shift			
0	0x0	Positive phase shift			
1	0x1	Negative phase shift			
Setting	Bit 7-0	DACB DCM Phase Shift value			
0		8-bit phase shift value.			

The default firmware implements one DCM_ADV (see Xilinx Virtex 5 documentation for more details) per DAC data path, i.e. one DCM_ADV for DACA and one for DACB. Both are set to have a programmable phase shift, which means it can be changed from the host application. Both DCMs are set in mode VARIABLE_CENTER.

There is one bit to set the sign of the phase shit and 8 bit to set the value. The phase shift range is -255...+255. Once the control word of send, the DCM is being reset and programmed with the new phase shift. By default, the shift register is set to 0.

	Pattern Size DACA - 0x1DC (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3	Pattern size[31:24]							
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
2	Pattern size [23:16]							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	Pattern size [15:8]							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Pattern size [7:0]							

4.6.1.1.76 Pattern size DACA - 0x1DC (write).

Pattern size has to be a multiple of 8. A size pattern of 8 means that 64 samples will have to be loaded in memory and will be played back and sent out to the DAC.

	Pattern Size DACB - 0x1E0 (write)							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3	Pattern size[31:24]							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2	Pattern size [23:16]							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	Pattern size [15:8]							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Pattern size [7:0]							

4.6.1.1.77 Pattern size DACB – 0x1E0 (write).

Pattern size has to be a multiple of 8. A size pattern of 8 means that 64 samples will have to be loaded in memory and will be played back and sent out to the DAC.

4.6.2 DAC Synchronisation

The Digital to Analog converters used on the SMT712 have multiplexed inputs, which means their input data rate is a fraction of the sampling rate. DACs have got an internal clock divider in order to provide the data clock. These dividers can start in any state at power up, which gives very little chance to have both DACs 'in phase' at this stage.

The synchronisation process is an iterative process. The SMT712 implements a group of flip-flops to provide information on whether DAC data clocks are in phase or not. In case they are not, the FPGA is capable of cancelling a certain number of sampling clock cycles (7 – synch pulse) of DACA. Information on the clock phase have to be collected again to check whether DACA and DACB data clocks are in phase or not. The operation is repeated until they are in phase.

The SMT712 Demo application (SMT7002 package) implements this function.

The following block diagram show the block implements in the standard firmware provided with the board:

Figure 16 - Block Diagram - DACs synchronisation process.

4.6.3 External Signal characteristics

The main characteristics of all external signals of the SMT712 are gathered into the following table.

Analogue Outputs				
Output voltage range	AC coupled option. AC coupled via RF transformer.			
DACs Maximum Output Power	-2.6dBm (50R)			
Impedance	50Ω.			
Output Bandwidth	Minimum 1500MHz depending on the frequency response mode set.			
Externa	l Reference Input			
Input Voltage Level	1-3.3 Volts peak-to-peak (AC-coupled)			
Input Impedance	50Ω (Termination implemented at the connector)			
Frequency Range	0 – 100 MHz.			
External	Reference Output			
Output Voltage Level	1.6 Volts peak-to-peak (AC-coupled)			
Output Impedance	50-Ohm (Termination implemented at the connector)			
External Sampling Clock Input				
Input Voltage Level	0.5 – 3.3 Volts peak-to-peak (AC-coupled)			
Input Impedance	To be connected to a 50-Ohm source			
Input Format	Single-ended.			
Frequency range	960 (Firmware limitation)-2300 MHz			
Externa	al Trigger Inputs			
	0-3.3 Volts peak-to-peak (Schmidt Trigger).			
Input Voltage Level	Low : 0 -> 3.3/2 Volts			
	High : 3.3/2 -> 3.3Volts			
Format	DC-coupled and Single-ended			
Frequency range	Sampling Clock/8 maximum (MHz)			
DACs	Input Format			
Input Data Width	12-Bits			
Data Format Offset Binary				
SFDR 58-75dBs maximum (manufacturer fugures)				
Wideband Noise-spectral Density	Up to -162dBm/Hz maximum (manufacturer figures)			
Minimum Sampling Clock	10 MHz			
Maximum Sampling Frequency	2300 MHz			

Figure 17 - Main Characteristics.

The following capture has been made with a converter sampling at 2.3Ghz and generating a sine wave of 143.5 mhz:

Figure 18 - Capture DACA - Sampling Frequency 2.3 GHz and Output Frequency 143.5 MHz.

