

SMT335 SMT375

User Manual

Certificate Number FM 55022

Revision History

Date	Comments	Engineer	Version
08/05/00	Comm port	J.V.	0.1
12/06/00	SDB	J.V.	0.2
10/07/00	Pre-release version	J.V.	0.9
26/07/00	First version	J.V.	1.0
27/07/00	Typing error corrected. (Comm Port status)	J.V.	1.1
08/08/00	New Burst mode selection from CP status	J.V.	1.2
	Global register display the interrupt status		
09/08/00	Output FIFO status displays how many words can be sent	J.V.	1.3
14/08/00	Global register and Interrupt control register reordered. (Need Bootv1.2)	J.V.	1.4
03/09/00	SDB naming corrected to A and B.	J.V.	1.5
	Global Bus modification for DMA use.		
	Comm port drawing modified		
	Boot code Version 1.4		
	FPGA Firmware Version 2.0		
	(top335V2_0_6.dat)		
14/09/00	NMI routing selection added.	J.V.	1.6
18/09/00	Global Bus transfer example corrected	J.V.	1.7
10/10/00	Global Bus wait state and bus sharing feature added.	J.V.	1.8
	Comm-port status register: OCPRDY and ICPRDY moved to allow FIFO depth expansion.		
	Firmware version 2.5.6		
27/10/00	Global Bus wait state increased to 15. Cf. Control register.	J.V.	1.9
	Comm-port status register: Full reset bit added for crash recovery.		
	Firmware version 2.7.6		

09/11/00	Documentation added for DMA transfers FPGA I/O Slew rate changed to S_12.	J.V.	2.0
	Firmware version 2.8.6		
07/12/00	SDB interrupt flags modified.	J.V.	2.1
	Global bus tri-state signal not latched.		
	Global bus flag cleared when transfer direction is changed.		
	Comm-port reply disabled during token exchange.		
	Firmware version 2.9.6		
11/12/00	SDB Memory mapping updated.	J.V.	2.2
	Firmware version 3.0.6		
24/01/01	Manual updated with quality template.	J.V.	2.3
	Timer routing detailed.		
	Comm-port drawing corrected.		
	Reprogramming and version control described.		
	SDB Interrupt Bug fixed. SDB handling detailed.		
	Comm-port bug reported.		
	Firmware version 3.3.6		
13/4/01	General overhaul and clarification	PSR	3.0
30/8/01	Power consumption and reset timing added.	J.V.	3.1
	Value of Bit 12-13 of the global control register explained.		
11/04/02	Global bus additional feature. Synchronisation with carrier board on SMT328 and SMT310.	J.V.	3.2
	External trigger for ADC acquisition for SMT118.		
	Fix for Comm-port Burst mode selection between threads in bi-directional transfer.		
	Firmware version 3.11.6		

15/05/02	IIOF Interrupt description.	J.V.	3.3
	Global bus BUSY bit description		
	Interrupt control register 6 address corrected.		
	Global bus transfers description for SMT310 family.		
	Firmware version 3.11.6		
30/01/03	Restructure of the document.	J.V.	3.4
	Double buffered global bus. Will require code change if transfer via dma were used.		
	SDB dma synchronisation changed no software change required.		
	Firmware version 3.13.6		

It is important that you use the correct version of the firmware; you should use firmware version 3.13.6 or later.

Check your firmware revision number with the program read_version_335.out and ask for a more recent version if necessary.

E-mail: support@sundance.com

Table of Contents

Revision History	Error! Bookmark not defined.
Contacting Sundance	Error! Bookmark not defined.
Notational Conventions	Error! Bookmark not defined.
SMT335	Error! Bookmark not defined.
Register Descriptions	Error! Bookmark not defined.
Outline Description	Error! Bookmark not defined.
Block Diagram	Error! Bookmark not defined.
Architecture Description	Error! Bookmark not defined.
TMS320C6201/6701	Error! Bookmark not defined.
Boot Mode	Error! Bookmark not defined.
EMIF Control Registers	Error! Bookmark not defined.
SBSRAM	Error! Bookmark not defined.
SDRAM	Error! Bookmark not defined.
FLASH	Error! Bookmark not defined.
Version control	Error! Bookmark not defined.
Reprogramming the firmware and boot code	Error! Bookmark not defined.
Interrupts	Error! Bookmark not defined.
Communication ports	Error! Bookmark not defined.
Data rates	Error! Bookmark not defined.
SDB	Error! Bookmark not defined.
SDB	Error! Bookmark not defined.
SDB update	Error! Bookmark not defined.
SDB Clock selection	Error! Bookmark not defined.
Global bus	Error! Bookmark not defined.
Note for SMT310, SMT310Q, SMT300, SMT3	00QError! Bookmark not defined.
Clock Speed	Error! Bookmark not defined.
LED Setting	Error! Bookmark not defined.
LED Register	Error! Bookmark not defined.
CONFIG & NMI	Error! Bookmark not defined.
Timer	Error! Bookmark not defined.
IIOF interrupt	Error! Bookmark not defined.

