

Unit / Module Description: FPGA-only module SDK

Unit / Module Number: SMT1026

Document Issue Number:

Issue Date:

Original Author: Emilie Wheatley

User Manual

for

SMT1026

Sundance Multiprocessor Technology Ltd, Chiltern House,
Waterside, Chesham, Bucks. HP5 1PS.

This document is the property of Sundance and may not be copied
nor communicated to a third party without prior written

permission.
© Sundance Multiprocessor Technology Limited 2009

Revision History

Issue Changes Made Date Initials

Table of Contents
1 Introduction .. 4

1.1 SMT1026 main features ... 4

1.2 Supported Hardware ... 5

2 Getting started ... 5

2.1 Abbreviations ... 6

2.2 Prerequisites ... 6

2.3 Software Installation ... 6

2.3.1 Software Installation From CD .. 6

2.3.2 Visual Studio Configuration ... 6

2.3.3 Visual Studio express 2010 Configuration ... 7

3 Software ... 8

3.1 Interface Mechanism ... 8

3.2 Functions exported by SmtFPGA.dll ... 9

3.3 Sundance Hardware Interface Description .. 14

3.3.1 General interface .. 15

3.3.2 SMT350 interface .. 21

3.3.3 SMT351 interface .. 24

3.3.4 SMT381 interface .. 25

3.3.5 SMT384 interface .. 27

3.3.6 SMT391 interface .. 29

3.3.7 SMT941 interface .. 34

4 Utilities ... 37

4.1 Configure FPGA-only modules ... 37

4.1.1 SMT350 ... 38

4.1.2 SMT351 ... 40

4.1.3 SMT381 ... 41

4.1.4 SMT384 ... 43

4.1.5 SMT391 ... 44

5 Examples .. 46

5.1 Firmware .. 46

5.2 Host .. 47

5.3 Output .. 48

1 Introduction

This section gives a brief description of the SMT1026 package.

The SMT1026 is a SDK for Windows.

The SMT1026 is an efficient, ready to use, host side interface to Sundance FPGA-only

module. It allows you to control the FPGA-only modules from the host as well as to

exchange data between the host and the module on the first site of the Sundance carrier

board.

The figure above shows the SMT1026 forming the link between your application and the

Sundance hardware in your system. The SMT1026 hides the details of the device driver,
allowing you to concentrate on the development process.

1.1 SMT1026 main features

This section lists the main characteristics of the SMT1026 package.

The SMT1026 SDK:

• Accelerate your development time by providing ready-to-use library of functions.
• Configure the FPGA from the Host.
• Transfer data from the FPGA-only module to the Host.
• Control the data acquisition on the daughter modules from the Host.
• Give you a basic framework for more complex custom systems.
• Provide you with C++ type interfaces to the FPGA-only modules.

1.2 Supported Hardware

The SMT1026 currently supports the following carrier boards:

Carrier board Description Functionality
SMT100 SLB carrier, Virtex 5, 512Mbytes DDR2,

USB2, RS232, MicroSD/Transflash, 4-

lane and 1-lane PCIe interface, 32-bit

33MHz PCI, cable PCIe connector

Full support

SMT101 SLB carrier, Virtex 5, 512Mbytes DDR2,

USB2, RS232, MicroSD/Transflash, 4-

lane and 1-lane PCIe interface, 8 channel

12-bit ADC, 32-bit 33 MHz PCI

Full support

SMT105 SLB carrier, Virtex 5, 512Mbytes DDR2,

USB2, RS232, MicroSD/Transflash, 4-

lane and 1-lane PCIe interface, 3 banks

of QDRII memory 72 Mbit, 2x Fibre

modules

Full support

The SMT1026 currently supports the following FPGA-only module:

Carrier board Description
SMT350 Dual ADC/DAC module at 500MSPS
SMT351 1GB memory module
SMT370 Dual channel ADC/DAC

SMT381 Dual 14-bit DAC module at 1GSPS

SMT384 Quad 14-bit ADC module at 125MSPS

SMT390 Dual 12-bit ADC module at 210MSPs

SMT391 Dual 8-bit ADC module at 1GSPS
SMT941 4 channel 14-bit ADC at 250 MHz

2 Getting started

This section will help you to get started:

• Abbreviations
• Prerequisites
• Software Installation

2.1 Abbreviations

The following abbreviations will be used through the all document:

FPGA Field-Programmable Gate Array
CPLD Complex PLDs
PCI Peripheral Component Interconnect
PLD Programmable Logic Device
SMT Sundance Multiprocessor Technology Ltd.
TIM Texas Instruments Module

2.2 Prerequisites

The language C++ is used for the software interfaces. Even if you are not familiar with

C++, you should be able to find your way by referring to the samples. The samples have

been compiled and tested with Microsoft Visual Studio 2010, express edition.

2.3 Software Installation

This section describes how to install the SMT1026 package.

• From CD
• Visual Studio Configuration
• Visual Studio 2010 Configuration

2.3.1 Software Installation From CD

Insert the SMT1026 CD into your CD drive. The setup program should start

automatically; if it doesn’t you can start it yourself by opening an Explorer window,

browsing to the CD, and then double-clicking setup.exe. The installation program will

give you the option of installing samples. We recommend that you become familiar with
the SMT1026 by installing and reviewing the sample code.

The default directory is “C:\Program Files\Sundance\SMT1026”.

The applications need access to smtFPGA.h and smtFPGA.lib. You need to arrange that

these files can be found during compilation and linking. We strongly recommend that you

do not make copies of these files, but access them from the installation directory. See
the Visual Studio Configuration for more details.

2.3.2 Visual Studio Configuration

The installation process configures the examples to compile and link correctly without

any user intervention. However, for your own applications, you need to configure visual
studio to add the paths to the include and lib directories to your compiler options.

You do this as follows:

• Open Visual studio.
• Select "Tools->Options" from the menu.
• Select the “Directories” tab.
• Select “Include files” from the "Show directories for" drop down list.
• Add the path to the include directory for the SMT1026 installation to the list of

directories.
• Select “Library files” from the "Show directories for" drop down list.
• Add the path to the library files for the SMT1026 to the to the list of directories.