Board Layout 5

5.1 Top View Clock SATA External Clock circuitry 1 11 1 • 1 **:** DAC Cha . . . DAC Chb Ξ= 22 -----22 昌 1 E. 22 :: RSL . 1 = ... SHB1 = = = -10 V5 FPGA 11 : 1.1.1.1.1.1.1.1.1.1.1 :: ************ ••••• :: - 1 ••• ----... H :: ; 43 DDR2 ૺ ••••• • • • • • • • • • • • • • • • • • • SHB2 + اللي التركي التركيم التركيم ال TALAAJAAJA : IIII •••••• ****** ****** ******* ****** ******** ******** ****** ******** ******** ٠

Figure 19 - Board Layout (Top View)

... ٠ .

.

......

-

: :

Figure 20 - Board picture (Top view) - SMT712.

Figure 21 - Board Layout (Bottom View).

Figure 22 – Board picture (bottom view) SMT712.

5.3 Front panel

On the front panel of the SMT712, 7 SMA connectors are available for DAC ChannelA, DAC ChannelB, Trigger, External Reference input, External Reference

output, External clock input and External clock output. There is also a dual SATA-I connector.

Figure 23 - SMT712 Front Panel.

6 Software Packages

Here is a list of the software packages that will be required for the SMT712 to work.

- *SMT6300* is the software package that installs the Sundance driver for the SMT712 board.
- *SMT6002* is the software package that installs the server application to write into flash memory (this is to store bitstreams and to reboot dynamically the board). The application is called *Flash Utility*.
- *SMT7002* is the software package that installs a demo application (*smt712 Configuration*) for the SMT712 as shown below:

SMT712_0 Configuration		
HARDWARE SELECTION SMT712 Ghz Platform SMT712 2Ghz Platform	C Custom:	
CONFIGURATION 1 - Power Supplies IV DAC A IV DAC B IV DAC B IV DAC Caccinity Apply IV Clock Circuitry Apply IV DAC S Clock Circuitry DACs Clock Circuitry DACs Clock Circuitry DDR2 Banks A and B System Monitor IV SHB 1 Apply IV SHB 2 3 - Serial Interfaces Reference clock circuity: IV DAC A: IV DAC A: IV DAC A: IV DAC A: IV DAC B IV DAC A Shift Adjustment: IV DAC B IV	STATUS DCM DAC A Lock Status: DCM DAC A Lock Status: DDR2 Phy Init Done - Bank A: DDR2 Lock Status - Bank B: DDR2 Lock Status - Bank A: DDR2 Lock Status - Bank A: DDR2 IDelay Control Ready - Bank A: DDR2 IDelay Control Ready - Bank B: DDR2 Empty Status - Bank A: DDR2 Full Status - Bank B: Clock Chip Status - Bank B: Clock Chip Reference Monitor: Clock Chip Reference Monitor: Clock Chip Lock Detect: FPGA Die temperatore: Min: Max: Current:	SMT712 parameters selected. ~ Board Name : SMT712 ~ FPGR Type : 70 ~ PCB Revision : 2 ~ Firmware version : def (DEF=Default Firmware) ~ Firmware revision : 2
File (DDH2 pattern generator) DAC A: DAC B: DAC B: DAC B: DDR2 Pattern Generator Size Pattern: 1024 Number Period: 64	FPGA Core Voltage - Vocint: Min: Max Current: FPGA Aux Voltage - Vocaux Min: Max Current:	
C SHB Restore Default		
SettingsApply All		Close

As soon as the application is launched, it reads from the FPGA the board name, type of FPGA, PCB revision and the firmware version. Once running, status flags are displayed in the status section as well as the temperature of the FPGA and its internal voltages (1.0V and 2.5V). A log is available on the right hand side.