Code Composer	Error! Bookmark not defined.
Application Development	Error! Bookmark not defined.
Operating Conditions	Error! Bookmark not defined.
Safety	Error! Bookmark not defined.
EMC	Error! Bookmark not defined.
General Requirements	Error! Bookmark not defined.
Power Consumption	Error! Bookmark not defined.
Serial Ports	Error! Bookmark not defined.
C6201 Memory Map	Error! Bookmark not defined.
Flash Access	Error! Bookmark not defined.
Virtex Memory Map	Error! Bookmark not defined.
Jumpers	Error! Bookmark not defined.
JP1: Clock speed select	Error! Bookmark not defined.
JP2: Serial port header	Error! Bookmark not defined.
SDB Pin-Out	Error! Bookmark not defined.
Virtex layout	Error! Bookmark not defined.
Virtex Pin-Out	Error! Bookmark not defined.
Bibliography	Error! Bookmark not defined.
Index	Error! Bookmark not defined.

Contacting Sundance

You can contact Sundance for additional information by sending email to support@sundance.com

Notational Conventions

SMT335

Throughout this document the term SMT335 will usually be used to refer to both the SMT335 and the SMT375. It should be clear from the context when a distinction is being drawn between the two types of module.

Register Descriptions

The format of registers is described using diagrams of the following form:

31–24	31–24 23–16		7–0
	OFLAGLEVEL		
R,0000000	RW,1000000	R,00000000	R,10000000

The digits at the top of the diagram indicate bit positions within the register and the central section names bits or bit fields. The bottom row describes what may be done to the field and its value after reset. Shaded fields are reserved and should only ever be written with zeroes.

|--|

- W Writeable by the CPU
- RW Readable and writeable by the CPU

Binary digits indicate the value of the field after reset.

Outline Description

The SMT335 is a C6000-based size 1 TIM offering the following features:

- SMT335: TMS320C6201 processor running at 200MHz
- □ SMT375: TMS320C6701 processor running at 166MHz
- □ Six 20MB/s communication ports (comm.-ports)
- □ 512KB of fast SBSRAM, 16MB of SDRAM
- 512KB Flash ROM for boot code and FPGA programming
- Global expansion connector
- □ High bandwidth data I/O via 2 Sundance Digital Buses (SDB).

Block Diagram

Architecture Description

The SMT335 TIM consists of a Texas Instruments TMS320C6201 running at 200MHz while the SMT375 has a TMS320C6701 running at 166MHz. Modules are populated with 512KB of synchronous burst SRAM (SBSRAM) and 16MB of synchronous DRAM (SDRAM), giving a total memory capacity of 16.5MB.

A Field Programmable Gate Array (FPGA) is used to manage global bus accesses and implement six communication ports and two Sundance Digital Buses.

TMS320C6201/6701

Bother processors will run with zero wait states from internal SRAM, the TMS320C6201 at 200MHz and the TMS320C6701 at 166MHz.

An on-board synthesiser from MicroClock provides the clock used for the C6000; jumpers on the TIM allow you to select clock speeds from 118MHz to 200MHz. Unlike similar TIMs based on the TMS320C4x, there is no option to provide an external clock source.

The TIM configuration feature is fully implemented. This provides a single opencollector line that can be held low until software configuration has been completed.

Boot Mode

The SMT335 is configured to use the following boot sequence each time it is taken out of reset:

- 1. The processor copies a bootstrap program from the first 32KB of the flash memory into internal program RAM starting at address 0.
- 2. Execution starts at address 0.

The standard bootstrap supplied with the SMT335 then performs the following operations:

- 1. All relevant C6000 internal registers are set to default values;
- 2. The FPGA is configured from data held in flash memory and sets up the communication ports, the global bus and the Sundance Digital Buses. This step must have been completed before data can be sent to the comm-ports from external sources such as the host or other TIMs;
- 3. A C4x-style boot loader is executed. This will continually examine the six communication ports until data appears on one of them. The bootstrap will then load a program in boot format from that port; the loader will not read data arriving on other ports. See "Application Development" on page Error! Bookmark not defined. for details of the boot loader format;
- 4. Finally, control is passed to the loaded program.