2.3.3 Visual Studio express 2010 Configuration

The installation process configures the examples to compile and link correctly without

any user intervention. However, for your own applications, you need to configure visual
studio to add the paths to the include and lib directories to your compiler options.

You do this as follows:

• Open Visual studio express 2010.
• Select "Project->Properties" from the menu.
• Select the “VC++ Directories” in “Configuration properties” on the left of the

window.
• Select “Include directories” on the right of the window.
• Add the path to the include directory for the SMT1026 installation to the list of

directories, as shown below.

• Select “Library directories” on the right of the window.
• Add the path to the library files for the SMT1026 to the list of directories.

3 Software

This section describes the functionality of the SMT1026 package.

3.1 Interface Mechanism

The design makes use of a C++ style interface pointer to the hardware.

SmtFPGA.dll exports functions that gather information about the installed boards and
provide an interface pointer for later use.

To use the SMT1026, you need to:

• Obtain an interface pointer to the hardware by calling SmtxxxOpen(unsigned
int nIndex = 0).

• Use the interface pointer to call functions related to the hardware.

Example:

// Open the SMT391 library
IFSmt391 *pSmt391 = Smt391Open(0);
pSmt391->ResetTIMs();

// Configure the FPGA
pSmt391->ConfigureFPGA(BITSTREAM, QUICK_CONF);

3.2 Functions exported by SmtFPGA.dll

This section describes each of the functions exported by SmtFPGA.dll. These functions

are described in the header file IFSmtFPGA.h.

• SmtFPGAOpen
• SmtFPGAClose
• Smt350Open
• Smt350Close
• Smt351Open
• Smt351Close
• Smt370Open
• Smt370Close
• Smt384Open
• Smt384Close
• Smt390Open
• Smt390Close
• Smt391Open
• Smt391Close
• Smt941Open
• Smt941Close

The following functions can be used to get information about the carrier board.

• SmtGetBoardCount
• SmtGetBoardIndex
• SmtGetBoardInfo
• SmtGetError

Functions to access the interfaces

 SmtFPGAOpen

Prototype: IFSmtFPGA * SmtFPGAOpen(unsigned int nIndex=0);

Parameters: nIndex
Index of the carrier board on which the FPGA-only module is

plugged in.

Return

value:
The return value is a pointer to an FPGA-only module interface.

Notes:
This function obtains an interface to any FPGA-only module plugged in the

first TIM site of a Sundance carrier board.

 SmtFPGAClose

Prototype: void SmtFPGAClose(IFSmtFPGA *p);

Parameters: p Pointer to the FPGA-only module interface.

Return

value:
None.

Notes: This function closes the FPGA-only module interface.

 Smt350Open

Prototype: IFSmt350 * Smt350Open(unsigned int nIndex=0);

Parameters: nIndex Index of the carrier board on which theSmt350 is plugged in.

Return

value:
The return value is a pointer to an Smt350 interface.

Notes:
This function obtains an interface to an Smt350 plugged in the first TIM

site of a Sundance carrier board.

 Smt350Close

Prototype: void Smt350Close(IFSmt350 *p);

Parameters: p Pointer to theSmt350 interface.

Return

value:
None.

Notes: This function closes the Smt350 interface.

 Smt351Open

Prototype: IFSmt351 * Smt351Open(unsigned int nIndex=0);

Parameters: nIndex Index of the carrier board on which the Smt351 is plugged in.

Return

value:
The return value is a pointer to an Smt351 interface.

Notes:
This function obtains an interface to an Smt351 plugged in the first TIM

site of a Sundance carrier board.

 Smt351Close

Prototype: void Smt351Close(IFSmt351 *p);

Parameters: p Pointer to the Smt351 interface.

Return

value:
None.

Notes: This function closes the Smt351 interface.

 Smt370Open

Prototype: IFSmt370 * Smt370Open(unsigned int nIndex=0);

Parameters: nIndex Index of the carrier board on which the Smt370 is plugged in.

Return

value:
The return value is a pointer to an Smt370 interface.

Notes:
This function obtains an interface to an Smt370 plugged in the first TIM

site of a Sundance carrier board.

 Smt370Close

Prototype: void Smt370Close(IFSmt370 *p);

Parameters: p Pointer to the Smt370 interface.

Return

value:
None.

Notes: This function closes the Smt370 interface.

 Smt384Open

Prototype: IFSmt384 * Smt384Open(unsigned int nIndex=0);

Parameters: nIndex Index of the carrier board on which the Smt384 is plugged in.

Return

value:
The return value is a pointer to an Smt384 interface.

Notes:
This function obtains an interface to an Smt384 plugged in the first TIM

site of a Sundance carrier board.

 Smt384Close

Prototype: void Smt384Close(IFSmt384 *p);

Parameters: p Pointer to the Smt384 interface.

Return

value:
None.

Notes: This function closes the Smt384 interface.

 Smt390Open

Prototype: IFSmt390 * Smt390Open(unsigned int nIndex=0);

Parameters: nIndex Index of the carrier board on which the Smt390 is plugged in.

Return

value:
The return value is a pointer to an Smt390 interface.

Notes:
This function obtains an interface to an Smt390 plugged in the first TIM

site of a Sundance carrier board.

 Smt390Close

Prototype: void Smt390Close(IFSmt390 *p);

Parameters: p Pointer to the Smt390 interface.

Return

value:
None.

Notes: This function closes the Smt390 interface.

 Smt391Open

Prototype: IFSmt391 * Smt391Open(unsigned int nIndex=0);

Parameters: nIndex Index of the carrier board on which the Smt391 is plugged in.

Return

value:
The return value is a pointer to an Smt391 interface.

Notes:
This function obtains an interface to an Smt391 plugged in the first TIM

site of a Sundance carrier board.

 Smt391Close

Prototype: void Smt350Close(IFSmt391 *p);

Parameters: p Pointer to the Smt391 interface.

Return

value:
None.

Notes: This function closes the Smt391 interface.

 Smt941Open

Prototype: IFSmt941 * Smt941Open(unsigned int nIndex=0);

Parameters: nIndex Index of the carrier board on which the Smt941 is plugged in.