SMT712_0 Configuration		
HARDWARE SELECTION SMT712 SMT712 2Ghz Platform CONFIGURATION I - Power Supplies DACA CA	C Custom: STATUS DCM DAC A Lock Status: DCM DAC B Lock Status:	Calibration cycle Writing, Reading-back, and Drecking DACB Registers :: 0K -: Case Sampling Clock Source (0n-board VCD)
Image: Weight of Control Apply 2 - Resets (Do no auto-clear) Image: Clock Circuitry DACs Image: Clock Circuitry DDR2 Banks A and B System Monitor Image: SHB 1 Apply Image: SHB 2 Apply	DDR2 Phy Init Done - Bank A: DDR2 Phy Init Done - Bank B: DDR2 Lock Status - Bank A: DDR2 Lock Status - Bank B: DDR2 IDelay Control Ready - Bank A: DDR2 IDelay Control Ready - Bank B: DDR2 Empty Status - Bank A: DDR2 Empty Status - Bank A:	Programming CLOCK Registers Writing, Reading-back, and Checking CLOCK Registers: Vipdating Clock Registers: Calibrating VC0 Vipdating Clock Registers Vating until VC0/PLL Locked VC0/PLL Locked VC0/PLL Locked COVPLL Locked Forcing DCM DACA Forcing DCM DACA Forcing DCM DACA
3 - Serial Interfaces Reference clock circuity: • Backplane External Clock Circuity: • On board External Image: Clock Circuity: • On board Apply Image: Clock Circuity: • On board Apply Image: Clock Circuity: • On board Apply Image: Clock Circuity: On board Apply Image: Clock Circuity: State: Clock Circuity: Apply </td <td>DDR 2 Empty Status - Bank 8: DDR2 Full Status - Bank A: DDR2 Full Status - Bank B: ClockChip Status: Clock Chip Reference Monitor: ClockChip Lock Detect:</td> <td>* Forcing DLM DALB * Synchronising DACs * Setting phase shifts to 0 * DCMs ready * Sending a synch pulse Scanning DAC clocks Clocks skew: 63/255 * Sending a synch pulse Scanning DAC clocks Clocks skew: 252/255 * Sending a synch pulse Scanning DAC clocks Scanning DAC clocks * Sending a Synch pulse Scanning DAC clocks * Scanning DAC clocks</td>	DDR 2 Empty Status - Bank 8: DDR2 Full Status - Bank A: DDR2 Full Status - Bank B: ClockChip Status: Clock Chip Reference Monitor: ClockChip Lock Detect:	* Forcing DLM DALB * Synchronising DACs * Setting phase shifts to 0 * DCMs ready * Sending a synch pulse Scanning DAC clocks Clocks skew: 63/255 * Sending a synch pulse Scanning DAC clocks Clocks skew: 252/255 * Sending a synch pulse Scanning DAC clocks Scanning DAC clocks * Sending a Synch pulse Scanning DAC clocks * Scanning DAC clocks
5 - Data Source File (DDR2 pattern generator) DAC A: DAC B: DAC B: DDR2 Pattern Generator Size Pattern: 1024 Number Period: 64 DDS FPGA	FPGA Die temperatore: Min: 54.6 °C Max: 57.6 °C Current: 57.1 °C FPGA Core Voltage - Vccint: Min: 0.97 V Max: 1.01 V Current: 0.97 V FPGA Aux Voltage - Vccaux: Min: 2.45 V Max: 2.46 V Current: 2.46 V	Libocks skew: 194/255 * Sending a synch pulse Scanning DAC clocks Diocks skew: 125/255 * Sending a synch pulse Scanning DAC clocks Clocks skew: 1/255 * Programming DCMs DCMs ready * Selecting DAC Data Source - DDR2 Pattern Gene * Programming Pattern Size
Phase Increment: 0x FFFFFF8 Apply C SHB Bestore Default Settings Apply All	<u>G</u> et Status	Starting data source Close

Figure 24 – SMT712 Demo application.

Parameters to configure the clock distribution chip, DCM phase shifts can be loaded (Hardware selection section - example files are provided in \\Program Files\Sundance\SMT7026\Host\Smt712Config\Custom_Parameters) from a configuration file, as well as the clock and reference source. A pattern can be loaded from the application itself (sinewave) or from text files (file DDR2 pattern generator section)..

In order to have the software source code for the *SMT7002*, the *SMT7026* package will have to be purchased. They come as a visual C++ project with all necessary files to recompile the application and modify it.