The delay between the release of the board reset and the FPGA configuration is around 280ms for a SMT335 (200MHz clock) and 330ms for a SMT375 (166MHz). The worse case is with a board clocked at 118MHz (no jumper fitted) in which case the FPGA will be configured 480ms after the reset is released.

A typical time to wait after releasing the board reset is 500ms.

EMIF Control Registers

The C6000 contains several registers that control the external memory interface (EMIF). There is one global control register and a separate register for each of the memory spaces CE0 to CE3. A full description of these registers can be found in the *C60000 Peripherals Reference GuideError! Reference source not found.Error! Reference source not found.*[*Error! Reference source not found.*].

Page 12 of 34

The standard bootstrap will initialise these registers to the following values:

	0x00003779	For half speed SBSRAM
GC (global control)	0x0000377D	For full speed SBSRAM (default)
CE0	0x00000040	Indicates SBSRAM
CE1	0x30FF3F03	Defines asynchronous memory timings
CE2	0x00000030	Indicates SDRAM
CE3	0x00000030	VIRTEX FPGA

Note: Bits 12&13 of the Global control register are listed as 'reserved' in the current TI documentation. With earlier versions of the C6000 silicon, these 2 bits controlled the polarity of two clock outputs from the device. To maintain code compatibility for all of our version modules, we have left our documentation with bits 12&13 set.

SBSRAM

Memory space CE0 is used to access 512KB of zero wait-state SBSRAM over the C6000 external memory interface (EMI).

SBSRAM is normally set to run at the speed of the C6000 core clock, but the GC register can be used to reduce this to one half of the core clock speed. The appropriate setting has to be determined in conjunction with the C6000 core speed and the external memory speed; refer to *Clock Speed* on page Error! Bookmark not defined. for further details.

SDRAM

Memory space CE2 is used to access 16MB of SDRAM over the EMI. The SDRAM operates at one half of the core clock speed.

FLASH

A 512KB Flash ROM device is connected to the C6000 EMI. This device is accessed, a byte at a time, with word addresses from 0x0140 0000 to 0x015F FFFF using strobe CE1 in 32-bit asynchronous mode. Each 32-bit load will give 8 bits of data in bits 7–0 of the result; the state of bits 31–8 is undefined.

The ROM holds boot code for the C6000, configuration data for the FPGA, and optional user-defined code.

A software protection algorithm is in place to prevent programs accidentally altering the ROM's contents. Please contact Sundance for further information about reprogramming this device [Error! Reference source not found.Error! Reference source

Version control

Revision numbers for both the boot code and FPGA firmware are stored in the Flash ROM during programming as zero-terminated ASCII strings. These revision numbers are located using byte offsets from the base of the Flash ROM (0x01400000). The offsets are held as 4-byte words at the end of the ROM: 0x015FFFF8 for the FPGA firmware offset and 0x0147FFFC for the boot code offset.

The distribution disk contains a program, **read_version_335.out**, in the directory **Reprogramming\version_control**. You can load and run this program from code composer to display both the FPGA and boot code version numbers.

Reprogramming the firmware and boot code

The **Reprogramming**flash directory of the distribution disk contains a utility that will run under code composer and program the flash ROM. The utility is called **pflash** x_y_z .out, where x_y_z is the FPGA version number.

You load the utility with the code composer "Load Program" option from the "File" menu. Once the program has loaded, you should select "Run" from the "Debug" menu. The reprogramming process takes a minute or so and should display "Flash programming complete" when it has finished. After the program has run you should "Halt" the processor from the "Debug" menu and select "Run Free". To confirm that the programming has been successful you should use the Sundance Server to reset the board and execute one of the supplied test programs.

A detailed description of the reprogramming process is available as an Application Note [Error! Reference source not found.], which will also help you to develop your own core in the FPGA.

Interrupts

See general firmware description

Communication ports

The SMT335 provides six comm-ports.

See general firmware description

Data rates

When using the communication links of a C6000 you must remember that the links share a single bus, so the performance you get will depend on the way you sequence bus accesses.

C6201 can read at 100MHz from external to internal memory; the rate for the C6701 is 83MHz. If you want to store in external memory then the rate achievable are divided by two as the read and writes share the same bus, which means respectively 50MHz and 41MHz.

The C6000 DMA channels are not efficient when moving data between two external memory areas sharing a common bus; the transfer will take place a word at a time and not in more efficient bursts. This is why it may not be advisable to use DMA to transfer data directly between external memory and a communication link. Performance can be greatly improved by using an intermediate buffer in internal memory.

SDB

The SMT335 provides two Sundance Digital Buses (SDBs).