Return

value:
The return value is a pointer to an Smt941 interface.

Notes:
This function obtains an interface to an Smt941 plugged in the first TIM

site of a Sundance carrier board.

 Smt941Close

Prototype: void Smt941Close(IFSmt941 *p);

Parameters: p Pointer to the Smt941 interface.

Return

value:
None.

Notes: This function closes the Smt941 interface.

Functions to get information about the carrier board

 SmtGetBoardCount

Prototype: DWORD SmtGetBoardCount(void);

Parameters: None.

Return

value:
The return value is the number of carrier board found.

Notes:
This function returns the number of Sundance carrier boards found in the

system.

 SmtGetBoardIndex

Prototype: INT SmtGetBoardIndex(UINT nBaseAddress);

Parameters: nBaseAddress Base address of the board to open.

Return The return value is the board index.

value:

Notes:
This function returns an index to the board at the base address

nBaseAddress. If no board is found, the function returns -1.

 SmtGetBoardInfo

Prototype: SMTRet SmtGetBoardInfo(UINT nIndex, SMTBI& info);

Parameters:
nIndex Index of the board to return information about.

info The information structure to populate.

Return

value:
The return value is the board index.

Notes:
This function returns information about the carrier board specified by

nIndex.

 SmtGetError

Prototype: const char * SmtGetError(SMTRet Error);

Parameters: Error Error value to translate into a string.

Return

value:
The return value is an error string.

Notes: This function returns a string description of the error specified by Error.

3.3 Sundance Hardware Interface Description

Once an interface to the hardware has been obtained by calling

SmtXXXOpen(unsigned int nIndex=0), the interface allows you to access the

FPGA-only module functions.

• General interface
• Smt350 interface
• Smt370 interface
• Smt351 interface
• Smt381 interface
• Smt384 interface
• Smt390 interface
• Smt391 interface
• Smt941 interface

3.3.1 General interface

The general interface can be used with any FPGA-only module plugged in a Sundance

carrier board.

This section describes:

� the general functions

• ConfigureFPGA
• HostRead
• HostWrite
• HostCancel
• WriteCtrlWord
• StoreDataToFile
• CallbackSet
• CallbackGet
• ResetTIMs
• ResetBoard
• GenSig
• SetTimeout
• GetTimeout

� the general structures

• TEMP
• SN
• FILE_OPTIONS

� the general enumerated types

• CHSEL
• OUTPUT
• VCXOTYPE
• HOST_LINK
• DATAFORMAT

The general functions

All the following functions can throw an SMTExc exception.

 ConfigureFPGA

Prototype:
void ConfigureFPGA(const char *pBitstream, bool
bQuickConf=false);

Parameters:

pBitstream FPGA bitstream

bQuickConf
True: Reset the FPGA. The FPGA has to be fully configured at

least once before using this option.

False: Configure fully the FPGA. (default)

Return

value:
None.

Notes:
This function configures the FPGA of the FPGA-only module plugged in the

first TIM slot of the Sundance carrier board.

 HostRead

Prototype:
void HostRead(void *pBuf, unsigned int nBytes, HOST_LINK
hostlink=cp);

Parameters:

pBuf Buffer that receives the data.

nBytes Size of the data to read.

hostlink
Communication link on which to read the data. Host comport per

default. (See struct HOST_LINK).

Return

value:
None.

Notes: This function reads data from the carrier board.

 HostWrite

Prototype:
void HostWrite(void *pBuf, unsigned int nBytes, HOST_LINK
hostlink=cp);

Parameters:

pBuf Buffer that contains the data to write.

nBytes Size of the data to write.

hostlink
Communication link on which to write the data. Host comport per

default. (See enum HOST_LINK).

Return

value:
None.

Notes: This function writes data to the carrier board.

 HostCancel

Prototype: void HostCancel(HOST_LINK hostlink=cp);

Parameters: hostlink
Communication link on which to write the data. Host comport per

default. (See enum HOST_LINK).

Return

value:
None.

Notes: This function cancels pending read/write operations.

 WriteCtrlWord

Prototype: void WriteCtrlWord(unsigned int nCtrl);

Parameters: nCtrl Control word to send.

Return

value:
None.

Notes:
This function sends a control word to the FPGA-only module on the first

TIM slot of a Sundance carrier board.

 StoreDataToFile

Prototype:
void StoreDataToFile(const char *pcFile, void *pBuf,
unsigned int nBytes, unsigned int nNoOfBit, FILE_OPTIONS
*=0);

Parameters:

pcFile Name of the file where the data will be saved.

pBuf Buffer containing the data.

nBytes Size of the data.

nNoOfBit
Number of relevant bits per word. This value is used to mask

each word saved in the file.

pFileOpt
Structure which contains the extra file options (append data,

add date and time). (See struct FILE_OPTIONS).

Return

value:
None.

Notes: This function stores data into a file.

 CallbackSet

Prototype: void CallbackSet(SMTFPGACALLBACK pf, void *user);

Parameters:
pf Callback function.

user User specified callback value.

Return

value:
None.

Notes:
This function sets the function that is to be called when words are sent to

the FPGA module.

 CallbackGet

Prototype: void CallbackGet(SMTFPGACALLBACK pf, void *user);

Parameters:
pf Callback function.

user User specified callback value.

Return

value:
None.

Notes:
This function gets the function that is to be called when words are sent to

the FPGA module.

 ResetTIMs

Prototype: void ResetTIMs(void);

Parameters: None.

Return

value:
None.

Notes: This function resets the TIMs on the carrier board.

 ResetBoard

Prototype: void ResetBoard(void);

Parameters: None.

Return

value:
None.

Notes: This function resets the carrier board.

 GenSig

Prototype:
void GenSig(SIGGEN type, int nAmp, float fSamplingFreq,
float fSigFreq, unsigned int *pBuf, int nBytes);

Parameters:

type Type of signal to generate (See SIGGEN).

nAmp Signal amplitude.

fSamplingFreq Sampling frequency.

fSigFreq Signal frequency.

pBuf Buffer for the signal data.

nBytes Size of the buffer in bytes.

Return

value:
None.

Notes: This function generates a signal.