Dimensions	PXI Express 3U <i>SMT712</i> <i>(LX110T)</i>	BoardBootedDACsOFFClockOFFSHBsOFF	BoardBootedDACsONClockONSHBsOFFDDR2 pattern ON	Board BoutedADCsONClockONSHBsONDDSON
Weight	284 grams			
Supply Currents	+12V	Tbd	Tbd	Tbd
	+3.3V	Tbd	Tbd	Tbd
MTBF				
Dimensions	PXI Express 3U <i>SMT712-FX70T</i>	BoardBootedDACsOFFClockOFFSHBsOFF	BoardBootedDACsONClockONSHBsOFFDDR2 pattern ON	BoardBootedADCsONClockONSHBsONDDSON
Weight	284 grams			
Supply Currents	+12V	0.87 amp.	1.59 amps.	1.25 amps.
	+3.3V	2.74 amps.	4.27 amps.	4.24 amps.
Total power		19.48 Watts	33.17 Watts	28.99 Watts
MTBF				

7 Physical Properties

The SMT7002 GUI has been used to configure the boards from which currents consumed were measured. Boards were setup as follows, internal clock locked on external 10-MHz reference, ADCs clocked at 3GSPS and set in Test mode, continuous acquisitions (DMAs).

8 Safety

This module presents no hazard to the user when in normal use.

9 EMC

This module is designed to operate from within an enclosed host system, which is build to provide EMC shielding. Operation within the EU EMC guidelines is not guaranteed unless it is installed within an adequate host system.

This module is protected from damage by fast voltage transients originating from outside the host system which may be introduced through the output cables.

Short circuiting any output to ground does not cause the host PC system to lock up or reboot.

10 Ordering Information

Three variations of this product are available:

1 – SMT712 with an XC5VLX110T-3 (fastest speed grade available) FPGA and works as a PXI Express Peripheral Module. The part number for this option is **SMT712**. Requires a PXI Express chassis such as the NI-1062Q from National Instrument.

2 – SMT712 with an XC5VLX110T-3 (fastest speed grade available) FPGA and works as a PXI Express Hybrid Peripheral Module (PXI P1 connector). The part number for this option is **SMT712–HYBRPXI32**. Requires a PXI Express chassis such as the NI-1062Q from National Instrument.

3 - SMT712 with an XC5VLX110T-3 (fastest speed grade available) FPGA and works as a Compact PCI Module. The part number for this option is **SMT712–CPCI32**. Requires a Compact PCI rack. Note that it can also be plugged into a PXI Express chassis such as the NI-1062Q from National Instrument.

4 - SMT712 with an XC5VLX110T-3 (fastest speed grade available) FPGA and works in standalone. It can be fitted in a PCI slot (Can be PCI-32 or 64 or PCI-X on a PC motherboard) without being electrically connected to it. This option requires an external power cable and a connection to an other piece of hardware from Sundance via SHB or RSL or SATA (optional). The part number for this option is **SMT712–STANDALONE.** Note that the Standalone version of the SMT712 does not have any dual SATA connector.

5 - SMT712 with an XC5VFX70T-3 (fastest speed grade available) FPGA and works as a PXI Express Peripheral Module. The part number for this option is **SMT712**-**FX70T**. Requires a PXI Express chassis such as the NI-1062Q from National Instrument.

6 – SMT712 with an XC5VFX70T-3 (fastest speed grade available) FPGA and works as a PXI Express Hybrid Peripheral Module (PXI P1 connector). The part number for this option is **SMT712–HYBRPXI32–FX70T**. Requires a PXI Express chassis such as the NI-1062Q from National Instrument.

7 - SMT712 with an XC5VFX70T-3 (fastest speed grade available) FPGA and works as a Compact PCI Module. The part number for this option is **SMT712–CPCI32–FX70T**. Requires a Compact PCI rack. Note that it can also be plugged into a PXI Express chassis such as the NI-1062Q from National Instrument.

8 - SMT712 with an XC5VFX100T-3 (fastest speed grade available) FPGA and works as a PXI Express Peripheral Module. The part number for this option is **SMT712**-**FX100T**. Requires a PXI Express chassis such as the NI-1062Q from National Instrument.

9 – SMT712 with an XC5VFX100T-3 (fastest speed grade available) FPGA and works as a PXI Express Hybrid Peripheral Module (PXI P1 connector). The part number for this option is **SMT712–HYBRPXI32–FX100T**. Requires a PXI Express chassis such as the NI-1062Q from National Instrument.

10 - SMT712 with an XC5VFX100T-3 (fastest speed grade available) FPGA and works as a Compact PCI Module. The part number for this option is **SMT712-CPCI32-FX100T**. Requires a Compact PCI rack. Note that it can also be plugged into a PXI Express chassis such as the NI-1062Q from National Instrument.

Note that an SMT712 can also be used in a PC. This will require a PXIe to PCIe adaptor (Sundance part number <u>SMT580</u>) as show below:

The SMT580 only routes the PCI express lanes, reference clock and power supplies. None of the PXI signals are routed.