See general firmware description

SDB update

You should be aware that revisions of the SDB before V3.0.6 have a significantly different treatment of the status flags and a different address is used to program the SDB flag levels for input and output. When upgrading from versions before V3.0.6, you will need to change the code for flag programming and accessing the status bits. You should use version V3.3.6 or above because previous versions could generate spurious interrupts on input.

SDB Clock selection

At any time you can change the speed of an SDB clock by altering SDBCLK.

Module	SDBCLK	Clock Speed
SMT335	0	50MHz
51011 555	1	100MHz
SMT375	0	41MHz
	1	83MHz

Global bus

The SMT335 provides one global bus interface.

See general firmware description

The latest global bus interface is double buffered for dma so that it can read ahead the next buffer while the first one is being read by the DSP. Similarly a buffer is being written while the previous one is being sent.

The important thing is to set the global bus operation register before enabling the global bus interrupt on an external interrupt line so that the interrupt generated is the one relevant to the operation (read/write).

This has changed for the SMT335 firmware as it used to need the dma event to be forced for a write and that the external interrupt was enabled before the operation register was set. This is the only change needed when updating from a version of the SMT335 prior to 3.13.6.

Note for SMT310, SMT310Q, SMT300, SMT300Q

Burst Transfer across a 1KBytes page boundary is only supported from version 3.13.6 of the firmware.

To transfer over the PCI the global bus is set-up to be able to perform burst transfer across the PCI bridge chip. A burst transfer is happening whenever the global bus transfer size register is set to transfer more than one word at a time. During a burst a word is transferred on every clock cycle.

The PC memory can be accessed through aperture 0 of the PCI Bridge but a burst transfer must not cross a 1KBytes boundary (256 words). This is because the page size of the bridge chip is 1KBytes.

In other words burst transfer must always be ended on a page boundary. For example you should never burst from the pci address XXXX3FCH to XXXX400H. Address XXXX400H would actually be targeting address XXXXX000H in the pci address space as the page accessed by this burst was in the address range XXXXX000H - XXXXX3FCH.

To make sure a page crossing does not happen during burst access an address alignment has to be performed. The global bus transfer size has to be reduced not to cross a page. For DMA it is advised to align the transfer on 256 words and then setup the DMA to transfer by bursts of 256 words to ensure no page boundary is crossed during burst.

Clock Speed

You must consider EMIF device speeds when choosing the appropriate C6000 clock speed. Under most circumstances, the C6201 would be set to 200MHz and have an SBSRAM speed equal to the core speed; the C6701 would be set to 166MHz. See the description of jumper JP1 on page **Error! Bookmark not defined.**.

C6000 clock	SBSRAM	SDRAM	FPGA
133	133	67	67
166	166	83	83
200	100	100	100
200	200	100	100

LED Setting

The SMT335 has 5 LEDs.

LED 1 always displays the state of the FPGA DONE pin. This LED is off when the FPGA is configured (DONE=1) and on when it is not configured (DONE=0).

This LED should go on when the board is first powered up and go off when the FPGA has been successfully programmed. If the LED does not light at power-on, check that you have the mounting pillars and screws fitted properly. If it stays on, the DSP is not booting correctly.

The remaining LEDs can be controlled with the LED register. Writing 1 will illuminate the LED; writing 0 will turn it off.

See general firmware description

CONFIG & NMI

See general firmware description

Timer

See general firmware description

IIOF interrupt

From version 3.11.6 of the firmware it is possible to generate pulses on the external interrupt lines of the TIM.

See general firmware description

Code Composer

This module is fully compatible with the Code Composer debug environment. This extends to both the software and JTAG debugging hardware including the SMT320V4, SMT327, SMT328 and TI's XDS-510.

Application Development

You can develop code for SMT335/375 modules in several ways. The simplest is to use the Sundance SMT6000 Server Loader and its associated libraries.

The Server Loader is an application that runs on a host PC under either Windows 98 or NT and allows you to run COFF-format applications. Modified forms of the TI rts library, one for the C6201 and one for the C6701, support standard C I/O.

The Server Loader will read a **.out** file and convert it into C4x-style boot code which is then transmitted down a comm-port to the SMT335.

The boot code is in the following format:

	Word ¹ 1	0x00003779 half speed SBSRAM			
		0x0000377D	full speed SBSRAM (recommended)		
6-word header	Words 2, 3, 4	0, 0, 0			
	Word 5	start address			
	Word 6	0			
	Word 1	4*N: Length of load block (in bytes) ²			
Load Block	Word 2	Destination address (external memory only)			
	Next N words	N data words			
0 or more Load Blocks					
Terminator	Word 1	0 ³			

¹ A word is 32 bits

² The length of each data block will be rounded up to a multiple of 4 bytes if necessary.

