INTEGRATION ISSUES

By Mark Honman, Sundance Multiprocessor Technology, Ltd.

www.sundance.com mark.h@sundance.com

If wishes were fishes -

An accidental computer scientist goes emhedded

Can’t we just TALK?

There is a well-worn cliché in computing, “Standards are
great — there are so many to choose from!” In computing this is
perhaps less true than it used to be, thanks to the Internet and
commoditization of end-user computing.

However, in the world of embedded systems there has not been
the same kind of convergence in interface standards. While
the DSP and FPGA vendor platforms have become evermore
powerful and applicable to a broader range of applications,
there seems to be little attention given to combining different
types of processing elements in a single hardware module.

Before | go further, is it even still relevant to discuss the topic of
integrating DSP and FPGA devices in the same hardware? After
all, DSP vendors are now offering data acquisition interfaces
that are supposed to make FPGAs obsolete, and FPGA vendors
are offering software compilation to RTL that is supposed to
make DSPs obsolete. Not to mention that everyone's space is
being invaded by ARM and Linux-wielding refugees like myself
from the "real computing” domain.

Perhaps the best reasons are productivity and time-to-market.
After two decades of refinement, DSP architectures and sur-
rounding tools and support libraries are wonderfully mature,
and FPGA tools are similarly all-encompassing. The problem,
as | see it, is that the overlap between DSP and FPGA capa-
bilities only goes so far. There will continue to be projects that
require processing for which no DSP has a suitable accelerator
or interface, and others where there is a large computationally
intensive code base.

Since it is easy to become so familiar with one vendor's plat-
form that everything else appears alien, there is a trap waiting
for all of us: "When all you have is a hammer, everything looks
like a nail.” We can generally sense when it is becoming more
difficult — or risky — to implement functionality within the plat-
form chosen for the current project. The bad news is that while
adding a DSP or FPGA may save time by reducing the number
of workarounds, compromises in the interface often mean that
the cure is worse than the disease.

The success of the ARM-enhanced DSPs and FPGAs is with
good reason - so much time can be saved by offloading non-
critical functionality to ARM cores running Linux. And, at least
where this code does not touch vendor-specific communication
libraries, it is possible to reuse the software in a subsequent
project based on another vendor's processor.

%ignul—prpcessi ng.mil-embedded.com

So, wouldn't our lives be simpler - and more interesting — if
there was a simple, standardized, low-latency interface that
made it possible to harness the best offerings of multiple
vendors?

L WOULDNTT OUR LIVES BE SIMPLER — AND

MORE INTERESTING — IF THERE WAS A SIMPLE

STANDARDIZED, LOW-LATENCY INTERFACE
THAT MADE IT POSSIBLE TO HARNESS THE
BEST OFFERINGS OF MULTIPLE VENDORS?

Now, it could be that that there is a solution that already fits the
bill, but for the moment let's assume that is not the case. Other
than low latency, there are two characteristics that are essential
for a successful interface: simplicity and decoupling.

Without a powerful customer insisting that there is a common
standard, it only makes sense to work together if using the
standard saves us time and money compared to the effort we
put into its development. A simple standard keeps the effort
low and makes it relatively easy to adapt some new platform or
bridge to a proprietary on-chip communication system.

Decoupling is a gift to the developers of the software or firm-
ware on either side of the interface, allowing development
of a communicating module that focuses on what it is sup-
posed to do rather than being shaped by the quirks of its
communication partners. When processes communicate there
will always be some form of coupling, but much pain can be
avoided by making these interactions predictable and consis-
tent in their behavior. By making it easier to reason about pro-
cess state, debugging is simpler and, even better, less likely
to be needed.

At this point | am half hoping that someone will step forward
and say “this has already been done,” for surely after 25 years
of embedded parallel processing this is a problem that has
been solved many times over? If that is you, please write and
put me out of my misery!

Next | will consider some of the options that could be used in
the world of real project timescales and budgets, though from
time to time you will also find me dreaming ... SPD

Signal Processing Design Resource Guide Summer2015 | T