 SetTimeout

Prototype: void SetTimeout(unsigned int n);

Parameters: n
Value of the timeout in ms. If 0 the timeout is not set and the

comport and RSL functions will never return if they fail.

Return

value:
None.

Notes:
This function changes the value of the timeout for the comport and RSL

functions. Unless really necessary the user is not advised to use this

function.

 GetTimeout

Prototype: unsigned int GetTimeout(void);

Parameters: None.

Return

value:
The current value of the timeout.

Notes:
This function returns the current value of the timeout for the comport and

RSL functions.

The general structures

struct TEMP

unsigned int nAir Temperature measured on the base module such as an

SMT338VP.

unsigned int nFPGA Temperature measured on the FPGA of the base module.

unsigned int
nDaughter_Air Temperature measured on the daughter module.

unsigned int
nDaughter_ADC

Temperature measured on the ADCs of the daughter

module.

struct SN

unsigned int nNoA Serial number A of the base module.

unsigned int nNoB Serial number B of the base module.

unsigned int nNoC Serial number C of the base module.

unsigned int nNoD Serial number D of the base module.

unsigned int nDaughterNoA Serial number A of the daughter module.

unsigned int nDaughterNoB Serial number B of the daughter module.

unsigned int nDaughterNoC Serial number C of the daughter module.

unsigned int nDaughterNoD Serial number D of the daughter module.

struct FILE_OPTIONS

bool bAppend

True = append data at the end of the file.

False = overwrite the file.

The default value is false.

bool bDateStamp

True = add date and time before writing the data.

False = don’t add the date and time inside the file.

The default value is false.

The general enumerated types

Enumerated types Description

enum CHSEL {

 channela = 1,

 channelb = 2,

 channelab= 3

};

Selects the active channel.

enum OUTPUT {

 normal = 0,

 zeros = 1,

 ones = 2,

 test = 3

};

Selects the type of the output samples.

enum VCXOTYPE {

 vcxo100 = 0,

 vcxo245 = 1

};

Selects the VCXO installed on the FPGA module: 100Mhz or

245.76 MHz

enum HOST_LINK {

 cp = 0,

 rsl = 1

};

The host application can always communicate with the Sundance

carrier boards through the host comport. But some carrier board

offers other communication link like the RSL link. This

enumerated type selects the host link used to communicate with

the Sundance carrier board.

enum DATAFORMAT {

 binary = 0,

 complement2 = 1

};

Selects the format of the output samples.

enum SIGGEN {

 sine = 0,

 triangle = 1,
 square = 2,
 ramp_pos = 3,
 ramp_neg = 4

};

Selects the shape of the signal to generate.

3.3.2 SMT350 interface

The SMT350 interface can be used with a SMT350 plugged in a Sundance carrier board.

This section describes:

� the SMT350 functions

• ResetDevices
• ConfigureADCReg
• ConfigureADCClock
• Acquire

� the SMT350 structures

• CLKMODE350
• SETDAC
• SETCLK

� the SMT350 enumerated types

• SMT350TYPE
• SAMPLING_RATIO

The SMT350 functions

All the following functions can throw an SMTExc exception.

 ResetDevices

Prototype: void ResetDevices(SMT350TYPE smt350type=cdcm7005);

Parameters: smt350type
Select the SMT350 type: CDCM7005 or AD9510. (See enum

SMT350TYPE).

Return

value:
None.

Notes: This function does a global reset of the SMT350 (ADCs, DACs, Clock…).

 ConfigureADCReg

Prototype:
void ConfigureADCReg(OUTPUT outputADC, SETDAC *pSetDAC,
SMT350TYPE smt350type, SETCLK *pSetClk, VCXOTYPE
vcxotype=vcxo245);

Parameters:

outputADC Type of data the ADCs output. (See enum OUTPUT).

pSetDAC DAC parameters (gain and offset). (See struct SETDAC).

smt350type
Select the SMT350 type: CDCM7005 or AD9510. (See enum

SMT350TYPE).

pSetClk
Clock parameters (sampling frequency ratio). (See struct

SETCLK).

vcxotype
Select the right VCXO used on the SMT350: 100MHz or

245.76 MHz. (See enum VCXOTYPE).

Return

value:
None.

Notes: This function configures the ADC, DAC and clock registers.

 ConfigureADCClock

Prototype: void ConfigureADCClk(CLKMODE350 *pClkMode);

Parameters: pClkMode ADC clock mode parameters. (See struct CLKSMT350).

Return

value:
None.

Notes: This function configures the ADC clock.

 Acquire

Prototype: void Acquire(CLKMODE350 *pClkMode);

Parameters: pClkMode ADC clock mode parameters. (See struct CLKSMT350).

Return

value:
None.

Notes: This function acquires data from the Smt350.

The SMT350 sructures

struct CLKMODE350

bool bExtRef
true = external reference;

false = on-board 10 MHz reference.

The default value is false.

bool bExtClk
true = external clock;

false = on-board VCXO.

The default value is false.

bool bTrigInvert
true = trigger polarity channel A and B;

false = Non-inverting.

The default value is false.

bool bTrigExt
true = trigger selection channel A and B;

false = internal trigger.

The default value is false.

CHSEL ChSel Channel selection.
The default value is channelab.

bool b2sComplement
True = ADC A and B output 2’s complement samples

False = ADC A and B output binary samples.

The default value is false.

struct SETDAC

unsigned int nOffsetA
Offset DAC channel A.
The default value is 0.

unsigned int nGainA Gain DAC channel A.
The default value is 0xFFF.

unsigned int nOffsetB
Offset DAC channel B.

The default value is 0.

unsigned int nGainB Gain DAC channel B.
The default value is 0xFFF.

struct SETCLK

SAMPLING_RATIO
ADCSamplingRatio

Sampling frequency divider for the ADCs.
The default value is div3.

SAMPLING_RATIO
DACSamplingRatio

Sampling frequency divider for the DACs.
The default value is div2.

The SMT350 enumerated types

Enumerated type Description

enum SMT350TYPE
{

 ad9510 = 0,

 cdcm7005 = 1

};

There are two types of SMT350. The default one with the

component CDCM7005 and the one with the component AD9510.