³ Effectively a zero-length Load Block

Operating Conditions

Safety

The module presents no hazard to the user.

ЕМС

The module is designed to operate within an enclosed host system that provides adequate EMC shielding. Operation within the EU EMC guidelines is only guaranteed when the module is installed within an appropriate host system.

The module is protected from damage by fast voltage transients introduced along output cables from outside the host system.

Short-circuiting any output to ground does not cause the host PC system to lock up or reboot.

General Requirements

The module must be fixed to a TIM40-compliant carrier board.

The SMT335 TIM is in a range of modules that must be supplied with a 3.3v power source. In addition to the 5v supply specified in the TIM specification, these new generation modules require an additional 3.3v supply to be presented on the two diagonally-opposite TIM mounting holes. The lack of this 3.3v power supply should not damage the module, although it will obviously be inoperable; prolonged operation under these circumstances is not recommended.

This module is not directly compatible with earlier generations of TIM motherboards, although the 3.3v supply can be provided from a separate source. It is, however, compatible with the latest generation of Sundance TIM carrier boards such as the SMT320V4 and subsequent versions (PCI), and SMT328 (VME), which present the 3.3v via conductive mounting pillars.

Use of the TIM on SMT327 (cPCI) motherboards may require a firmware upgrade. If LED #1 on the SMT335 remains illuminated once the TIM is plugged in and powered up, the SMT327 needs the upgrade. The latest firmware is supplied with all new boards shipped. Please contact Sundance directly if you have an older board and need the upgrade.

A SMT320V3 motherboard can be used providing a SMT335 TIM is not located in the first slot; putting one there prevents the SMT320V3 from coming out of reset. Any other type of TIM must be placed in the first slot of this motherboard to ensure correct operation.

The external ambient temperature must remain between 0°C and 40°C, and the relative humidity must not exceed 95% (non-condensing).

Power Consumption

The power consumption of this TIM is dependent on the operating conditions in terms of core activity and I/O activity. The maximum power consumption is 6W.

Serial Ports

The C6000 contains two multichannel buffered serial ports (McBSP). The signals involved are connected to a 0.1" pitch DIL pin header (JP2). For a full description of signal activity and the serial protocols available, please refer to Chapter 11 of [Error! Reference source not found.].

Signal	Pin	Pin	Signal
FSX1	1	2	FSX0
FSR1	3	4	FSR0
DX1	5	6	DX0
DR1	7	8	DR0
CLKX1	9	10	CLKX0
CLKR1	11	12	CLKR0
CLKS1	13	14	CLKS0
GND	15	16	GND

C6201 Memory Map

Starting Address	RESOURCE	Refer to
0000000	Internal Program RAM	
00010000	Reserved	
00400000 – 0047FFFF	External Memory Space CE0 512KB SBSRAM	SBSRAM
01400000 – 015FFFFF	External Memory Space CE1 512KB Flash	Flash
01800000	Internal Peripherals	
01C00000	Reserved	
02000000 -02FFFFFF	External Memory Space CE2 16MB SDRAM	SDRAM
02000000 0255555	External Memory Space CE3	Comm-ports,
03000000 - 03FFFFF	See Virtex memory map	SDB, Global bus
0400000	Reserved	
8000000	Internal Data RAM	
80010000	Reserved	
80400000	Reserved	

Flash Access

Address	Resource					
	ED31	ED30	CE1			
	0	0	Read Flash / Write Flash			
01400000 – 015FFFFF	0	1	Read Flash / Pulse PROG			
	1	0	Read Flash / Write CCLK			
	1	1	Read Flash / Write Flash			

Virtex Memory Map

See general firmware description with i = 18 The memory mapping is as follows:

#define	CP0	(volatile	unsigned	int	*)0x0300000
#define	CP1	(volatile	unsigned	int	*)0x03080000
#define	CP2	(volatile	unsigned	int	*)0x03100000
#define	CP3	(volatile	unsigned	int	*)0x03180000
#define	CP4	(volatile	unsigned	int	*)0x03200000
#define	CP5	(volatile	unsigned	int	*)0x03280000
#define	CP0_STAT	(volatile	unsigned	int	*)0x03040000
#define	CP1_STAT	(volatile	unsigned	int	*)0x030C0000
#define	CP2_STAT	(volatile	unsigned	int	*)0x03140000
#define	CP3_STAT	(volatile	unsigned	int	*)0x031C0000
#define	CP4_STAT	(volatile	unsigned	int	*)0x03240000
#define	CP5_STAT	(volatile	unsigned	int	*)0x032C0000
#define	GBSTAT	(volatile	unsigned	int	*)0x03340000
#define	SDBSTAT	(volatile	unsigned	int	*)0x03380000
#define	STAT	(volatile	unsigned	int	*)0x033C0000
#define	SDBA	(volatile	unsigned	int	*)0x03400000
#define	SDBB	(volatile	unsigned	int	*)0x03500000
#define	SDBA_STAT	(volatile	unsigned	int	*)0x03480000
#define	SDBB_STAT	(volatile	unsigned	int	*)0x03580000
#define	SDBA_INPUTFLAG	(volatile	unsigned	int	*)0x03440000
#define	SDBB_INPUTFLAG	(volatile	unsigned	int	*)0x03540000
#define	SDBA_OUTPUTFLAG	(volatile	unsigned	int	*)0x034C0000
#define	SDBB_OUTPUTFLAG	(volatile	unsigned	int	*)0x035C0000
#define	GLOBAL_BUS	(volatile	unsigned	int	*)0x03A00000
#define	GLOBAL_BUS_CTRL	(volatile	unsigned	int	*)0x03800000
#define	GLOBAL_BUS_START	(volatile	unsigned	int	*)0x03880000
#define	GLOBAL_BUS_LENGTH	(volatile	unsigned	int	*)0x03900000
#define	TCLK	(volatile	unsigned	int	*)0x03C00000
#define	TIMCONFIG	(volatile	unsigned	int	*)0x03C80000
#define	LED	(volatile	unsigned	int	*)0x03D00000
#define	IIOF	(volatile	unsigned	int	*)0x03D80000
#define	INTCTRL4	(volatile	unsigned	int	*)0x03E00000
#define	SDBINTCTRL4	(volatile	unsigned	int	*)0x03E40000

Jumpers

JP1: Clock speed select

S2	S1	S0	C6000 CLK (MHz)
IN	IN	IN	200
IN	IN	OUT	182
IN	OUT	IN	167
IN	OUT	OUT	154
OUT	IN	IN	143
OUT	IN	OUT	133
OUT	OUT	IN	125
OUT	OUT	OUT	118

Page 24 of 34

S0, S1 and S2 refer to the following link positions on JP1.

JP2: Serial port header

Refer to the *TMS320C6201 Peripheral Reference Guide* [Error! Reference source **not found.**] for a description of the signals and their usage.

2	4	6	8	10	12	14	16
FSX0	FSR0	DX0	DR0	CLKX0	CLKR0	CLKS0	GND
FSX1	FSR1	DX1	DR1	CLKX1	CLKR1	CLKS1	GND
1	3	5	7	9	11	13	15

SDB Pin-Out

Pin	Signal	Signal	Pin
	0	0.15	
1	CLK	GND	2
3	D0	GND	4
5	D1	GND	6
7	D2	GND	8
9	D3	GND	10
11	D4	GND	12
13	D5	GND	14
15	D6	GND	16
17	D7	GND	18
19	D8	GND	20
21	D9	GND	22
23	D10	GND	24
25	D11	GND	26
27	D12	GND	28
29	D13	GND	30
31	D14	GND	32
33	D15	GND	34
35	UD0	DIR	36
37	WEN	REQ	38
39	UD1	ACK	40

Virtex layout

Virtex Pin-Out

A1		B1	ED0	C1	ED1	D1	ED16
A2	C0S10	B2		C2	ED15	D2	/AWE
A3	SDBD15	B3	SDBBWEN	C3		D3	
A4	SDBD12	B4	C0S5	C4		D4	
A5	SDBD9	B5	SDBBUD0	C5	C0S8	D5	SDBBD2
A6	C0S11	B6	SDBBUD1	C6	C0S6	D6	SDBBD5
A7	SDBD6	B7	SDBBD13	C7	C0S9	D7	SDBBD8
A8	SDBD3	B8	SDBBD10	C8	DIRB	D8	SDBBD11
A9	C0S4	B9	SDBBD7	C9		D9	SDBBD14
A10	SDBD0	B10	SDBBD4	C10	CLKB	D10	SDBBREQ
A11	CLK100	B11	SDBBD1	C11	CLKB	D11	C4S0
A12	C5S5	B12	C5S9	C12	C5S0	D12	C4S1
A13	C5S6	B13	C4S10	C13	C5S1	D13	C4S2
A14	C5S7	B14	C5S10	C14	C5S2	D14	C4S3
A15	/C60NMI	B15	C5S11	C15	C5S3	D15	C4S4
A16	C5S8	B16	/TIMIACK	C16	C5S4	D16	C4S5
A17	/C60IACK	B17	IIOF2	C17		D17	C4S6
A18		B18	/TIMNMI	C18		D18	GA29
A19		B19	CONFIG	C19		D19	
A20		B20		C20		D20	Config D0
A21		B21		C21		D21	GA26
A22		B22	CCLK	C22	GA27	D22	STAT0

Comm-ports are numbered C0 to C5. Each has 12 elements (i.e. CnS[0..11]).