The right SMT350 type can be selected using this enumerated type.

enum
SAMPLING_RATIO
{

 div1 = 0,

 div2 = 1,

 div3 = 2,

 div4 = 3,

 div6 = 4,

 div8 = 5,

 div16 = 6

};

This enumerated type selects the sampling frequency divider.

3.3.3 SMT351 interface

The SMT351 interface can be used with a SMT351 plugged a Sundance carrier board.

This section describes:

� the SMT351 functions

• Acquire
• ReadBack
• FillMem

The SMT351 functions

All the following functions can throw an SMTExc exception.

 Acquire

Prototype: void Acquire(unsigned int nBytes, unsigned int nAddress);

Parameters:
nBytes Number of bytes to acquire.

nAddress Memory address from where to acquire the data.

Return

value:
None.

Notes: This function prepares the SMT351 for the acquisition.

 ReadBack

Prototype: void ReadBack(void);

Parameters: None.

Return

value:
None.

Notes: This function starts the acquisition from the SMT351.

 FillMem

Prototype: void FillMem(unsigned int *pBuf, unsigned int nBytes);

Parameters:
pBuf Buffer that contains the data to copy to the SMT351 memory.

nBytes Number of bytes to copy to the SMT351 memory.

Return

value:
None.

Notes: This function acquires data from the SMT351.

3.3.4 SMT381 interface

The SMT381 interface can be used with a SMT381 plugged a Sundance carrier board.

This section describes:

� the SMT381 functions

• ConfigureDACReg
• ConfigureDACClock
• SetTrigger
• Reset

� the SMT381 enumerated types

• DATAMODE

The SMT381 functions

All the following functions can throw an SMTExc exception.

 ConfigureDACReg

Prototype:
void ConfigureDACReg(DATAMODE mode, unsigned short *pBuf,
unsigned int nBurstSize);

Parameters:

mode Select the data mode (See struct DATAMODE)..

pBuf
Buffer that contains the data to write to the DAC memory

(only used when the direct mode is selected).

nBurstSize
Set the burst size for the DACs. Typically it will be the number

of 14-bit samples divided by the number of samples per cycle

(NB_SAMPLE_CYCLE).

Return

value:
None.

Notes: This function configures the DAC registers of the SMT381.

 ConfigureDACClock

Prototype:
unsigned int ConfigureADCClock(unsigned int
nRf_SamplingFreq, bool bOnBoardClk);

Parameters:

nRf_SamplingFreq Sampling frequency of the on-board clock.

bOnBoardClk
True to use the on-board clock otherwise false. False is

the default value.

Return

value:
Sampling frequency of the on-board clock.

Notes: This function configures the clock of the SMT381.

 SetTrigger

Prototype: void SetTrigger(bool bStart);

Parameters: bStart Set the trigger to 0 of 1. The trigger is active high.

Return

value:
None.

Notes: This function sets the trigger of the SMT381.

 Reset

Prototype: void Reset(bool bSDB, bool bDAC, bool bDCM);

Parameters:
bSDB SDB reset. 0 = inactive, 1 = active.

bDAC DAC reset, active on falling edge. Reset all FPGA internal registers

and DAC.

bDCM DCM reset. 0 = inactive, 1 = active.

Return

value:
None.

Notes: This function resets the SMT381.

 The SMT381 enumerated types

Enumerated

type
Description

enum
DATAMODE {

 direct,

 memory

};

Selects the data mode:

direct = the input data comes from the FPGA, memory = the input data

comes from the DAC memory.

3.3.5 SMT384 interface

The SMT384 interface can be used with a SMT384 plugged in a Sundance carrier board.

This section describes:

� the SMT384 functions

• ResetDevices
• ConfigureADCReg
• ConfigureADCClock
• Acquire

� the SMT384 structures

• CLKMODE384

The SMT384 functions

All the following functions can throw an SMTExc exception.

 ResetDevices

Prototype: void ResetDevices(void);

Parameters: None.

Return

value:
None.

Notes: This function does a global reset of the SMT384 (ADCs, Clock…).

 ConfigureADCReg

Prototype:
void ConfigureADCReg(OUTPUT output, nVCXOTYPE vcxotype,
unsigned int nClkDiv);

Parameters:

output Type of data the ADCs output. (See enum OUTPUT).

nClkDiv VCO clock divider to set the sampling frequency.

vcxotype
Select the right VCXO used on the SMT384: 100MHz or 245.76

MHz. (See enum VCXOTYPE).

Return

value:
None.

Notes: This function configures the ADC registers of the SMT384.

 ConfigureADCClock

Prototype: void ConfigureADCClk(CLKMODE384 clkmode);

Parameters: clkmode ADC clock mode parameters. (See struct CLKMODE384).

Return

value:
None.

Notes: This function configures the clock for the ADCs on the SMT384.

 Acquire

Prototype: void Acquire(CLKMODE384 clkmode, unsigned int nBytes);

Parameters:
clkmode ADC clock mode parameters. (See struct CLKMODE384).

nBytes Number of bytes to acquire.

Return

value:
None.

Notes: This function set the ADCs on the SMT384 to acquire data.

The SMT384 structures

struct CLKMODE384

bool bExtRef
true = external reference;

false = on-board 10 MHz reference.

The default value is false.

bool bExtClk
true = external clock;

false = on-board VCXO.

The default value is false.

bool bABTrigInvert
true = trigger polarity channel A and B;

false = Non-inverting.

The default value is false.

bool bABTrigExt
true = trigger selection channel A and B;

false = internal trigger.

The default value is false.

bool bCDTrigInvert
true = trigger polarity channel C and D;

false = Non-inverting.

The default value is false.

bool bCDTrigExt
true = trigger selection channel C and D;

false = internal trigger.

The default value is false.

CHSEL ABChSel Channel A and B selection.
The default value is channelab.

CHSEL CDChSel Channel C and D selection.
The default value is channelab.

bool bAB2sComplement
True = ADC A and B output 2’s complement samples

False = ADC A and B output binary samples.

The default value is false.

bool bCD2sComplement
True = ADC C and D output 2’s complement samples

False = ADC C and D output binary samples.