- CnS0 STRB
- CnS1 RDY
- CnS2 REQ
- CnS3 ACK
- CnS[4..11] Data[0..7]

						-		
E1	ED2	F1	ED5	G1	ED10		H1	ED14
E2	/RAS	F2	ED6	G2	ED17		H2	ED22
E3	ED3	F3	ED7	G3	ED11		H3	ED23
E4	ED4	F4	ED8	G4	ED12		H4	/CAS
E5		F5	ED9	G5	ED13		H5	ED24
E6	SDBBACK	F6		G6			H6	
E7	C0S0	F7		G7			H7	
E8	C0S7	F8		G8			H8	
E9	C0S1	F9		G9			H9	
E10	C0S2	F10		G10			H10	
E11	C0S3	F11		G11			H11	
E12	C4S7	F12		G12			H12	
E13	/TIMNMI	F13		G13			H13	
E14	C4S11	F14		G14			H14	
E15	C4S8	F15		G15			H15	
E16	C4S9	F16		G16			H16	
E17	/RESET	F17		G17			H17	
E18		F18	GA22	G18	GA18		H18	STAT2
E19	GA30	F19	GA21	G19	GA17		H19	GA13
E20	GA25	F20	GA20	G20	GA16		H20	
E21	GA24	F21	STAT1	G21	GA15		H21	GA12
E22	GA23	F22	GA19	G22	GA14]	H22	

J1	ED18
J2	ED25
J3	ED26
J4	ED19
J5	ED27
J6	
J7	
J8	
J9	
J10	
J11	
J12	
J13	
J14	
J15	
J16	
J17	
J18	GA28
J19	GA11
J20	GA10
J21	GA8
J22	GA7

K1	ED28
K2	ED20
K3	/SDRAMWE
K4	ED29
K5	ED30
K6	
K7	
K8	
K9	
K10	
K11	
K12	
K13	
K14	
K15	
K16	
K17	
K18	GA6
K19	GA5
K20	
K21	STAT3
K22	GA4

L1	ED31
L2	ED21
L3	/SDRAMCS
L4	/ARE
L5	/ARDY
L6	/AOE
L7	
L8	
L9	
L10	
L11	
L12	
L13	
L14	
L15	
L16	
L17	GA9
L18	/AE
L19	GA3
L20	GA2
L21	GA1
L22	GA0

M1	EA2
M2	EA17
M3	EA3
M4	EA4
M5	EA5
M6	EA6
M7	
M8	
M9	
M10	
M11	
M12	
M13	
M14	
M15	
M16	
M17	
M18	
M19	/DE
M20	GD31
M21	GD30
M22	GD29

				_			_		
N1	EA18	P1	EA19		R1	EA13		T1	EA16
N2	TIN0	P2	EA10		R2	EA14		T2	/BE0
N3	EA7	P3	EA11		R3	EA21		Т3	TCLK0
N4	EA8	P4	EA12		R4	TIN1		T4	/BE1
N5	EA9	P5	EA20		R5	EA15		T5	/BE2
N6		P6			R6			T6	
N7		P7			R7			T7	
N8		P8			R8			T8	
N9		P9			R9			Т9	
N10		P10			R10			T10	
N11		P11			R11			T11	
N12		P12			R12			T12	
N13		P13			R13			T13	
N14		P14			R14			T14	
N15		P15			R15			T15	
N16		P16			R16			T16	
N17		P17			R17			T17	
N18	GD28	P18	GD24		R18	GD19		T18	GD15
N19	GD27	P19	GD23		R19	GD18		T19	GD14
N20	GD26	P20	GD22		R20	GD17		T20	GD13
N21	GD25	P21	GD21		R21			T21	GD12
N22		P22	GD20		R22	GD16		T22	

U1	/BE3	V1	LED1		W1	DMAC3	Y1	TCLK1
U2	DMAC0	V2	LED2		W2		Y2	TOUT1
U3	DMAC1	V3	LED3		W3	TOUT0	Y3	
U4	DMAC2	V4	LED4		W4		Y4	M2=V33
U5	M1=V33	V5			W5	C3S6	Y5	
U6		V6			W6	C3S7	Y6	SDBAUD0
U7		V7	C3S1		W7	C3S8	Y7	SDBAD8
U8		V8	C3S2		W8	SDBAWEN	Y8	SDBAD5
U9		V9	C3S3		W9	SDBAD14	Y9	SDBAD2
U10		V10	C3S4	l l	W10	SDBAD13	Y10	
U11	C3S0	V11	C3S5	Ň	W11	SDBAD11	Y11	CLKA
U12	C1S0	V12	C1S1	l l	W12	CLK100	Y12	C1S11
U13		V13	C1S2	ľ	W13	/TIMCE1	Y13	
U14		V14	C1S3	Ň	W14	C1S7	Y14	/TIMRW1
U15		V15	C1S4	Ň	W15	/TIMLOCK	Y15	/TIMSTRB1
U16		V16	C1S5	Ň	W16	C1S8	Y16	INT4
U17		V17	C1S6	Ň	W17	C1S9	Y17	INT5
U18	GD11	V18		Ň	W18	C1S10	Y18	INT6
U19	GD10	V19	INIT	Ň	W19		Y19	DONE
U20	GD9	V20	GD6	Ņ	W20	/PROG	Y20	
U21	GD8	V21	GD5		W21	GD3	Y21	
U22	GD7	V22	GD4		W22	GD2	Y22	GD1

AA1			AB1	
AA2			AB2	M0=V33
AA3	SDBAD10		AB3	SDBAD15
AA4	C3S9		AB4	SDBAD12
AA5	SDBAUD1		AB5	SDBAD9
AA6	C3S10		AB6	SDBAD6
AA7	C3S11		AB7	SDBAREQ
AA8	DIRA		AB8	SDBAACK
AA9	SDBAD7		AB9	SDBAD3
AA10	SDBAD4	1	AB10	SDBAD0
AA11	SDBAD1	1	AB11	CLKA
AA12	INT7	1	AB12	TIMPAGE1
AA13	C2S8		AB13	C2S4
AA14	IIOF0	4	AB14	H3
AA15	IIOF1	4	AB15	C2S5
AA16	/TIMRDY1		AB16	C2S9
AA17	C2S0		AB17	C2S6
AA18	C2S1	1	AB18	C2S7
AA19	C2S2	1	AB19	C2S10
AA20	C2S3		AB20	C2S11
AA21			AB21	H1
AA22	GD0		AB22	

Bibliography

- 1. *TMS320C6201/C6701 Peripherals Reference Guide (literature number SPRU190)* describes common peripherals available on the TMS320C6201/C6701 digital signal processors. This book includes information on the internal data and program memories, the external memory interface (EMIF), the host port, multichannel-buffered serial ports, direct memory access (DMA), clocking and phase-locked loop (PLL), and the power-down modes.
- 2. Application Note: Flash Programming
- 3. TIM-40 MODULE SPECIFICATION Including TMS320C44 Addendum
- 4. SDB Technical Specification V2.1 or above
- 5. TMS320C4x User's Guide (literature number SPRU063) describes the C4x 32-bit floating-point processor, developed for digital signal processing as well as parallel processing applications. Covered are its architecture, internal register structure, instruction set, pipeline, specifications, and operation of its six DMA channels and six communication ports. Software and hardware applications are included.
- 6. Application Note: Creating New Firmware

Index

Application Development	
server-loader	17
Architecture Description Bibliography Block Diagram	10 32
Board not working	
firmware revision	4
firmware version numbers	13
LED 1 illuminated	16
no 3.3v supply	18
old version of SDB	14
boot code format Boot Mode bootstrap program carrier boards Clock	17 11 11 18
speed	16
speed select See Ju	umpers
speed select See Ju Code Composer Comports	umpers 17
speed select See Ju Code Composer Comports performance	umpers 17 14
speed select	umpers 17 14 11 6 6
speed select	umpers 17 14 11 6 12
speed select	umpers 17 14 11 6 12 7 12
speed select	umpers 17 14 14 6 6 12 7 12
speed select	umpers 17 14 6 6 7 7 12 20 12
speed select	umpers 17 14 14 6 6 12 12 12 12 10
speed select	umpers 17 14 11 6 6 12 12 20 12 10 11
speed select See Ju Code Composer	umpers 17 14 11 6 12 7 20 12 12 12 12 23

LEDs	16
FPGA DONE pin	16
McBSP	19
Memory Map	20
memory space (CE0 to CE3)	12
motherboards	18
NMI	16
Operating Conditions	/ 10
Power	10
3 3V	18
	10
power consumption	18
register descriptions	7
	4.0
boot code	13
FPGA firmware	13
SBSRAM	12
SDB	14
clock speed	14
pin-out	24
spurious interupts	14
versions	14
SDRAM	12
Serial Ports	19
serial port header	23
SMT335	7
SMT375	7
Sundance TIM carrier boards	18
Timer	16
I M5320C6201 Virtex	11
layout	25
pin-out	26