The default value is false.

3.3.6 SMT391 interface

The SMT391 interface can be used with a SMT391 plugged in a Sundance carrier board.

This section describes:

� the SMT391 functions

• Reset
• ConfigureADCReg

• ConfigureADCClock
• Acquire
• ADCReset
• SetADCMode
• SetClkMode
• GetFirmwareVersion
• GetTemp
• GetSN

� the SMT391 structures

• SETADC391

� the SMT391 enumerated types

• CLKMODE391

The SMT391 functions

All the following functions can throw an SMTExc exception.

 Reset

Prototype: void Reset(bool bGlobal, bool bADC, bool bUser);

Parameters:

bGlobal True to do a global reset otherwise false.

bADC True to do an ADC reset otherwise false.

bUser True to do a user reset otherwise false.

Return

value:
None.

Notes: This function reset the SMT391.

 ConfigureADCReg

Prototype:
void ConfigureADCReg(unsigned int &nSamplingFreq,
SETADC391 setadc);

Parameters:
nSamplingFreq Sampling frequency of the on-board clock.

setadc ADC parameters. (See struct SETADC391).

Return

value:
None.

Notes: This function configures the ADC registers of the SMT391.

 ConfigureADCClock

Prototype:
unsigned int ConfigureADCClock(unsigned int
nRf_SamplingFreq, bool bOnBoardClk);

Parameters:

nRf_SamplingFreq Sampling frequency of the on-board clock.

bOnBoardClk
True to use the on-board clock otherwise false. False is

the default value.

Return

value:
Sampling frequency of the on-board clock.

Notes: This function configures the clock of the SMT391.

 Acquire

Prototype: void Acquire(unsigned int nBytes=0, bool bDDR=false);

Parameters:

nBytes
Number of bytes to acquire. If no DDR memory has been

implemented in the FPGA firmware, the acquisition is continue and

nBytes is not used. 0 is the default value.

bDDR
True when DDR memory is implemented in the FPGA firmware

otherwise false. False is the default value.

Return

value:
None.

Notes: This function configures the SMT391 to start acquiring data.

 StopAcquire

Prototype: void StopAcquire(HOST_LINK hostlink);

Parameters: hostlink
Communication link on which to write the data. Host comport per

default. (See enum HOST_LINK).

Return

value:
None.

Notes: This function stops the ADC to acquire data.

 ADCReset

Prototype: void ADCReset(void);

Parameters: None.

Return

value:
None.

Notes: This function resets the ADCs.

 SetADCMode

Prototype: void SetADCMode(unsigned int n);

Parameters: n ADC mode value.

Return

value:
None.

Notes: This function sets the ADC mode.

 SetClkMode

Prototype: void SetClkMode(CLKMODE391 clkmode);

Parameters: clkmode ADC clock mode parameters. (See struct CLKSMT391).

Return

value:
None.

Notes: This function sets the clock mode.

 GetFirmwareVersion

Prototype: unsigned int GetFirmwareVersion(void);

Parameters: None.

Return

value:
None.

Notes:
This function gets the firmware version. Before using this function the

user has to make sure this functionality is part of the firmware used to

program the FPGA.

 GetTemp

Prototype: void GetTemp(TEMP *pTemp);

Parameters: pTemp
Structure that receives the modules’ temperatures (See struct

TEMP).

Return

value:
None.

Notes:
This function gets the temperatures on different part of the hardware.

Before using this function the user has to make sure this functionality is

part of the firmware used to program the FPGA.

 GetSN

Prototype: void GetSN(SN *pSN);

Parameters: pSN
Structure that receives the modules’ temperatures. (See struct

SN).

Return

value:
None.

Notes:
This function gets the FPGA module serial number. Before using this

function the user has to make sure this functionality is part of the

firmware used to program the FPGA.

The SMT391 structures

struct SETADC391

bool bItoQ

True = The input for the channels I and Q is the same.

False = Channels I and Q have different inputs.

The default value is true.

unsigned int nAnalogGain Analog gain.
The default value is 128.

unsigned int nOffsetComp Offset compensation.
The default value is 0.

bool bTest

True = the ADCs outputs test data.

False = the ADCs outputs data from theirs inputs.

The default value is false.

unsigned int nDrda
Set the value of the DRDA between 0 and 7.

The default value is 7.

The SMT391 enumerated types

Enumerated type Description

enum CLKMODE391 {

 clk_mode_I_I_Q_Q,

 clk_mode_Q_I_Q_Q,

 clk_mode_I_I_I_Q,

 clk_mode_Q_I_I_Q

};

Selects the clock mode.

3.3.7 SMT941 interface

The SMT941 interface can be used with a SMT941 plugged in a Sundance carrier board.

This section describes:

� the SMT941 functions

• ResetDevices
• ConfigureADCReg
• AcquireAB
• AcquireCD
• GetFirmwareVersion
• GetError

� the SMT941 structures

• CLKMODE941

� the SMT941 enumerated types

• ERRORS
• CLOCK_DIVIDER

The SMT941 functions

All the following functions can throw an SMTExc exception.

 ResetDevices

Prototype: void ResetDevices(void);

Parameters: None.

Return

value:
None.

Notes: This function reset the SMT941.

 ConfigureADCReg

Prototype: int ConfigureADCReg(OUTPUT output, CLKMODE941 clkmode);

Parameters:
output Type of data the ADCs output. (See enum OUTPUT).

clkmode Select the clock parameters. (See struct CLKMODE941).

Return

value:
None.

Notes: This function configures the ADC registers of the SMT941.

 AcquireAB

Prototype:
int AcquireAB(unsigned int nBytes, unsigned chart *a,
unsigned short *b);

Parameters:

nBytes Number of bytes to acquire.

a Data sampled from channel A.

b Data sampled from channel B.

Return

value:
Return 0 if successful otherwise 1.

Notes: This function acquires data on channel A and channel B of the SMT941.

 AcquireCD

Prototype:
int AcquireCD(unsigned int nBytes, unsigned chart *c,
unsigned short *d);

Parameters:

nBytes Number of bytes to acquire.

c Data sampled from channel C.

d Data sampled from channel D.

Return

value:
Return 0 if successful otherwise 1.

Notes: This function acquires data on channel C and channel D of the SMT941.

 GetFirmwareVersion

Prototype: unsigned int GetFirmwareVersion(void);

Parameters: None.

Return

value:
None.

Notes:
This function gets the firmware version. Before using this function the

user has to make sure this functionality is part of the firmware used to

program the FPGA.

 GetError

Prototype: char * GetError(int err);

Parameters: err Error code.

Return

value:
The description of the error code.

Notes: This function returns the description of the error code enter as parameter.

The SMT941 structures

struct CLKMODE941

bool bExtRef

True = External reference.

False = On-board 10 MHz reference.

The default value is false.

bool bExtClk
True = External Clock.

False = On-board VCXO.

The default value is false.

bool bTrigInvert

Trigger polarity

True = Inverting.

False = Non-Inverting.

The default value is false.

bool bTrigExt

Trigger selection

True = External trigger.

False = Internal trigger.

The default value is false.

bool b2sComplement
True = External reference.

False = On-board 10 MHz reference.

The default value is false.

unsigned int nClkDiv
Set the value of the clock divider.

The default value is div_by_one.

The SMT941 enumerated types

Enumerated type Description

enum ERRORS { Error codes.

 ERR_SUCCESS = 0,
 ERR_CLK_REG = 1,
 ERR_CLK_LOCKED = 2,
 ERR_ADCAB_DCM_LOCKED = 3,
 ERR_ADCCD_DCM_LOCKED = 4
};

enum CLOCK_DIVIDER {
 div_by_one = 0,
 div_by_two = 1,
 div_by_three = 2,
 div_by_four = 3,
 div_by_five = 4
};

Selects the clock divider.

4 Utilities

The utilities are useful little applications.

The following utilities are available with the SMT1026:

• ConfigFPGAMod

4.1 Configure FPGA7only modules

This application is installed in the following directory: "C:/Program

Files/Sundance/SMT6026/ConfigFPGAMod.exe".

This user interface is a quick and easy way to configure and communicate with an FPGA-
only module on the first TIM site of a Sundance carrier board.

It's also a good example of what can be achieved using the SMT1026 libraries.

To run the application, double-click on "ConfigFPGAMod.exe" and select the tab

corresponding to your FPGA-module:

• SMT350
• SMT351
• SMT381
• SMT384
• SMT391

4.1.1 SMT350

This section explains how to use the "Configure FPGA-only module" user interface.

For more information on how to set the parameters please look at the SMT350 user
manual.

1 - FPGA Configuration:

Bitstream: Select the FPGA bitstream. (This field is not used when the "Quick

Configuration" box is checked.)

Quick Configuration: Check this check box if the FPGA has already been configured with

the right bitstream. When this check box is checked, only a start key is sent to the FPGA
to reconfigure it.

Configure FPGA: Press this button to configure the FPGA of the SMT391.

2 - ADC Configuration:

CDCM7005 / AD9510: Select the type of component fitted on the FPGA TIM.

VCXO type: Select the type of the VCXO fitted on the FPGA TIM (100 MHz or 245.76
MHz).

ADC Sampling Frequency: Set the sampling frequency for the ADCs of the SMT350. (Up

to 125MHz).

DAC Sampling Frequency: Set the sampling frequency for the DACs of the SMT350. (Up

to 500MHz).

Gain: Set the gain fo the DACs.

Offset: Set the offset for the DACs.

Channel selection: Select the output channel(s) .

Data format: Select the format of the output data (binary or 2's complement).

External clock: Check this check box if you are using an external clock.

Trigger inverting: Check this check box for an inverting trigger.

External trigger: Check this check box if you are using an external trigger.

Test: Check this check box to use the ADC test data as input data.

Configure ADC: Press this button to configure the ADCs and the DACs of the SMT350.

3 - Acquisition:

File to save data: Set the file to which the data should be written.

Bytes to acquire: Set the size of the acquisition in bytes (or /2 14-bit samples).

Bytes to avoid: Set the number of bytes (or /2 14-bit samples) to avoid before starting

the acquisition. This can be useful in some cases. For example, the host comport on the

SMT310Q has a very small buffer that can overflow before the acquisition starts. By

setting the "Bytes to avoid" field, the comport buffer gets empty before starting the

acquisition.

Host link: Select the link used between the host and the carrier board. Most of the time it
will be the host comport but sometime it's possible to use the host RSL.

Acquire data: Press this button to start an data acquisition.

4.1.2 SMT351

This section explains how to use the "Configure FPGA-only module" user interface.

For more information on how to set the parameters please look at the SMT351 user

manual.

1 - FPGA Configuration:

Bitstream: Select the FPGA bitstream. (This field is not used when the "Quick
Configuration" box is checked.)

Quick Configuration: Check this check box if the FPGA has already been configured with

the right bitstream. When this check box is checked, only a start key is sent to the FPGA
to reconfigure it.

Configure FPGA: Press this button to configure the FPGA of the SMT391.

2 - Acquisition:

From host comport / From SDB: Select the origin of the input data.

If the input data comes from the host comport, the followings parameters define the

signal to save into the SMT351 memory:

Sampling Frequency: Set the sampling frequency in MHz.

Signal Frequency: Set the signal frequency in MHz.

Signal selection: Select the type of signal to write to the SMT351 memory.

Address: Set the address for the memory from where to read.

Bytes to acquire: Set the size of the acquisition in bytes.

File to save data: Set the file to which the data should be written.

Acquire data: Press this button to start an data acquisition.

4.1.3 SMT381

This section explains how to use the "Configure FPGA-only module" user interface.

For more information on how to set the parameters please look at the SMT381 user

manual.

1 - FPGA Configuration:

Bitstream: Select the FPGA bitstream. (This field is not used when the "Quick
Configuration" box is checked.)

Quick Configuration: Check this check box if the FPGA has already been configured with

the right bitstream. When this check box is checked, only a start key is sent to the FPGA
to reconfigure it.

Configure FPGA: Press this button to configure the FPGA of the SMT391.

2 - DAC Configuration:

Direct data / Memory data: Select the source of the input data.

Sampling Frequency: Set the sampling frequency for the DACs of the SMT381. The range
is from 50MHz to 500MHz.

Signal Frequency: Set the signal frequency of the signal to write to the DAC memories.

Signal selection: Select the type of signal to write to the DAC memories.

On board clock: Check this check box if you are using the on board clock.

Configure DAC: Press this button to configure the DACs of the SMT381.

4.1.4 SMT384

This section explains how to use the "Configure FPGA-only module" user interface.

For more information on how to set the parameters please look at the SMT384 user
manual.

1 - FPGA Configuration:

Bitstream: Select the FPGA bitstream. (This field is not used when the "Quick

Configuration" box is checked.)

Quick Configuration: Check this check box if the FPGA has already been configured with

the right bitstream. When this check box is checked, only a start key is sent to the FPGA
to reconfigure it.

Configure FPGA: Press this button to configure the FPGA of the SMT384.

2 - ADC Configuration:

Channel selection: Select the output channel(s) .

Data format: Select the format of the output data (binary or 2's complement).

VCXO type: Select the type of the VCXO fitted on the FPGA TIM (100 MHz or 245.76

MHz).

Clock Divider: Select the clock divider for the sampling frequency.

External clock: Check this check box if you are using an external clock.

Trigger inverting: Check this check box for an inverting trigger.

External trigger: Check this check box if you are using an external trigger.

Test: Check this check box to use the ADC test data as input data.

Configure ADC: Press this button to configure the ADCs of the SMT384.

3 - Acquisition:

File to save data: Set the file to which the data should be written.

Bytes to acquire: Set the size of the acquisition in bytes (or /2 14-bit samples).

Bytes to avoid: Set the number of bytes (or /2 14-bit samples) to avoid before starting

the acquisition. This can be useful in some cases. For example, the host comport on the

SMT310Q has a very small buffer that can overflow before the acquisition starts. By

setting the "Bytes to avoid" field, the comport buffer gets empty before starting the
acquisition.

Host link: Select the link used between the host and the carrier board. Most of the time it
will be the host comport but sometime it's possible to use the host RSL.

Acquire data: Press this button to start an data acquisition.

4.1.5 SMT391

This section explains how to use the "Configure FPGA-only module" user interface.

For more information on how to set the parameters please look at the SMT391 user
manual.

1 - FPGA Configuration:

Bitstream: Select the FPGA bitstream. (This field is not used when the "Quick
Configuration" box is checked.)

Quick Configuration: Check this check box if the FPGA has already been configured with

the right bitstream. When this check box is checked, only a start key is sent to the FPGA
to reconfigure it.

Configure FPGA: Press this button to configure the FPGA of the SMT391.

2 - ADC Configuration:

Sampling Frequency: Set the sampling frequency for the ADCs of the SMT391. The range
is from 50MHz to 1GHz.

Analog gain: Set the analog gain. The range is from 0 to 255.

Offset Compensation: Set the offset compensation. The range is from 0 to 255.

On board clock: Check this check box if you are using the on board clock.

DRDA channel I & Q: Set the DRDA value. This value depends of the FPGA module and
the sampling frequency.

Test: Check this check box to use the ADC test data as input data. In the next step, the

data will be saved in two separate files. One file should contain a ramp with a positive
slope. The other file should contain a ramp with a negative slope.

Channel I only ADC input: Check this check box to use the connector of channel I as the
only input source for channel I and Q.

Configure ADC: Press this button to configure the ADCs of the SMT391.

3 - Acquisition:

File to save data: Set the file to which the data should be written.

Bytes to acquire: Set the size of the acquisition in bytes (or 8-bit samples).

Bytes to avoid: Set the number of bytes (or 8-bit samples) to avoid before starting the

acquisition. This can be useful in some cases. For example, the host comport on the

SMT310Q has a very small buffer that can overflow before the acquisition starts. By

setting the "Bytes to avoid" field, the comport buffer gets empty before starting the
acquisition.

Host link: Select the link used between the host and the carrier board. Most of the time it
will be the host comport but sometime it's possible to use the host RSL.

Acquire data: Press this button to start an data acquisition.

5 Examples

The SMT1026 provides several examples to illustrate the used of the Sundance's FPGA

library.

There is an example for each supported FPGA module and a more generic one.

Those examples are organised in three folders:

• Firmware
• Host
• Output

5.1 Firmware

This folder contains several firmware for the FPGA-only module.

It's installed in the following directory: "C:/Program
Files/Sundance/SMT6026/Examples/SMT391/Firmware".

Remark: SMT391 can be replaced by the number of the board you are interested in.

The bitstream have been compiled with 3L Diamond FPGA and therefore are *.app files.

The "readme.txt" file contains some information about the firmware. The source code can
be provided on demand but an NDA (Non Disclosure Agreement) has to be signed first.

Remark: The FPGA library works with the basic functionalities implemented in the

firmware supplied with the SMT1026. If bitstreams other than the ones provided with the

SMT1026 are used with the FPGA library, the software will not work properly anymore. In

those circumstances Sundance will decline all responsibilities.

5.2 Host

This folder contains the source code for the host.

It's installed in the following directory: "C:/Program

Files/Sundance/SMT6026/Examples/SMT391/Host".

Remark: SMT391 can be replaced by the number of the board you are interested in.

Source code

The source code is similar for all the supported FPGA-only modules:

1- Open the FPGA library.
2- Reset the board and TIM.
3- Configure the FPGA.
4- Configure the ADCs/DACs.
5- Start the acquisition on the ADCs or trigger the DACs.
6- Save data to file (ADCs).

Tip: Change the value of the #define directives at the beginning of the program to

change the parameters. Don't forget to recompile!

5.3 Output

This folder contains the executable application.

It's installed in the following directory: "C:/Program

Files/Sundance/SMT6026/Examples/SMT391/Output".

Remark: SMT391 can be replaced by the number of the board you are interested in.

This executable is a very simple console application aimed to show the basic use of the

SMT1026 libraries. But more complicated and flexible user interfaces can be developed
using the functionalities of the SMT1026 libraries. (See Configure FPGA-only module).

